Optimization of Lipopeptide Biosurfactant Production by Salibacterium sp. 4CTb in Batch Stirred-Tank Bioreactors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Halophilic Bacteria Strain
2.2. Media Preparation
2.3. Flask Scale Inoculum Cultivation
2.4. Cell Expansion in Bioreactors
2.5. Determination of Biomass Development
2.6. Determination of Lipopeptide Production
2.7. kLa Determination
2.8. Statistical Analysis
Central Composite Design for Optimization
3. Results and Discussion
3.1. Performance of Salibacterium sp. 4CTb on Biomass and E24%
3.2. Impact of kLa on Lipopeptide Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deive, F.J.; López, E.; Rodríguez, A.; Longo, M.A.; Sanromán, M.Á. Targeting the Production of Biomolecules by Extremophiles at Bioreactor Scale. Chem. Eng. Technol. 2012, 35, 1565–1575. [Google Scholar] [CrossRef]
- Marhuenda-Egea, F.C.; Bonete, M.J. Extreme halophilic enzymes in organic solvents. Protein Technol. Commer. Enzym. 2002, 13, 385–389. [Google Scholar] [CrossRef]
- Souza, V.; Espinosa-Asuar, L.; Escalante, A.E.; Eguiarte, L.E.; Farmer, J.; Forney, L.; Lloret, L.; Rodríguez-Martínez, J.M.; Soberón, X.; Dirzo, R.; et al. An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc. Natl. Acad. Sci. USA 2006, 103, 6565–6570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, M.D.L.; Pérez, D.; García, M.T.; Mellado, E. Halophilic bacteria as a source of novel hydrolytic enzymes. Life 2013, 3, 38–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edbeib, M.F.; Wahab, R.A.; Huyop, F. Halophiles: Biology, adaptation, and their role in decontamination of hypersaline environments. World J. Microbiol. Biotechnol. 2016, 32, 135. [Google Scholar] [CrossRef]
- Jin, M.; Gai, Y.; Guo, X.; Hou, Y.; Zeng, R. Properties and Applications of Extremozymes from Deep-Sea Extremophilic Microorganisms: A Mini Review. Mar. Drugs 2019, 17, 656. [Google Scholar] [CrossRef] [Green Version]
- Barbachano-Torres, A.; López-Ortega, M.A.; Delgado-García, M.; González-García, Y.; Rodríguez, J.A.; Kirchmayr, M.R.; Camacho-Ruíz, R.M. Production and characterization of surface-active lipopeptides by haloalkaliphilic bacteria Salibacterium sp. 4CTb. J. Surfactants Deterg. 2020, 23, 67–78. [Google Scholar] [CrossRef]
- Yin, J.; Chen, J.; Wu, Q.; Chen, G. Halophiles, coming stars for industrial biotechnology. Biotechnol. Adv. 2014, 33, 1433–1442. [Google Scholar] [CrossRef]
- Deshpande, S.; Shiau, B.J.; Wade, D.; Sabatini, D.A.; Harwell, J.H. Surfactant selection for enhancing ex situ soil washing. Water Res. 1999, 33, 351–360. [Google Scholar] [CrossRef]
- Riehm, D.A.; Mccormick, A.V. The role of dispersants’ dynamic interfacial tension in effective crude oil spill dispersion. Mar. Pollut. Bull. 2014, 84, 155–163. [Google Scholar] [CrossRef]
- Yang, X. Synthesis and Use of Chiral Surfactants. Master’s Thesis, East Tennessee State University, Johnson City, TN, USA, 2001. [Google Scholar]
- Carvalho, C.M.L.; Cabral, J.M.S. Reverse micelles as reaction media for lipases. Société Française Biochim. Biol. Moléculaire 2000, 82, 1063–1085. [Google Scholar] [CrossRef]
- Mondal, M.H.; Malik, S.; Roy, A.; Saha, R.; Saha, B. Modernization of surfactant chemistry in the age of gemini and bio-surfactants: A review. RSC Adv. 2015, 5, 92707–92718. [Google Scholar] [CrossRef]
- Mulligan, C.N.; Eftekhari, F. Remediation with surfactant foam of PCP-contaminated soil. Eng. Geol. 2003, 70, 269–279. [Google Scholar] [CrossRef]
