SARS-CoV-2 Vaccine Alpha and Delta Variant Breakthrough Infections Are Rare and Mild but Can Happen Relatively Early after Vaccination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Setting
2.3. Study Design and Population
2.4. Data Collection
2.5. SCoV2 Lineage Determination
2.6. Full Vaccination
2.7. Breakthrough Infection
3. Results
3.1. Occurrence of Breakthrough Infections
3.2. Clinical Case Presentation
3.3. Identification of Potential Risk Factors
3.4. Difference between Breakthrough Infections with Alpha or Delta ScoV2 Variants
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Dagan, N.; Barda, N.; Kepten, E.; Miron, O.; Perchik, S.; Katz, M.A.; Hernán, M.A.; Lipsitch, M.; Reis, B.; Balicer, R.D. BNT162b2 mRNA COVID-19 Vaccine in a Nationwide Mass Vaccination Setting. N. Engl. J. Med. 2021, 384, 1412–1423. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Stephenson, K.E.; Le Gars, M.; Sadoff, J.; de Groot, A.M.; Heerwegh, D.; Truyers, C.; Atyeo, C.; Loos, C.; Chandrashekar, A.; McMahan, K.; et al. Immunogenicity of the Ad26.COV2.S Vaccine for COVID-19. JAMA J. Am. Med. Assoc. 2021, 325, 1535–1544. [Google Scholar] [CrossRef]
- Bergwerk, M.; Gonen, T.; Lustig, Y.; Amit, S.; Lipsitch, M.; Cohen, C.; Mandelboim, M.; Levin, E.G.; Rubin, C.; Indenbaum, V.; et al. COVID-19 Breakthrough Infections in Vaccinated Health Care Workers. N. Engl. J. Med. 2021, 385, 1474–1484. [Google Scholar] [CrossRef]
- Tenforde, M.W.; Self, W.H.; Adams, K.; Gaglani, M.; Ginde, A.A.; McNeal, T.; Ghamande, S.; Douin, D.J.; Talbot, H.K.; Casey, J.D.; et al. Association Between mRNA Vaccination and COVID-19 Hospitalization and Disease Severity. JAMA J. Am. Med. Assoc. 2021, 326, 2043–2054. [Google Scholar] [CrossRef]
- Thompson, M.G.; Burgess, J.L.; Naleway, A.L.; Tyner, H.; Yoon, S.K.; Meece, J.; Olsho, L.E.W.; Caban-Martinez, A.J.; Fowlkes, A.L.; Lutrick, K.; et al. Prevention and Attenuation of COVID-19 with the BNT162b2 and mRNA-1273 Vaccines. N. Engl. J. Med. 2021, 385, 320–329. [Google Scholar] [CrossRef]
- Chemaitelly, H.; Tang, P.; Hasan, M.R.; AlMukdad, S.; Yassine, H.M.; Benslimane, F.M.; Al Khatib, H.A.; Coyle, P.; Ayoub, H.H.; Al Kanaani, Z.; et al. Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar. N. Engl. J. Med. 2021, 385, e83. [Google Scholar] [CrossRef]
- Chodick, G.; Tene, L.; Rotem, R.S.; Patalon, T.; Gazit, S.; Ben-Tov, A.; Weil, C.; Goldshtein, I.; Twig, G.; Cohen, D.; et al. The Effectiveness of the Two-Dose BNT162b2 Vaccine: Analysis of Real-World Data. Clin. Infect. Dis. 2021, 74, 472–478. [Google Scholar] [CrossRef]
- Thompson, M.G.; Stenehjem, E.; Grannis, S.; Ball, S.W.; Naleway, A.L.; Ong, T.C.; DeSilva, M.B.; Natarajan, K.; Bozio, C.H.; Lewis, N.; et al. Effectiveness of COVID-19 Vaccines in Ambulatory and Inpatient Care Settings. N. Engl. J. Med. 2021, 385, 1355–1371. [Google Scholar] [CrossRef]
