Gut Microbial Composition of Pacific Salmonids Differs across Oregon River Basins and Hatchery Ancestry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Locations
2.2. Sample Collection
2.3. Microbiome Profiling and Analyses
2.4. Bioinformatics and Statistical Analyses
2.5. Combination of Both Studies
3. Results
3.1. Wild Juvenile Steelhead Trout Gut Microbial Communities Are Structured by Geography and Host Fitness
3.2. Juvenile Steelhead Trout Gut Microbiome Varies as a Function of Hatchery Broodstock and Hatchery Location
3.3. Combination of Both Studies
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trevelline, B.K.; Fontaine, S.S.; Hartup, B.K.; Kohl, K.D. Conservation Biology Needs a Microbial Renaissance: A Call for the Consideration of Host-Associated Microbiota in Wildlife Management Practices. Proc. R. Soc. B Biol. Sci. 2019, 286, 20182448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barelli, C.; Albanese, D.; Donati, C.; Pindo, M.; Dallago, C.; Rovero, F.; Cavalieri, D.; Tuohy, K.M.; Hauffe, H.C.; De Filippo, C. Habitat Fragmentation Is Associated to Gut Microbiota Diversity of an Endangered Primate: Implications for Conservation. Sci. Rep. 2015, 5, 14862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talwar, C.; Nagar, S.; Lal, R.; Negi, R.K. Fish Gut Microbiome: Current Approaches and Future Perspectives. Indian J. Microbiol. 2018, 58, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.M.; Wiens, G.D.; Salinas, I. Analysis of the Gut and Gill Microbiome of Resistant and Susceptible Lines of Rainbow Trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2019, 86, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.R.; Links, M.G.; Collins, S.A.; Mansfield, G.S.; Drew, M.D.; Van Kessel, A.G.; Hill, J.E. Effects of Plant-Based Diets on the Distal Gut Microbiome of Rainbow Trout (Oncorhynchus mykiss). Aquaculture 2012, 350–353, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-H.; Brunt, J.; Austin, B. Microbial Diversity of Intestinal Contents and Mucus in Rainbow Trout (Oncorhynchus mykiss). J. Appl. Microbiol. 2007, 102, 1654–1664. [Google Scholar] [CrossRef]
- Gaulke, C.A.; Barton, C.L.; Proffitt, S.; Tanguay, R.L.; Sharpton, T.J. Triclosan Exposure Is Associated with Rapid Restructuring of the Microbiome in Adult Zebrafish. PLoS ONE 2016, 11, e0154632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R.; Gordon, J.I. Global Patterns of 16S RRNA Diversity at a Depth of Millions of Sequences per Sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-High-Throughput Microbial Community Analysis on the Illumina HiSeq and MiSeq Platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef] [Green Version]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of RRNA Sequences into the New Bacterial Taxonomy. Appl Env. Microbiol 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 13 April 2022).
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. 2020. Available online: http://CRAN.R-project.org/package=vegan (accessed on 13 April 2022).
- Gaulke, C.A.; Arnold, H.K.; Humphreys, I.R.; Kembel, S.W.; O’Dwyer, J.P.; Sharpton, T.J. Ecophylogenetics Clarifies the Evolutionary Association between Mammals and Their Gut Microbiota. mBio 2018, 9, e01348-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hothorn, T.; Hornik, K.; van de Wiel, M.A.; Zeileis, A. Implementing a Class of Permutation Tests: The Coin Package. J. Stat. Softw. 2008, 28, 1–23. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Karney, C.; Williams, E.; Vennes, C. Geosphere: Spherical Trigonometry. 2021. Available online: https://cran.r-project.org/web/packages/geosphere/geosphere.pdf (accessed on 13 April 2022).
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions. 2021. Available online: http://CRAN.R-project.org/package-cluster (accessed on 13 April 2022).
- Auld, H.L.; Noakes, D.L.G.; Banks, M.A. Advancing Mate Choice Studies in Salmonids. Rev. Fish Biol. Fish. 2019, 29, 249–276. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.K.; Paul, S.; Dutta, C. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Front. Microbiol. 2017, 8, 1162. [Google Scholar] [CrossRef] [Green Version]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human Gut Microbiome Viewed across Age and Geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef]
- Kim, P.S.; Shin, N.-R.; Lee, J.-B.; Kim, M.-S.; Whon, T.W.; Hyun, D.-W.; Yun, J.-H.; Jung, M.-J.; Kim, J.Y.; Bae, J.-W. Host Habitat Is the Major Determinant of the Gut Microbiome of Fish. Microbiome 2021, 9, 166. [Google Scholar] [CrossRef]
- Llewellyn, M.S.; McGinnity, P.; Dionne, M.; Letourneau, J.; Thonier, F.; Carvalho, G.R.; Creer, S.; Derome, N. The Biogeography of the Atlantic salmon (Salmo salar) Gut Microbiome. ISME J 2016, 10, 1280–1284. [Google Scholar] [CrossRef] [Green Version]