- Naughton, P.J.; Marchant, R.; Naughton, V.; Banat, I.M. Microbial biosurfactants: Current trends and applications in agricultural and biomedical industries. J. Appl. Microbiol. 2019, 127, 12–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walia, N.K.; Cameotra, S.S. Lipopeptides: Biosynthesis and applications. Microb. Biochem. Technol. 2015, 7, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Varjani, S.J.; Upasani, V.N. Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresour. Technol. 2017, 232, 389–397. [Google Scholar] [CrossRef]
- Shekhar, S.; Sundaramanickam, A.; Balasubramanian, T. Biosurfactant producing microbes and its potential applications: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1522–1554. [Google Scholar] [CrossRef]
- Desai, J.D.; Banat, I.M. Microbial Production of Surfactants and Their Commercial Potential. Microbiol. Mol. Biol. Rev. 1997, 61, 47–64. [Google Scholar]
- Yan, P.; Lu, M.; Yang, Q.; Zhang, H.; Zhang, Z.; Chen, R. Oil recovery from refinery oily sludge using a rhamnolipid biosurfactant-producing Pseudomonas. Bioresour. Technol. 2012, 116, 24–28. [Google Scholar] [CrossRef]
- Markande, A.R.; Acharya, S.R.; Nerurkar, A.S. Physicochemical characterization of a thermostable glycoprotein bioemulsifier from Solibacillus silvestris AM1. Process Biochem. 2013, 48, 1800–1808. [Google Scholar] [CrossRef]
- Rosenberg, E.; Ron, E.Z. Biosurfactants. In The Prokaryotes; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 281–294. ISBN 9783642313318. [Google Scholar]
- Cameotra, S.S.; Makkar, R.S. Recent applications of biosurfactants as biological and immunological molecules. Curr. Opin. Microbiol. 2004, 7, 262–266. [Google Scholar] [CrossRef]
- Martínez-Núñez, M.A.; López-López, V.E. Nonribosomal peptides synthetases and their applications in industry. Sustain. Chem. Process. 2016, 4, 13. [Google Scholar] [CrossRef]
- De, S.; Malik, S.; Ghosh, A.; Saha, R.; Saha, B. A review on natural surfactants. R. Soc. Chem. 2015, 5, 65757–65767. [Google Scholar] [CrossRef]
- Cochrane, S.A.; Vederas, J.C. Lipopeptides from Bacillus and Paenibacillus spp.: A Gold Mine of Antibiotic Candidates. Med. Res. Rev. 2014, 36, 4–31. [Google Scholar] [CrossRef] [PubMed]
- Inès, M.; Dhouha, G. Review Lipopeptides Biosurfactants, Main Classes and New Insights for Industrial; Biomedical and Environmental Applications. Biopolymers 2015, 104, 129–147. [Google Scholar] [CrossRef]
- Liu, J.; Mbadinga, S.M.; Yang, S.; Gu, J. Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation. Int. J. Mol. Sci. 2015, 16, 4814–4837. [Google Scholar] [CrossRef] [PubMed]
- Syldatk, C.; Hausmann, R. Microbial biosurfactants. Eur. J. Lipid Sci. Technol. 2010, 112, 615–616. [Google Scholar] [CrossRef]
- Barros, F.F.C.; Ponezi, A.N.; Pastore, G.M. Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. J. Ind. Microbiol. Biotechnol. 2008, 35, 1071–1078. [Google Scholar] [CrossRef]
- Lima, T.M.S.; Procópio, L.C.; Brandão, F.D.; Carvalho, A.M.X.; Tótola, M.R.; Borges, A.C. Biodegradability of bacterial surfactants. Biodegradation 2011, 22, 585–592. [Google Scholar] [CrossRef]
- Global Market Insights, Inc. Biosurfactants Market Report, 2027; Global Market Insights, Inc.: Selbyville, DE, USA, 2020. [Google Scholar]
- Pietrzykowski, M.; Flanagan, W.; Pizzi, V.; Brown, A.; Sinclair, A.; Monge, M. An environmental life cycle assessment comparison of single-use and conventional process technology for the production of monoclonal antibodies. J. Clean. Prod. 2013, 41, 150–162. [Google Scholar] [CrossRef]
- Yeh, M.; Wei, Y.; Chang, J. Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochem. 2006, 41, 1799–1805. [Google Scholar] [CrossRef]