- Haas, E.J.; Angulo, F.J.; McLaughlin, J.M.; Anis, E.; Singer, S.R.; Khan, F.; Brooks, N.; Smaja, M.; Mircus, G.; Pan, K.; et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: An observational study using national surveillance data. Lancet 2021, 397, 1819–1829. [Google Scholar] [CrossRef]
- Hacisuleyman, E.; Hale, C.; Saito, Y.; Blachere, N.E.; Bergh, M.; Conlon, E.G.; Schaefer-Babajew, D.J.; DaSilva, J.; Muecksch, F.; Gaebler, C.; et al. Vaccine Breakthrough Infections with SARS-CoV-2 Variants. N. Engl. J. Med. 2021, 384, 2212–2218. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.J.; Moreira, E.D., Jr.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Polack, F.P.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine through 6 Months. N. Engl. J. Med. 2021, 385, 1761–1773. [Google Scholar] [CrossRef]
- Lipsitch, M.; Krammer, F.; Regev-Yochay, G.; Lustig, Y.; Balicer, R.D. SARS-CoV-2 breakthrough infections in vaccinated individuals: Measurement, causes and impact. Nat. Rev. Immunol. 2021, 22, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lee, J.; Ta, C.; Soroush, A.; Rogers, J.R.; Kim, J.H.; Natarajan, K.; Zucker, J.; Weng, C. A Retrospective Analysis of COVID-19 mRNA Vaccine Breakthrough Infections—Risk Factors and Vaccine Effectiveness. medRxiv, 2021; in print. [Google Scholar] [CrossRef]
- Aslam, S.; Adler, E.; Mekeel, K.; Little, S.J. Clinical effectiveness of COVID-19 vaccination in solid organ transplant recipients. Transpl. Infect. Dis. 2021, 23, e13705. [Google Scholar] [CrossRef] [PubMed]
- Brosh-Nissimov, T.; Orenbuch-Harroch, E.; Chowers, M.; Elbaz, M.; Nesher, L.; Stein, M.; Maor, Y.; Cohen, R.; Hussein, K.; Weinberger, M.; et al. BNT162b2 vaccine breakthrough: Clinical characteristics of 152 fully vaccinated hospitalized COVID-19 patients in Israel. Clin. Microbiol. Infect. 2021, 27, 1652–1657. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.X.; Moore, L.W.; Anjan, S.; Rahamimov, R.; Sifri, C.D.; Ali, N.M.; Morales, M.K.; Tsapepas, D.S.; Basic-Jukic, N.; Miller, R.A.; et al. Risk of Breakthrough SARS-CoV-2 Infections in Adult Transplant Recipients. Transplantation 2021, 105, e265–e266. [Google Scholar] [CrossRef]
- Barda, N.; Dagan, N.; Cohen, C.; Hernán, M.A.; Lipsitch, M.; Kohane, I.S.; Reis, B.Y.; Balicer, R.D. Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for pre-venting severe outcomes in Israel: An observational study. Lancet 2021, 398, 2093–2100. [Google Scholar] [CrossRef]
- Mizrahi, B.; Lotan, R.; Kalkstein, N.; Peretz, A.; Perez, G.; Ben-Tov, A.; Chodick, G.; Gazit, S.; Patalon, T. Correlation of SARS-CoV-2-breakthrough infections to time-from-vaccine. Nat. Commun. 2021, 12, 6379. [Google Scholar] [CrossRef]
- World Health Organization. Interim Statement on Booster Doses for COVID-19 Vaccination. 2021. Available online: https://www.who.int/news/item/04-10-2021-interim-statement-on-booster-doses-for-COVID-19-vaccination (accessed on 23 December 2021).
