Enhanced Antibiotic Tolerance of an In Vitro Multispecies Uropathogen Biofilm Model, Useful for Studies of Catheter-Associated Urinary Tract Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria and Culture Conditions
2.2. 16S rRNA Amplicon and Whole Genome Sequencing of the Clinical Isolates for Identification
2.3. Strain Characterization
2.4. Biofilm Growth on Urinary Catheter Shafts
2.5. Quantification of Biofilms by Colony Forming Unit (CFU) Enumeration
2.6. Crystal Violet Assay
2.7. CIP Treatment on Planktonic Bacteria and Biofilms
2.8. Statistics
3. Results
3.1. Identification of Clinical Isolates
3.2. Validation of Biofilm Detachment Protocol
3.3. Strain Selection for Four-Species Biofilm Model Establishment
- P. mirabilis must be included;
- The selected species should be the most common ones among all CAUTI cases;
- The selected strains should be able to adhere to and colonize the surface of the catheter shaft and form a stable biofilm.
3.4. Strain Characterization
3.5. Strain Interaction and Biofilm Model Optimization
3.6. CIP Susceptibility of the Strains in Multispecies Biofilms
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clarke, K.; Hall, C.L.; Wiley, Z.; Chernetsky Tejedor, S.; Kim, J.S.; Reif, L.; Witt, L.; Jacob, J.T. Catheter-Associated Urinary Tract Infections in Adults: Diagnosis, Treatment, and Prevention. J. Hosp. Med. 2020, 15, 552–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, E.; Nicolle, L.E.; Coffin, S.E.; Gould, C.; Maragakis, L.L.; Meddings, J.; Pegues, D.A.; Pettis, A.M.; Saint, S.; Yokoe, D.S. Strategies to Prevent Catheter-Associated Urinary Tract Infections in Acute Care Hospitals: 2014 Update. Infect. Control Hosp. Epidemiol. 2014, 35, 464–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooton, T.M.; Bradley, S.F.; Cardenas, D.D.; Colgan, R.; Geerlings, S.E.; Rice, J.C.; Saint, S.; Schaeffer, A.J.; Tambayh, P.A.; Tenke, P.; et al. Diagnosis, Prevention, and Treatment of Catheter-Aassociated Urinary Tract Infection in Adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 625–663. [Google Scholar] [CrossRef] [PubMed]
- Nicolle, L.E. Urinary Catheter-Associated Infections. Infect. Dis. Clin. N. Am. 2012, 26, 13–27. [Google Scholar] [CrossRef]
- Sihra, N.; Goodman, A.; Zakri, R.; Sahai, A.; Malde, S. Nonantibiotic Prevention and Management of Recurrent Urinary Tract Infection. Nat. Rev. Urol. 2018, 15, 750–776. [Google Scholar] [CrossRef]
- Waskiewicz, A.; Alexis, O.; Cross, D. Supporting Patients with Long-Term Catheterisation to Reduce Risk of Catheter-Associated Urinary Tract Infection. Br. J. Nurs. 2019, 28, S4–S17. [Google Scholar] [CrossRef] [PubMed]
- Davis, C. Catheter-Associated Urinary Tract Infection: Signs, Diagnosis, Prevention. Br. J. Nurs. 2019, 28, 96–100. [Google Scholar] [CrossRef]
- Stickler, D.J. Bacterial Biofilms in Patients with Indwelling Urinary Catheters. Nat. Clin. Pract. Urol. 2008, 5, 598–608. [Google Scholar] [CrossRef]
- Ikäheimo, R.; Siitonen, A.; Heiskanen, T.; Kärkkäinen, U.; Kuosmanen, P.; Lipponen, P.; Mäkelä, P.H. Recurrence of Urinary Tract Infection in a Primary Care Setting: Analysis of a 1-Year Follow-up of 179 Women. Clin. Infect. Dis. 1996, 22, 91–99. [Google Scholar] [CrossRef]
- Medina, M.; Castillo-Pino, E. An Introduction to the Epidemiology and Burden of Urinary Tract Infections. Ther. Adv. Urol. 2019, 11, 1756287219832172. [Google Scholar] [CrossRef] [Green Version]