- Skaala, Ø.; Nævdal, G. Genetic Differentiation between Freshwater Resident and Anadromous Brown Trout, Salmo Trutta, within Watercourses. J. Fish Biol. 1989, 34, 597–605. [Google Scholar] [CrossRef]
- Verspoor, E. Genetic Diversity among Atlantic Salmon (Salmo salar L.) Populations. ICES J. Mar. Sci. 1997, 54, 965–973. [Google Scholar] [CrossRef] [Green Version]
- Dąbrowska, K.; Witkiewicz, W. Correlations of Host Genetics and Gut Microbiome Composition. Front Microbiol 2016, 7, 1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, J.M.; Bagi, A.; Pampanin, D.M. Insights into the Potential of the Atlantic Cod Gut Microbiome as Biomarker of Oil Contamination in the Marine Environment. Microorganisms 2019, 7, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.H.; Baek, S.-H.; Lee, S.-T. Ferruginibacter alkalilentus Gen. Nov., Sp. Nov. and Ferruginibacter lapsinanis Sp. Nov., Novel Members of the Family “Chitinophagaceae” in the Phylum Bacteroidetes, Isolated from Freshwater Sediment. Int. J. Syst. Evol. Microbiol. 2009, 59, 2394–2399. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Yang, K.; Huang, L.; Huang, X.; Qiuqian, L.; Wang, K.; Zhang, D. Disease Outbreak Accompanies the Dispersive Structure of Shrimp Gut Bacterial Community with a Simple Core Microbiota. AMB Express 2018, 8, 120. [Google Scholar] [CrossRef]
- Sepahi, A.; Cordero, H.; Goldfine, H.; Esteban, M.Á.; Salinas, I. Symbiont-Derived Sphingolipids Modulate Mucosal Homeostasis and B Cells in Teleost Fish. Sci. Rep. 2016, 6, 39054. [Google Scholar] [CrossRef]
- Duarte, M.E.; Kim, S.W. Intestinal Microbiota and Its Interaction to Intestinal Health in Nursery Pigs. Anim. Nutr. 2022, 8, 169–184. [Google Scholar] [CrossRef]
- An, D.; Na, C.; Bielawski, J.; Hannun, Y.A.; Kasper, D.L. Membrane Sphingolipids as Essential Molecular Signals for Bacteroides Survival in the Intestine. Proc. Natl. Acad. Sci. USA 2011, 108, 4666–4671. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, Y.-L.; Li, Y.-K.; Chen, D.-K.; He, J.-F.; Yao, N. Functions of Sphingolipids in Pathogenesis During Host–Pathogen Interactions. Front. Microbiol. 2021, 12, 1926. [Google Scholar] [CrossRef]
- Martineau, C.; Mauffrey, F.; Villemur, R. Comparative Analysis of Denitrifying Activities of Hyphomicrobium nitrativorans, Hyphomicrobium denitrificans, and Hyphomicrobium zavarzinii. Appl. Environ. Microbiol. 2015, 81, 5003–5014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, C.; Bujan, N.; Tarnecki, A.; Davis, A.D.; Browdy, C.; Arias, C.R. Analysis of the Gut Microbiome of Nile Tilapia Oreochromis niloticus L. Fed Diets Supplemented with Previda® and Saponin. J. FisheriesSciences.Com 2017, 11, 36. [Google Scholar] [CrossRef] [Green Version]
- Loch, T.P.; Faisal, M. Emerging Flavobacterial Infections in Fish: A Review. J. Adv. Res. 2015, 6, 283–300. [Google Scholar] [CrossRef] [PubMed]
- Christie, M.R.; Ford, M.J.; Blouin, M.S. On the Reproductive Success of Early-Generation Hatchery Fish in the Wild. Evol. Appl. 2014, 7, 883–896. [Google Scholar] [CrossRef]
- Christie, M.R.; Marine, M.L.; Fox, S.E.; French, R.A.; Blouin, M.S. A Single Generation of Domestication Heritably Alters the Expression of Hundreds of Genes. Nat. Commun. 2016, 7, 10676. [Google Scholar] [CrossRef]
- Gibson, K.M.; Nguyen, B.N.; Neumann, L.M.; Miller, M.; Buss, P.; Daniels, S.; Ahn, M.J.; Crandall, K.A.; Pukazhenthi, B. Gut Microbiome Differences between Wild and Captive Black Rhinoceros—Implications for Rhino Health. Sci. Rep. 2019, 9, 7570. [Google Scholar] [CrossRef] [Green Version]
- Blekhman, R.; Goodrich, J.K.; Huang, K.; Sun, Q.; Bukowski, R.; Bell, J.T.; Spector, T.D.; Keinan, A.; Ley, R.E.; Gevers, D.; et al. Host Genetic Variation Impacts Microbiome Composition across Human Body Sites. Genome Biol. 2015, 16, 191. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirchoff, N.S.; Cornwell, T.; Stein, S.; Clements, S.; Sharpton, T.J. Gut Microbial Composition of Pacific Salmonids Differs across Oregon River Basins and Hatchery Ancestry. Microorganisms 2022, 10, 933. https://doi.org/10.3390/microorganisms10050933
Kirchoff NS, Cornwell T, Stein S, Clements S, Sharpton TJ. Gut Microbial Composition of Pacific Salmonids Differs across Oregon River Basins and Hatchery Ancestry. Microorganisms. 2022; 10(5):933. https://doi.org/10.3390/microorganisms10050933
Chicago/Turabian StyleKirchoff, Nicole S., Trevan Cornwell, Staci Stein, Shaun Clements, and Thomas J. Sharpton. 2022. "Gut Microbial Composition of Pacific Salmonids Differs across Oregon River Basins and Hatchery Ancestry" Microorganisms 10, no. 5: 933. https://doi.org/10.3390/microorganisms10050933
APA StyleKirchoff, N. S., Cornwell, T., Stein, S., Clements, S., & Sharpton, T. J. (2022). Gut Microbial Composition of Pacific Salmonids Differs across Oregon River Basins and Hatchery Ancestry. Microorganisms, 10(5), 933. https://doi.org/10.3390/microorganisms10050933