- Vilches, T.N.; Shoukat, A.; Ferreira, C.P.; Moghadas, S.M. Projecting influenza vaccine effectiveness: A simulation study. PLoS ONE 2020, 15, e0241549. [Google Scholar] [CrossRef]
- Mlcochova, P.; Kemp, S.A.; Dhar, M.S.; Papa, G.; Meng, B.; Ferreira, I.A.T.M.; Datir, R.; Collier, D.A.; Albecka, A.; Singh, S.; et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 2021, 599, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Planas, D.; Veyer, D.; Baidaliuk, A.; Staropoli, I.; Guivel-Benhassine, F.; Rajah, M.M.; Planchais, C.; Porrot, F.; Robillard, N.; Puech, J.; et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 2021, 596, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Lai, S.; Gao, G.F.; Shi, W. The emergence, genomic diversity and global spread of SARS-CoV-2. Nature 2021, 600, 408–418. [Google Scholar] [CrossRef]
- McCallum, M.; Walls, A.C.; Sprouse, K.R.; Bowen, J.E.; Rosen, L.E.; Dang, H.V.; De Marco, A.; Franko, N.; Tilles, S.W.; Logue, J.; et al. Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants. Science 2021, 374, 1621–1626. [Google Scholar] [CrossRef]
- Puranik, A.; Lenehan, P.J.; Silvert, E.; Niesen, M.J.; Corchado-Garcia, J.; O’Horo, J.C.; Virk, A.; Swift, M.D.; Halamka, J.; Badley, A.D.; et al. Comparison of two highly-effective mRNA vaccines for COVID-19 during periods of Alpha and Delta variant prevalence. medRxiv, 2021; in print. [Google Scholar]
- Burki, T.K. Omicron variant and booster COVID-19 vaccines. Lancet Respir. Med. 2021, 10, e17. [Google Scholar] [CrossRef]
- Lu, L.; Mok, B.W.Y.; Chen, L.; Chan, J.M.C.; Tsang, O.T.Y.; Lam, B.H.S.; Chuang, V.W.M.; Chu, A.W.H.; Chan, W.M.; Ip, J.D.; et al. Neutralization of SARS-CoV-2 Omicron variant by sera from BNT162b2 or Coronavac vaccine recipients. medRxiv, 2021; in print. [Google Scholar] [CrossRef]
- Swiss Federal Statistical Office. Sustainable Development, Regional and International Disparities, Statistical Basis and Overviews; Swiss Federal Statistical Office: Neuchâtel, Switzerland, 2021.
- Bureau USC. Boston City, Massachussetts. 2021. Available online: https://www.census.gov/quickfacts/fact/table/bostoncitymassachusetts/POP010220 (accessed on 23 December 2021).
- Park, N. Estimates of the Population for the UK, England and Wales, Scotland and Northern Ireland. 2021. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland (accessed on 23 December 2021).
- Madrid Co. El Municipio en Cigfras. 2021. Available online: http://portalestadistico.com/municipioencifras/?pn=madrid&pc=ZTV21 (accessed on 23 December 2021).
- Statistisches Amt des Kantons Basel-Stadt. Bestand und Struktur. 2021. Available online: https://www.statistik.bs.ch/zahlen/tabellen/1-bevoelkerung/bestand-struktur.html (accessed on 23 December 2021).
- Bethesda. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines; Bethesda: Rockville, MD, USA, 2021. [Google Scholar]
- Stange, M.; Mari, A.; Roloff, T.; Seth-Smith, H.M.; Schweitzer, M.; Brunner, M.; Leuzinger, K.; Søgaard, K.K.; Gensch, A.; Tschudin-Sutter, S.; et al. SARS-CoV-2 outbreak in a tri-national urban area is dominated by a B.1 lineage variant linked to a mass gathering event. PLoS Pathog. 2021, 17, e1009374. [Google Scholar] [CrossRef] [PubMed]