- Siddiq, D.M.; Darouiche, R.O. New Strategies to Prevent Catheter-Associated Urinary Tract Infections. Nat. Rev. Urol. 2012, 9, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Cortese, Y.J.; Wagner, V.E.; Tierney, M.; Devine, D.; Fogarty, A. Review of Catheter-Associated Urinary Tract Infections and In Vitro Urinary Tract Models. J. Healthc. Eng. 2018, 2018, 2986742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, T.B.L.; Omar, M.I.; Fisher, E.; Gillies, K.; Maclennan, S. Types of Indwelling Urethral Catheters for Short-Term Catheterisation in Hospitalised Adults. Cochrane Database Syst. Rev. 2014, 2014, CD004013. [Google Scholar] [CrossRef] [PubMed]
- Gaston, J.R.; Johnson, A.O.; Bair, K.L.; White, A.N.; Armbruster, C.E. Polymicrobial Interactions in the Urinary Tract: Is the Enemy of My Enemy My Friend? Infect. Immun. 2021, 89, e00652-20. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, A.S.; Almeida, C.; Melo, L.F.; Azevedo, N.F. Impact of Polymicrobial Biofilms in Catheter-Associated Urinary Tract Infections. Crit. Rev. Microbiol. 2016, 43, 423–439. [Google Scholar] [CrossRef] [Green Version]
- Holá, V.; Ruzicka, F.; Horka, M. Microbial Diversity in Biofilm Infections of the Urinary Tract with the Use of Sonication Techniques. FEMS Immunol. Med. Microbiol. 2010, 59, 525–528. [Google Scholar] [CrossRef] [Green Version]
- Orazi, G.; O’Toole, G.A. “It Takes a Village”: Mechanisms Underlying Antimicrobial Recalcitrance of Polymicrobial Biofilms. J. Bacteriol. 2020, 202, e00530-19. [Google Scholar] [CrossRef]
- Croxall, G.; Weston, V.; Joseph, S.; Manning, G.; Cheetham, P.; McNally, A. Increased Human Pathogenic Potential of Escherichia coli from Polymicrobial Urinary Tract Infections in Comparison to Isolates from Monomicrobial Culture Samples. J. Med. Microbiol. 2011, 60, 102–109. [Google Scholar] [CrossRef]
- Nabb, D.L.; Song, S.; Kluthe, K.E.; Daubert, T.A.; Luedtke, B.E.; Nuxoll, A.S. Polymicrobial Interactions Induce Multidrug Tolerance in Staphylococcus aureus through Energy Depletion. Front. Microbiol. 2019, 10, 2803. [Google Scholar] [CrossRef] [Green Version]
- Weiner, L.M.; Webb, A.K.; Limbago, B.; Dudeck, M.A.; Patel, J.; Kallen, A.J.; Edwards, J.R.; Sievert, D.M. Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect. Control Hosp. Epidemiol. 2016, 37, 1288–1301. [Google Scholar] [CrossRef] [Green Version]
- Gaston, J.R.; Andersen, M.J.; Johnson, A.O.; Bair, K.L.; Sullivan, C.M.; Guterman, L.B.; White, A.N.; Brauer, A.L.; Learman, B.S.; Flores-Mireles, A.L.; et al. Enterococcus faecalis Polymicrobial Interactions Facilitate Biofilm Formation, Antibiotic Recalcitrance, and Persistent Colonization of the Catheterized Urinary Tract. Pathogens 2020, 9, 835. [Google Scholar] [CrossRef] [PubMed]
- Nicolle, L.E. Catheter-Related Urinary Tract Infection. Drugs Aging 2005, 22, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Liedl, B. Catheter-Associated Urinary Tract Infections. Curr. Opin. Urol. 2001, 11, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, L.; Oliveira, J.A.; Nicolau, A.; Azevedo, N.F.; Vieira, M.J. Biofilm Formation with Mixed Cultures of Pseudomonas aeruginosa/Escherichia coli on Silicone Using Artificial Urine to Mimic Urinary Catheters. Biofouling 2013, 29, 829–840. [Google Scholar] [CrossRef]
- Armbruster, C.E.; Smith, S.N.; Yep, A.; Mobley, H.L.T. Increased Incidence of Urolithiasis and Bacteremia during Proteus mirabilis and Providencia stuartii Coinfection Due to Synergistic Induction of Urease Activity. J. Infect. Dis. 2014, 209, 1524–1532. [Google Scholar] [CrossRef] [Green Version]
- Adamowicz, E.M.; Flynn, J.; Hunter, R.C.; Harcombe, W.R. Cross-Feeding Modulates Antibiotic Tolerance in Bacterial Communities. ISME J. 2018, 12, 2723–2735. [Google Scholar] [CrossRef] [Green Version]