- Cáceres-Moreno, P.; Muñoz-Ibacache, S.A.; Monsalves, M.T.; Amenabar, M.J.; Blamey, J.M. Functional Approach for the Development and Production of Novel Extreme Biocatalysts. In Next Generation Biomanufacturing Technologies; Rathinam, N.K., Sani, R.K., Eds.; American Chemical Society: Washington, DC, USA, 2019; Volume 1329, pp. 1–22. [Google Scholar]
- Steinberg, D.M.; Bursztyn, D. Response Surface Methodology in Biotechnology. Qual. Eng. 2010, 22, 78–87. [Google Scholar] [CrossRef]
- Valero, F. Heterologous Expression Systems for Lipases: A Review. In Lipases and Phospholipases: Methods and Protocols; Sandoval, G., Ed.; Springer-Humana Press: Guadalajara, Mexico, 2012; pp. 161–178. [Google Scholar]
- Diaz-Vidal, T.; Armenta-Perez, V.P.; Rosales-Rivera, L.C.; Mateos-Díaz, J.C.; Rodríguez, J.A. Cross-linked enzyme aggregates of recombinant Candida antarctica lipase B for the efficient synthesis of olvanil, a nonpungent capsaicin analogue. Biotechnol Prog. 2019, 35, e2807. [Google Scholar] [CrossRef] [PubMed]
- Olempska-Beer, Z.S.; Merker, R.I.; Ditto, M.D.; DiNovi, M.J. Food-processing enzymes from recombinant microorganisms—A review. Regul. Toxicol. Pharmacol. 2006, 45, 144–158. [Google Scholar] [CrossRef] [Green Version]
- Delgado-García, M.; Contreras-Ramos, S.M.; Rodríguez, J.A.; Mateos-Díaz, J.C.; Aguilar, C.N.; Camacho-Ruíz, R.M. Isolation of halophilic bacteria associated with saline and alkaline-sodic soils by culture dependent approach. Heliyon 2018, 4, e00954. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Ghosh, M.; Chakraborti, S.; Jana, S.; Sen, K.K.; Kokare, C.; Zhang, L. Biosurfactant produced from Actinomycetes nocardiopsis A17: Characterization and its biological evaluation. Int. J. Biol. Macromol. 2015, 79, 405–412. [Google Scholar] [CrossRef]
- Qazi, M.A.; Malik, Z.A.; Qureshi, G.D.; Hameed, A.; Ahmed, S. Yeast Extract as the Most Preferable Substrate for Optimized Biosurfactant Production by rhlB Gene Positive Pseudomonas putida SOL-10 Isolate. J. Bioremediation Biodegrad. 2013, 4, 1–11. [Google Scholar] [CrossRef]
- Doran, P.M. Bioprocess Engineering Principles, 2nd ed.; ELSEVIER: Oxford, UK, 2013; ISBN 9780122208515. [Google Scholar]
- Garcia-Ochoa, F.; Gomez, E. Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol. Adv. 2009, 27, 153–176. [Google Scholar] [CrossRef]
- Van’t Riet, K. Review of Measuring Methods and Results in Nonviscous Gas-Liquid Mass Transfer in Stirred Vessels. Ind. Eng. Chem. Process Des. Dev. 1979, 18, 357–364. [Google Scholar] [CrossRef]
- Bandyopadhyay, B.; Humphrey, A.E.; Taguchi, H. Dynamic Measurement of the Volumetric Oxygen Transfer Coefficient in Fermentation Systems. Biotechnol. Bioeng. 1967, 9, 533–544. [Google Scholar] [CrossRef]
- Montgomery, D.C. Diseño y Análisis de Experimentos, 2nd ed.; Limusa Wiley: New York, NY, USA, 2004. [Google Scholar]
- Box, G.E.P.; Hunter, J.S.; Hunter, W.G. Statistics for Experimenters: Design, Innovation, and Discovery, 2nd ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Davis, D.A.; Lynch, H.C.; Varley, J. The production of Surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzym. Microb. Technol. 1999, 25, 322–329. [Google Scholar] [CrossRef]
- Lotfabad, T.B.; Shourian, M.; Roostaazad, R.; Najafabadi, A.R.; Adelzadeh, M.R.; Noghabi, K.A. An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids Surf. B Biointerfaces 2009, 69, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Gruber, T.; Chmiel, H.; Kappeli, O.; Sticher, P.; Fiechter, A. Integrated process for continuous rhamnolipid biosynthesis. In Biosurfactants (Surfactants Science Series); Kosaric, N., Ed.; Springer: New York, NY, USA, 1993; pp. 157–173. [Google Scholar]