- Wegner, F.; Roloff, T.; Huber, M.; Cordey, S.; Ramette, A.; Gerth, Y.; Bertelli, C.; Stange, M.; Seth-Smith, H.M.; Mari, A.; et al. External quality assessment of SARS-CoV-2-sequencing: An ESGMD-SSM pilot trial across 15 European laboratories. J. Clin. Microbiol. 2021, 60, e01698-21. [Google Scholar] [CrossRef]
- Antonelli, M.; Penfold, R.S.; Merino, J.; Sudre, C.H.; Molteni, E.; Berry, S.; Canas, L.S.; Graham, M.S.; Klaser, K.; Modat, M.; et al. Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: A prospective, community-based, nested, case-control study. Lancet Infect. Dis. 2021, 22, 43–55. [Google Scholar] [CrossRef]
- Day, M. COVID-19: Stronger warnings are needed to curb socialising after vaccination, say doctors and behavioural scientists. BMJ 2021, 372, n783. [Google Scholar] [CrossRef] [PubMed]
- Kojima, N.; Klausner, J.D. Protective immunity after recovery from SARS-CoV-2 infection. Lancet Infect. Dis. 2021, 22, 12–14. [Google Scholar] [CrossRef]
- Townsend, J.P.; Hassler, H.B.; Wang, Z.; Miura, S.; Singh, J.; Kumar, S.; Ruddle, N.H.; Galvani, A.P.; Dornburg, A. The durability of immunity against reinfection by SARS-CoV-2: A comparative evolutionary study. Lancet Microbe 2021, 2, e666–e675. [Google Scholar] [CrossRef]
- Crotty, S. Hybrid immunity. Science 2021, 372, 1392–1393. [Google Scholar] [CrossRef]
- Wratil, P.R.; Stern, M.; Priller, A.; Willmann, A.; Almanzar, G.; Vogel, E.; Feuerherd, M.; Cheng, C.C.; Yazici, S.; Christa, C.; et al. Three exposures to the spike protein Three exposures to the spike protein of SARS-CoV-2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern. Nat. Med. 2022, 28, 496–503. [Google Scholar] [CrossRef]
- Lechmere, T.; Snell, L.B.; Graham, C.; Seow, J.; Shalim, Z.A.; Charalampous, T.; Alcolea-Medina, A.; Batra, R.; Nebbia, G.; Edgeworth, J.D.; et al. Broad Neutralization of SARS-CoV-2 Variants, Including Omicron, following Breakthrough Infection with Delta in COVID-19-Vaccinated Individuals. Mbio 2022, 17, e0379821. [Google Scholar] [CrossRef]
- Klompas, M. Understanding Breakthrough Infections Following mRNA SARS-CoV-2 Vaccination. JAMA 2021, 326, 2018–2020. [Google Scholar] [CrossRef]
- Stefan, N. Metabolic disorders, COVID-19 and vaccine-breakthrough infections. Nat. Rev. Endocrinol. 2021, 18, 75–76. [Google Scholar] [CrossRef]
- Wang, S.Y.; Juthani, P.V.; Borges, K.A.; Shallow, M.K.; Gupta, A.; Price, C.; Won, C.H.; Chun, H.J. Severe breakthrough COVID-19 cases in the SARS-CoV-2 delta (B.1.617.2) variant era. Lancet Microbe 2021, 3, e4–e5. [Google Scholar] [CrossRef]
Level | Breakthrough | Control 1 | Control 2 | % Missing | |
---|---|---|---|---|---|
n | 488 | 126,586 | 109,382 | ||
Gender (%) | Man | 231 (47.3%) | 60,640 (47.9%) | 52,768 (48.2%) | 0 |
Woman | 257 (52.7%) | 65,944 (52.1%) | 56,610 (51.8%) | ||
Age, median (IQR) | 44.5 (32–64) | 49 (34–65) | 52 (36–68) | 0 | |
Type of vaccine, n (%) | Moderna | 257 (52.7%) | 84,200 (66.5%) | 73,125 (66.9%) | 0 |
Pfizer/BioNTech | 231 (47.3%) | 42,386 (33.5%) | 36,257 (33.1%) | ||
Indication for vaccination | |||||
Chronic disease, n (%) | No | 332 (68%) | 100,668 (79.5%) | 84,756 (77.6%) | 0.1 |
Yes | 156 (32%) | 25,918 (20.5%) | 24,526 (22.4%) | ||
Healthcare worker, n (%) | No | 429 (87.9%) | 114,221 (90.2%) | 101,868 (93.2%) | 0.1 |
