The Pork Meat or the Environment of the Production Facility? The Effect of Individual Technological Steps on the Bacterial Contamination in Cooked Hams
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Collection
2.2. Bacterial Examination
2.3. Bacterial Identification by MALDI-TOF Mass Spectrometry
3. Results and Discussion
3.1. Fresh Meat
3.2. Tumbled Meat
3.3. Cooked Hams
3.4. Psychrotrophic or Psychrophilic LAB in Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raimondi, S.; Luciani, R.; Sirangelo, T.M.; Amaretti, A.; Leonardi, A.; Ulrici, A.; Foca, G.; D’Auria, G.; Moya, A.; Zuliani, V.; et al. Microbiota of sliced cooked ham packed in modified atmosphere throughout the shelf life. Int. J. Food Microbiol. 2019, 289, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Vasilopoulos, C.; De Vuyst, L.; Leroy, F. Shelf-life reduction as an emerging problem in cooked hams underlines the need for improved preservation strategies. Crit. Rev. Food Sci. Nutr. 2015, 55, 1425–1443. [Google Scholar] [CrossRef] [PubMed]
- Roccato, A.; Uyttendaele, M.; Cibin, V.; Barrucci, F.; Cappa, V.; Zavagnin, P.; Longo, A.; Ricci, A. Survival of Salmonella Typhimurium in poultry-based meat preparations during grilling, frying and baking. Int. J. Food Microbiol. 2015, 197, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Martins, W.F.; Longhi, D.A.; de Aragão, G.M.F.; Melero, B.; Rovira, J.; Diez, A.M. A mathematical modeling approach to the quantification of lactic acid bacteria in vakuum packaged samples of cooked meat: Combining the TaqMan-based quantitative PCR method with the plate-count method. Int. J. Food Microbiol. 2020, 318, e108466. [Google Scholar] [CrossRef]
- Samelis, J.; Kakouri, A.; Rementzis, J. Selective effect of the product type and the packaging conditions on the species of lactic acid bacteria dominating the spoilage microbial association of cooked meats at 4 °C. Food Microbiol. 2000, 17, 329–340. [Google Scholar] [CrossRef]
- Vermeiren, L.; Devlieghere, F.; De Graef, V.; Debevere, J. In vitro and in situ growth characteristics and behaviour of spoilage organisms associated with anaerobically stored cooked meat products. J. Appl. Microbiol. 2005, 98, 33–42. [Google Scholar] [CrossRef]
- Audenaert, K.; D´Haene, K.; Messens, K.; Ruyssen, T.; Vandamme, P.; Huys, G. Diversity of lactic acid bacteria from modified atmosphere packaged sliced cooked meat products at sell-by date assessed by PCR-denaturing gradient gel electrophoresis. Food Microbiol. 2010, 27, 12–18. [Google Scholar] [CrossRef]
- Vasilopoulos, C.; De Maere, H.; De Mey, E.; Paelinck, H.; De Vuyst, L.; Leroy, F. Technology-induced selection towards the spoilage microbiota of artisan-type cooked ham packed under modified atmosphere. Food Microbiol. 2010, 27, 77–84. [Google Scholar] [CrossRef]
- Kameník, J.; Bogdanovičová, K.; Dorotíková, K. Haltbarkeit von geschnittenem Kochschinken in modifizierter Atmosphäre. Fleischwirtschaft 2019, 99, 118–122. [Google Scholar]
- Dušková, M.; Kameník, J.; Lačanin, I.; Šedo, O.; Zdráhal, Z. Lactic acid bacteria in cooked hams: Sources of contamination and chances of survival in the product. Food Control 2016, 61, 1–5. [Google Scholar] [CrossRef]
- Pothakos, V.; Samapundo, S.; Devlieghere, F. Total mesophilic counts underestimate in many cases the contamination levels of psychrotrophic lactic acid bacteria (LAB) in chilled-stored food products at the end of their shelf-life. Food Microbiol. 2012, 32, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Dušková, M.; Šedo, O.; Kšicová, K.; Zdráhal, Z.; Karpíšková, R. Identification of lactobacilli isolated from food by genotypic methods and MALDI-TOF MS. Int. J. Food Microbiol. 2012, 159, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Freiwald, A.; Sauer, S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat. Protoc. 2009, 4, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Chen, S.; Wang, H.; Zhang, J.; Xu, X.; Wang, H. Advances in understanding the predominance, phenotypes, and mechanisms of bacteria related to meat spoilage. Trends Food Sci. Technol. 2021, 118, 822–832. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Wu, V.C.H. A review of microbial injury and recovery methods in food. Food Microbiol. 2008, 25, 735–744. [Google Scholar] [CrossRef]
- Zaika, L.L. Influence of NaCl content and cooling rate on outgrowth of Clostridium perfringens spores in cooked ham and beef. J. Food Prot. 2003, 66, 1599–1603. [Google Scholar] [CrossRef]
