Tillage Promotes the Migration and Coexistence of Bacteria Communities from an Agro-Pastoral Ecotone of Tibet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Experimental Field and Soil Sample Collection
2.2. Soil Nutrients and Physicochemical Properties
2.3. 16S rRNA Sequencing
2.4. Data Analyses
3. Results
3.1. Soils Physicochemical Properties and Nutrients in Cropland and Grassland
3.2. Diversity and Composition of the Bacterial Community in Cropland and Grassland Soils
3.3. Influence of Environmental Variables on Bacterial Communities in Cropland and Grassland Soils
3.4. Persistent Bacteria in Cropland and Grassland Soils
3.5. Bacterial Communities Assembly in Cropland and Grassland
3.6. Coexistence Patterns of Bacterial Communities in Cropland and Grassland
4. Discussion
4.1. Tillage Alters the Variation in Soil Physicochemical Properties and Nutrients in an Agro-Pastoral Ecotone
4.2. Tillage Shaping the Variation in the Composition of Bacterial Communities Rather Than Diversity
4.3. Proper Tillage May Promote Connectivity and Complexity of Soil Bacterial Network
4.4. Bacterial Communities in Cropland and Grassland Had Opposite Assembly Processes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Wang, K. The effects of different land use patterns on the microclimate and ecosystem services in the agro-pastoral ecotone of Northern China. Ecol. Indic. 2019, 106, 105522. [Google Scholar] [CrossRef]
- Liu, M.; Jia, Y.; Zhao, J.; Shen, Y.; Pei, H.; Zhang, H.; Li, Y. Revegetation Projects Significantly Improved Ecosystem Service Value in the Agro-pastoral Ecotone of Northern China in Recent 20 Years. Sci. Total Environ. 2021, 788, 147756. [Google Scholar] [CrossRef]
- Tang, J.; Wang, J.; Fang, Q.; Dayananda, B.; Yu, Q.; Zhao, P.; Yin, H.; Pan, X. Identifying agronomic options for better potato production and conserving water resources in the agro-pastoral ecotone in North China. Agric. For. Meteorol. 2019, 272, 91–101. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, Y.; Gao, Y.; Xie, Z. Land use model research in agro-pastoral ecotone in northern China: A case study of Horqin Left Back Banner. J. Environ. Manag. 2019, 237, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Yan, J.; Yang, L.; Cheng, X.; Wu, Y. Farmers and herders reclaim cropland to adapt to climate change in the eastern Tibetan Plateau: A case study in Zamtang County, China. Clim. Chang. 2021, 165, 91–101. [Google Scholar] [CrossRef]
- Yuanyuan, Y.; Yin, Z.; Zhou, S.; Rossel, R.A.V.; Liang, Z.; Haizhen, W.; Lianqing, Z.; Wu, Y. Interactive effects of elevation and land use on soil bacterial communities in the Tibetan Plateau. Pedosphere 2020, 30, 817–831. [Google Scholar]
- Yin, Y.; Wang, Y.; Li, S.; Liu, Y.; Zhao, W.; Ma, Y.; Bao, G. Soil microbial character response to plant community variation after grazing prohibition for 10 years in a Qinghai-Tibetan alpine meadow. Plant Soil 2021, 458, 175–189. [Google Scholar] [CrossRef]
- Luo, D.; Cheng, R.; Liu, S.; Shi, Z.; Feng, Q. Responses of soil microbial community composition and enzyme activities to land-use change in the Eastern Tibetan Plateau, China. Forests 2020, 11, 483. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Sun, M.; Xu, N.; Sun, G.; Zhao, M. Land use change from upland to paddy field in Mollisols drives soil aggregation and associated microbial communities. Appl. Soil Ecol. 2020, 146, 103351. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, Q.; Zhu, H.; Reich, P.B.; Banerjee, S.; van der Heijden, M.G.A.; Sadowsky, M.J.; Ishii, S.; Jia, X.; Shao, M. Erosion reduces soil microbial diversity, network complexity and multifunctionality. ISME J. 2021, 15, 2474–2489. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. Peer J. 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Huang, Y.; An, S.; Sun, H.; Bhople, P.; Chen, Z. Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients. Catena 2018, 162, 345–353. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, S.; Dong, S.; Wang, X.; Du, G. Effect of land-use on soil nutrients and microbial biomass of an alpine region on the northeastern Tibetan plateau, China. Land Degrad. Dev. 2010, 21, 446–452. [Google Scholar] [CrossRef]
- Han, Z.; Li, J.; Gao, P.; Huang, B.; Ni, J.; Wei, C. Determining the shear strength and permeability of soils for engineering of new paddy field construction in a hilly mountainous region of Southwestern China. Int. J. Environ. Res. Public Health 2020, 17, 1555. [Google Scholar] [CrossRef] [Green Version]
- Noor, R.S.; Hussain, F.; Umair, M. Evaluating selected soil physical properties under different soil tillage systems in arid southeast Rawalpindi, Pakistan. J. Clean WAS 2020, 4, 41–45. [Google Scholar] [CrossRef]