Yes | 59 (12.1%) | 12,365 (9.8%) | 7414 (6.8%) | ||
Close contact to high-risk person, n (%) | No | 363 (74.4%) | 94,629 (74.8%) | 82,007 (75.0%) | 0.1 |
Yes | 125 (25.6%) | 31,957 (25.2%) | 27,275 (25.0%) | ||
Serious side-effects previous vaccine *, n (%) | No | 487 (99.8%) | N/A | 108,194 (99.0%) | 0.1 |
Yes | 1 (0.2%) | 1084 (1.0%) | |||
Severe immunosuppression, n (%) | No | 463 (94.9%) | N/A | 105,994 (97.0%) | 0.1 |
Yes | 25 (5.1%) | 3288 (3.0%) | |||
Acute fever during time of vaccination n, (%) | No | 488 (100%) | N/A | 106,505 (100%) | 2.6 |
Yes | 0 (0%) | 46 (0%) | |||
Pregnant (%) | No | 487 (99.8%) | 124,482 (99.7%) | 107,790 (99.8%) | 1.3 |
Yes | 1 (0.2%) | 339 (0.3%) | 215 (0.2%) | ||
Recovered from COVID-19 prior to vaccination (%) | No | 482 (98.8%) | 121,730 (96.2%) | 106,178 (97.1%) | 0 |
Yes | 6 (1.2%) | 4856 (3.8%) | 3204 (2.9%) |
N | Odds Ratio | CI | p | |
---|---|---|---|---|
Intercept | 125,308 | 0.006 | (0.005–0.008) | <0.001 |
Age | 0.987 | (0.983–0.992) | <0.001 | |
Gender (woman vs. man) | 1.037 | (0.867–1.242) | 0.692 | |
Vaccine (Pfizer/BioNTech, ref = Moderna) | 1.459 | (1.238–1.612) | <0.001 | |
Chronic disease (=Yes) | 2.109 | (1.692–2.620) | <0.001 | |
Healthcare worker (=Yes) | 1.404 | (1.042–1.860) | 0.022 | |
Close contact with high-risk person (=Yes) | 0.902 | (0.724–1.116) | 0.349 | |
Pregnant (=Yes) | 0.671 | (0.038–2.995) | 0.691 | |
Recovered from COVID-19 prior to vaccination (=Yes) | 0.296 | (0.117–0.606) | 0.003 |
Variable | Level | SCoV2-Alpha | SCoV2-Delta | % Missing |
---|---|---|---|---|
n | 12 | 256 | ||
Age, med (IQR) | Years | 82.0 (70.5–87.0) | 43.5 (32.0–61.8) | 45.1 |
Sex, n (%) | Man | 5 (41.7%) | 123 (48%) | 45.1 |
Woman | 7 (58.3%) | 133 (52%) | ||
Type of vaccine, n (%) | Moderna | 1 (8.3%) | 136 (53.1%) | 45.1 |
Pfizer/BioNTech | 11 (91.7%) | 120 (46.9%) | ||
Indication for vaccination | ||||
Chronic diseases, n (%) | No | 1 (8,3%) | 181 (70.7%) | 45.1 |
Yes | 11 (91.7%) | 75 (29.3%) | ||
Healthcare worker, n (%) | No | 12 (100%) | 221 (86.3%) | 45.1 |
Yes | 0 (0%) | 35 (13.7%) | ||
Close contact to high-risk person, n (%) | No | 6 (50%) | 190 (74.2%) | 45.1 |
Yes | 6 (50%) | 66 (25.8%) | ||
Serious side effects to other vaccines *, n (%) | No | 12 (100%) | 255 (99.6%) | 45.1 |
Yes | 0 (0%) | 1 (0.4%) | ||
Severe immunosuppression, n (%) | No | 9 (75%) | 245 (95.7%) | 45.1 |
Yes | 3 (25%) | 11 (4.3%) | ||
Acute fever, n (%) | No | 12 (100%) | 256 (100%) | 45.1 |
Yes | 0 (0%) | 0 (0%) | ||
Pregnant, n (%) | No | 12 (100%) | 255 (99.6%) | 45.1 |
Yes | 0 (0%) | 1 (0.4%) | ||
Recovered from COVID-19 prior to vaccination, n (%) | No | 12 (100%) | 254 (99.2%) | 45.1 |
Yes | 0 (0%) | 2 (0.8%) | ||
Time vacc to 1st symptoms, median (IQR) | days | 59 (57–61) | 75 (44–118) | 48.4 |
Time vacc/Delta outbreak to 1st symptoms, median (IQR) | days | 59 (57–61) | 50 (29–72.25) | 49 |
Time vacc to 1st symptoms for Alpha & Delta patients vaccinated after Delta outbreak, median (IQR) | days | 59 (57–61) | 40 (23–57) | 48 |
Time vacc to positive test, median (IQR) | days | 42 (17–63) | 77 (47–120) | 45.3 |
Time vacc/Delta outbreak to positive test, median (IQR) | days | 42 (17–63) | 50 (32–72) | 45.3 |
Time vacc to positive test for Alpha & Delta patients vaccinated after Delta outbreak, median (IQR) | days | 42 (17–63) | 45 (26–59) | 82.2 |