- Tamkutė, L.; Gil, B.M.; Carballido, J.R.; Pukalskienė, M.; Venskutonis, P.R. Effect of cranberry pomace extracts isolated by pressurized ethanol and water on the inhibition of food pathogenic/spoilage bacteria and the quality of pork products. Food Res. Int. 2019, 120, 38–51. [Google Scholar] [CrossRef]
- Zagdoun, M.; Coeuret, G.; N´Dione, M.; Champomier-Vergès, M.-C.; Chaillou, S. Large microbiota survey reveals how the microbial ekology of cooked ham is shaped by different processing steps. Food Microbiol. 2020, 91, e103547. [Google Scholar] [CrossRef]
- Pothakos, V.; Devlieghere, F.; Villani, F.; Björkroth, J.; Ercolini, D. Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Sci. 2015, 109, 66–74. [Google Scholar] [CrossRef]
- Pothakos, V.; Snauwaert, C.; De Vos, P.; Huys, G.; Devlieghere, F. Monitoring psychrotrophic lactic acid bacteria contamination in a ready-to-eat vegetable salad production environment. Int. J. Food Microbiol. 2014, 185, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Geeraerts, W.; Pothakos, V.; De Vuyst, L.; Leroy, F. Variability within the dominant microbiota of sliced cooked poultry products at expiration date in the Belgian retail. Food Microbiol. 2018, 73, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Geeraerts, W.; Borremans, W.; De Vuyst, L.; Leroy, F.; Van Kerrebroeck, S. The application of selected ion flow tube-mass spectrometry to follow volatile formation in modified-atmosphere-packaged cooked ham. Food Res. Int. 2019, 123, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Leroy, F.; Vasilopoulos, C.; Van Hemelryck, S.; Falony, G.; De Vuyst, L. Volatile analysis of spoiled, artisan-type, modified-atmosphere-packed cooked ham stored under different temperatures. Food Microbiol. 2009, 26, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Comi, G.; Iacumin, L. Identification and process origin of bacteria responsible for cavities and volatile off-flavour compounds in artisan cooked ham. Int. J. Food Sci. Technol. 2012, 47, 114–121. [Google Scholar] [CrossRef]
- Geeraerts, W.; Pothakos, V.; De Vuyst, L.; Leroy, F. Diversity of the dominant bacterial species on sliced cooked pork products at expiration date in the Belgian retail. Food Microbiol. 2017, 65, 236–243. [Google Scholar] [CrossRef]
- ISO 17410:2019; Microbiology of the Food Chain-Horizontal Method for the Enumeration of Psychrotrophic Microorganisms. Association Française De Normalization: Saint-Denis, France, 2019.
Analysed Samples | TVC | Enterobacteriaceae | LAB | ||||||
---|---|---|---|---|---|---|---|---|---|
6.5 °C | 15 °C | p-Value | 6.5 °C | 15 °C | p-Value | 6.5 °C | 15 °C | p-Value | |
meat (n = 50) | 3.18 a | 3.35 a | 0.06 | 0.51 a | 1.07 a | <0.001 | <1.70 | <1.70 | - |
1.00; 4.71 | 1.00; 4.61 | <1.00; 2.04 | <1.00; 3.34 | <1.70; 3.08 III | <1.70; 2.62 IV | ||||
tumbled meat (n = 50) | 4.11 b | 4.34 b | <0.001 | 1.00 b | 2.14 b | <0.001 | 2.60 V | 3.17 VI | <0.001 |
3.52; 4.73 | 3.59; 5.04 | <1.00; 3.23 | <2.00; 4.60 | <1.70; 3.82 | 2.18; 3.94 | ||||
cooked ham (n = 30) | <1.00 I | <1.00 II | - | <1.00 | <1.00 | - | <1.70 | <1.70 | - |
ham after stability test (n = 12) | - | 3.64 | - | - | 1.31 | - | - | 3.18 VII | - |
<2.00;4.96 | <1.00; 3.08 | <1.70; 4.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veselá, H.; Dorotíková, K.; Dušková, M.; Furmančíková, P.; Šedo, O.; Kameník, J. The Pork Meat or the Environment of the Production Facility? The Effect of Individual Technological Steps on the Bacterial Contamination in Cooked Hams. Microorganisms 2022, 10, 1106. https://doi.org/10.3390/microorganisms10061106
Veselá H, Dorotíková K, Dušková M, Furmančíková P, Šedo O, Kameník J. The Pork Meat or the Environment of the Production Facility? The Effect of Individual Technological Steps on the Bacterial Contamination in Cooked Hams. Microorganisms. 2022; 10(6):1106. https://doi.org/10.3390/microorganisms10061106
Chicago/Turabian StyleVeselá, Helena, Kateřina Dorotíková, Marta Dušková, Petra Furmančíková, Ondrej Šedo, and Josef Kameník. 2022. "The Pork Meat or the Environment of the Production Facility? The Effect of Individual Technological Steps on the Bacterial Contamination in Cooked Hams" Microorganisms 10, no. 6: 1106. https://doi.org/10.3390/microorganisms10061106
APA StyleVeselá, H., Dorotíková, K., Dušková, M., Furmančíková, P., Šedo, O., & Kameník, J. (2022). The Pork Meat or the Environment of the Production Facility? The Effect of Individual Technological Steps on the Bacterial Contamination in Cooked Hams. Microorganisms, 10(6), 1106. https://doi.org/10.3390/microorganisms10061106