- Wu, G.L.; Liu, Y.; Fang, N.F.; Deng, L.; Shi, Z.H. Soil physical properties response to grassland conversion from cropland on the semi-arid area. Ecohydrology 2016, 9, 1471–1479. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Lv, J.; Wang, K. Response of grasslands conversion to croplands on soil organic carbon in Bashang area of Northern China. Afr. J. Biotechnol. 2010, 9, 1783–1788. [Google Scholar]
- Liu, W.; Wei, J.; Cheng, J.; Li, W. Profile distribution of soil inorganic carbon along a chronosequence of grassland restoration on a 22-year scale in the Chinese Loess Plateau. Catena 2014, 121, 321–329. [Google Scholar] [CrossRef]
- Zhao, P.; Li, S.; Wang, E.; Chen, X.; Deng, J.; Zhao, Y. Tillage erosion and its effect on spatial variations of soil organic carbon in the black soil region of China. Soil Tillage Res. 2018, 178, 72–81. [Google Scholar] [CrossRef]
- Hussain, S.; Hussain, S.; Guo, R.; Sarwar, M.; Ren, X.; Krstic, D.; Aslam, Z.; Zulifqar, U.; Rauf, A.; Hano, C. Carbon Sequestration to Avoid Soil Degradation: A Review on the Role of Conservation Tillage. Plants 2021, 10, 2001. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Wang, R.; Wang, X.; Li, J. Conservation tillage increased soil bacterial diversity and improved soil nutrient status on the Loess Plateau in China. Arch. Agron. Soil Sci. 2020, 66, 1509–1519. [Google Scholar] [CrossRef]
- Topa, D.; Cara, I.G.; Jităreanu, G. Long term impact of different tillage systems on carbon pools and stocks, soil bulk density, aggregation and nutrients: A field meta-analysis. Catena 2021, 199, 105102. [Google Scholar] [CrossRef]
- Jiao, S.; Lu, Y. Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems. Environ. Microbiol. 2020, 22, 1052–1065. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Liu, J.; Guo, Z.; Wang, C.; Pan, K.; Zhang, F.; Pan, X. Soil microbial community composition but not diversity is affected by land-use types in the agro-pastoral ecotone undergoing frequent conversions between cropland and grassland. Geoderma 2021, 401, 115165. [Google Scholar] [CrossRef]
- Du, S.; Dini-Andreote, F.; Zhang, N.; Liang, C.; Yao, Z.; Zhang, H.; Zhang, D. Divergent co-occurrence patterns and assembly processes structure the abundant and rare bacterial communities in a salt marsh ecosystem. Appl. Environ. Microbiol. 2020, 86, e00322-20. [Google Scholar] [CrossRef]
- Zhang, W.; Wan, W.; Lin, H.; Pan, X.; Lin, L.; Yang, Y. Nitrogen rather than phosphorus driving the biogeographic patterns of abundant bacterial taxa in a eutrophic plateau lake. Sci. Total Environ. 2021, 806, 150947. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.M.; Kim, Y.; Joa, J.H.; Kang, S.S.; Ahn, J.H.; Kim, M.; Song, J.; Weon, H.Y. Different types of agricultural land use drive distinct soil bacterial communities. Sci. Rep. 2020, 10, 17418. [Google Scholar] [CrossRef]
- Yang, X.; You, L.; Hu, H.; Chen, Y. Conversion of grassland to cropland altered soil nitrogen-related microbial communities at large scales. Sci. Total Environ. 2021, 816, 151645. [Google Scholar] [CrossRef]
- Ning, D.; Deng, Y.; Tiedje, J.M.; Zhou, J. A general framework for quantitatively assessing ecological stochasticity. Proc. Natl. Acad. Sci. USA 2019, 116, 16892–16898. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Liu, L.; Chen, W.; Sun, J.; Hou, S.; Kuang, T.; Wang, W.; Huang, X. Stochastic determination of the spatial variation of potentially pathogenic bacteria communities in a large subtropical river. Environ. Pollut. 2020, 264, 114683. [Google Scholar] [CrossRef]
Cropland | Grassland | |
---|---|---|
Number of nodes | 528 | 122 |
Number of edges | 12,518 | 1153 |
Positive (%) | 51.25 | 56.72 |
Negative (%) | 48.75 | 43.28 |
Clustering coefficient | 0.414 | 0.398 |
Graph density | 0.093 | 0.156 |
Average connectivity | 48.332 | 18.902 |
Average weighted degree | 1.054 | 2.209 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Wang, M.; Yang, Y.; Shang, P.; Zhang, W. Tillage Promotes the Migration and Coexistence of Bacteria Communities from an Agro-Pastoral Ecotone of Tibet. Microorganisms 2022, 10, 1206. https://doi.org/10.3390/microorganisms10061206
Zhao Y, Wang M, Yang Y, Shang P, Zhang W. Tillage Promotes the Migration and Coexistence of Bacteria Communities from an Agro-Pastoral Ecotone of Tibet. Microorganisms. 2022; 10(6):1206. https://doi.org/10.3390/microorganisms10061206
Chicago/Turabian StyleZhao, Yuhong, Mingtao Wang, Yuyi Yang, Peng Shang, and Weihong Zhang. 2022. "Tillage Promotes the Migration and Coexistence of Bacteria Communities from an Agro-Pastoral Ecotone of Tibet" Microorganisms 10, no. 6: 1206. https://doi.org/10.3390/microorganisms10061206
APA StyleZhao, Y., Wang, M., Yang, Y., Shang, P., & Zhang, W. (2022). Tillage Promotes the Migration and Coexistence of Bacteria Communities from an Agro-Pastoral Ecotone of Tibet. Microorganisms, 10(6), 1206. https://doi.org/10.3390/microorganisms10061206