PCR ct value, median (IQR) | 20 (20–20) | 19.99 (17.21–23.08) | 70.9 | |
Severity of disease, n (%) | Asymptomatic | 2 (16.7%) | 6 (2.3%) | 45.1 |
Mild illness | 7 (58.3%) | 242 (94.5%) | ||
Moderate illness | 0 (0%) | 5 (2%) | ||
Severe illness | 2 (16.7%) | 2 (0.8%) | ||
Critical illness and death | 1 (8.3%) | 1 (0.4%) | ||
Hospitalisation | No | 11 (91.7%) | 148 (96.9%) | 45.1 |
Yes | 1 (8.3%) | 8 (3.1%) | ||
Suspected source of infection | Club, party, bar | 0 (0%) | 12 (4.7%) | 45.1 |
Cultural event | 0 (0%) | 4 (1.6%) | ||
Family | 3 (25%) | 71 (27.7%) | ||
Friends | 0 (0%) | 14 (5.5%) | ||
Holidays | 1 (8.3%) | 63 (24.6%) | ||
Hospital | 1 (8.3%) | 3 (1.2%) | ||
Religion | 0 (0%) | 1 (0.4) | ||
Retirement and nursing home | 5 (41.7%) | 10 (3.9%) | ||
School | 0 (0%) | 1 (0.4%) | ||
Sports | 0 (0%) | 3 (1.2%) | ||
Unknown | 2 (16.7%) | 57 (22.3%) | ||
Work | 0 (0%) | 17 (6.6%) | ||
Baseline risk factor | ||||
Chronic lung disease | No | 11 (91.7%) | 241 (94.1%) | 45.1 |
Yes | 1 (8.3%) | 15 (5.9%) | ||
Chronic renal disease | No | 11 (91.7%) | 252 (98.4%) | 45.1 |
Yes | 1 (8.3%) | 4 (1.6%) | ||
Cancer | No | 10 (83.3%) | 251 (98%) | 45.1 |
Yes | 2 (16.7%) | 5 (2%) | ||
Cardiac disease | No | 7 (58.3%) | 238 (93%) | 45.1 |
Yes | 5 (41.7%) | 18 (7%) | ||
Arterial hypertension | No | 9 (75%) | 213 (83.2%) | 45.1 |
Yes | 3(25%) | 43 (16.8%) | ||
Diabetes | No | 10 (83.3%) | 232 (90.6%) | 45.1 |
Yes | 2 (16.7%) | 24 (9.4%) | ||
Obesity | No | 11 (91.7%) | 255 (99.6%) | 45.1 |
Yes | 1 (8.3%) | 1 (0.4%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peter, J.K.; Wegner, F.; Gsponer, S.; Helfenstein, F.; Roloff, T.; Tarnutzer, R.; Grosheintz, K.; Back, M.; Schaubhut, C.; Wagner, S.; et al. SARS-CoV-2 Vaccine Alpha and Delta Variant Breakthrough Infections Are Rare and Mild but Can Happen Relatively Early after Vaccination. Microorganisms 2022, 10, 857. https://doi.org/10.3390/microorganisms10050857
Peter JK, Wegner F, Gsponer S, Helfenstein F, Roloff T, Tarnutzer R, Grosheintz K, Back M, Schaubhut C, Wagner S, et al. SARS-CoV-2 Vaccine Alpha and Delta Variant Breakthrough Infections Are Rare and Mild but Can Happen Relatively Early after Vaccination. Microorganisms. 2022; 10(5):857. https://doi.org/10.3390/microorganisms10050857
Chicago/Turabian StylePeter, Jelissa Katharina, Fanny Wegner, Severin Gsponer, Fabrice Helfenstein, Tim Roloff, Rahel Tarnutzer, Kerstin Grosheintz, Moritz Back, Carla Schaubhut, Sabina Wagner, and et al. 2022. "SARS-CoV-2 Vaccine Alpha and Delta Variant Breakthrough Infections Are Rare and Mild but Can Happen Relatively Early after Vaccination" Microorganisms 10, no. 5: 857. https://doi.org/10.3390/microorganisms10050857
APA StylePeter, J. K., Wegner, F., Gsponer, S., Helfenstein, F., Roloff, T., Tarnutzer, R., Grosheintz, K., Back, M., Schaubhut, C., Wagner, S., Seth-Smith, H. M. B., Scotton, P., Redondo, M., Beckmann, C., Stadler, T., Salzmann, A., Kurth, H., Leuzinger, K., Bassetti, S., ... Egli, A. (2022). SARS-CoV-2 Vaccine Alpha and Delta Variant Breakthrough Infections Are Rare and Mild but Can Happen Relatively Early after Vaccination. Microorganisms, 10(5), 857. https://doi.org/10.3390/microorganisms10050857