- Brumano, L.P.; Antunes, F.A.F.; Souto, S.G.; dos Santos, J.C.; Venus, J.; Schneider, R.; da Silva, S.S. Biosurfactant production by Aureobasidium pullulans in stirred tank bioreactor: New approach to understand the influence of important variables in the process. Bioresour. Technol. 2017, 243, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Saikia, R.R.; Deka, S.; Deka, M.; Banat, I.M. Isolation of biosurfactant-producing Pseudomonas aeruginosa RS29 from oil-contaminated soil and evaluation of different nitrogen sources in biosurfactant production. Ann. Microbiol. 2012, 62, 753–763. [Google Scholar] [CrossRef]
- Santos, D.K.F.; Meira, H.M.; Rufino, R.D.; Luna, J.M.; Sarubbo, L.A. Biosurfactant production from Candida lipolytica in bioreactor and evaluation of its toxicity for application as a bioremediation agent. Process Biochem. 2017, 54, 20–27. [Google Scholar] [CrossRef]
- Rosen, M.J. Surfactants and Interfacial Phenomena; Wiley: New York, NY, USA, 1978. [Google Scholar]
- Mondal, S.; Purkait, M.K.; De, S. Advances in Dye Removal Technologies; Springer: Singapore, 2018. [Google Scholar]
- Bognolo, G. Biosurfactants as emulsifying agents for hydrocarbons. Colloids Surf. A Physicochem. Eng. Asp. 1999, 152, 41–52. [Google Scholar] [CrossRef]
- Larroche, C.; Sanromán, M.Á.; Du, G.; Pandey, A. Current Developments in Biotechnology and Bioengineering: Bioprocesses, Bioreactors and Controls, 1st ed.; Larroche, C., Sanromán, M.Á., Du, G., Pandey, A., Eds.; ELSEVIER Academic Press: Amsterdam, The Netherlands, 2017; ISBN 9780444636645. [Google Scholar]
- Sheppard, J.D.; Cooper, D.G. The Effects of a Biosurfactant on Oxygen Transfer in a Cyclone Column Reactor. J. Chem. Technol. Biotechnol. 1990, 48, 325–336. [Google Scholar] [CrossRef]
- Kim, H.-S.; Yoon, B.-D.; Lee, C.-H.; Suh, H.-H.; Oh, H.-M.; Katsuragi, T.; Tani, Y. Production and Properties of a Lipopeptide Biosurfactant from Bacillus subtilis C9. J. Ferment. Bioeng. 1997, 84, 41–46. [Google Scholar] [CrossRef]
Run | Coded Variables | Real Variables | ||
---|---|---|---|---|
X1 | X2 | Z1 (vvm) | Z2 (rpm) | |
1 | −1 | −1 | 0.5 | 500 |
2 | −1 | 1 | 0.5 | 900 |
3 | 1 | −1 | 1.2 | 500 |
4 | 1 | 1 | 1.2 | 900 |
5 | 0 | 0 | 0.9 | 700 |
6 | 0 | 0 | 0.9 | 700 |
7 | 0 | 0 | 0.9 | 700 |
8 | −1.41 | 0 | 0.34 | 700 |
9 | 1.41 | 0 | 1.32 | 700 |
10 | 0 | −1.41 | 0.9 | 980 |
11 | 0 | 1.41 | 0.9 | 420 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Márquez-Villa, J.M.; Mateos-Díaz, J.C.; Rodríguez-González, J.A.; Camacho-Ruíz, R.M. Optimization of Lipopeptide Biosurfactant Production by Salibacterium sp. 4CTb in Batch Stirred-Tank Bioreactors. Microorganisms 2022, 10, 983. https://doi.org/10.3390/microorganisms10050983
Márquez-Villa JM, Mateos-Díaz JC, Rodríguez-González JA, Camacho-Ruíz RM. Optimization of Lipopeptide Biosurfactant Production by Salibacterium sp. 4CTb in Batch Stirred-Tank Bioreactors. Microorganisms. 2022; 10(5):983. https://doi.org/10.3390/microorganisms10050983
Chicago/Turabian StyleMárquez-Villa, José Martín, Juan Carlos Mateos-Díaz, Jorge Alberto Rodríguez-González, and Rosa María Camacho-Ruíz. 2022. "Optimization of Lipopeptide Biosurfactant Production by Salibacterium sp. 4CTb in Batch Stirred-Tank Bioreactors" Microorganisms 10, no. 5: 983. https://doi.org/10.3390/microorganisms10050983
APA StyleMárquez-Villa, J. M., Mateos-Díaz, J. C., Rodríguez-González, J. A., & Camacho-Ruíz, R. M. (2022). Optimization of Lipopeptide Biosurfactant Production by Salibacterium sp. 4CTb in Batch Stirred-Tank Bioreactors. Microorganisms, 10(5), 983. https://doi.org/10.3390/microorganisms10050983