- De Vos, M.G.J.; Zagorski, M.; McNally, A.; Bollenbach, T. Interaction Networks, Ecological Stability, and Collective Antibiotic Tolerance in Polymicrobial Infections. Proc. Natl. Acad. Sci. USA 2017, 114, 10666–10671. [Google Scholar] [CrossRef] [Green Version]
- Weigel, L.M.; Donlan, R.M.; Shin, D.H.; Jensen, B.; Clark, N.C.; McDougal, L.K.; Zhu, W.; Musser, K.A.; Thompson, J.; Kohlerschmidt, D.; et al. High-Level Vancomycin-Resistant Staphylococcus aureus Isolates Associated with a Polymicrobial Biofilm. Antimicrob. Agents Chemother. 2007, 51, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Learman, B.S.; Brauer, A.L.; Eaton, K.A.; Armbruster, C.E. A Rare Opportunist, Morganella Morganii, Decreases Severity of Polymicrobial Catheter-Associated Urinary Tract Infection. Infect. Immun. 2020, 88, e00691-19. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S RRNA Gene Sequencing for Species and Strain-Level Microbiome Analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.K.; Padmanabhan, B.R.; Diene, S.M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, J.M. ARG-ANNOT, a New Bioinformatic Tool to Discover Antibiotic Resistance Genes in Bacterial Genomes. Antimicrob. Agents Chemother. 2014, 58, 212–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, T.; Keevil, C.W. A Simple Artificial Urine for the Growth of Urinary Pathogens. Lett. Appl. Microbial. 1997, 24, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Madsen, J.S.; de la Cruz-Perera, C.I.; Bergmark, L.; Sørensen, S.J.; Burmølle, M. High-Throughput Screening of Multispecies Biofilm Formation and Quantitative PCR-Based Assessment of Individual Species Proportions, Useful for Exploring Interspecific Bacterial Interactions. Microb. Ecol. 2014, 68, 146–154. [Google Scholar] [CrossRef] [PubMed]
- McMillan, E.A.; Gupta, S.K.; Williams, L.E.; Jové, T.; Hiott, L.M.; Woodley, T.A.; Barrett, J.B.; Jackson, C.R.; Wasilenko, J.L.; Simmons, M.; et al. Antimicrobial Resistance Genes, Cassettes, and Plasmids Present in Salmonella enterica Associated with United States Food Animals. Front. Microbiol. 2019, 10, 832. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, A.A.; Abdelaziz, N.A.; Amin, M.A.; Aziz, R.K. Novel BlaCTX-M Variants and Genotype-Phenotype Correlations among Clinical Isolates of Extended Spectrum Beta Lactamase-Producing Escherichia coli. Sci. Rep. 2019, 9, 4224. [Google Scholar] [CrossRef]
- Martins, K.B.; Ferreira, A.M.; Pereira, V.C.; Pinheiro, L.; De Oliveira, A.; De Lourdes Ribeiro De Souza Da Cunha, M. In Vitro Effects of Antimicrobial Agents on Planktonic and Biofilm Forms of Staphylococcus saprophyticus Isolated from Patients with Urinary Tract Infections. Front. Microbiol. 2019, 10, 40. [Google Scholar] [CrossRef]
- Smith, P.W.; Nicolle, L.E. The Chronic Indwelling Catheter and Urinary Infection in Long-Term–Care Facility Residents. Infect. Control Hosp. Epidemiol. 2001, 22, 316–321. [Google Scholar] [CrossRef]
- Armbruster, C.E.; Prenovost, K.; Mobley, H.L.T.; Mody, L. How Often Do Clinically Diagnosed Catheter-Associated Urinary Tract Infections in Nursing Homes Meet Standardized Criteria? J. Am. Geriatr. Soc. 2017, 65, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Kline, K.A.; Lewis, A.L. Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Bours, P.H.A.; Polak, R.; Hoepelman, A.I.M.; Delgado, E.; Jarquin, A.; Matute, A.J. Increasing Resistance in Community-Acquired Urinary Tract Infections in Latin America, Five Years after the Implementation of National Therapeutic Guidelines. Int. J. Infect. Dis. 2010, 14, e770–e774. [Google Scholar] [CrossRef] [Green Version]
- Gaastra, W.; Kusters, J.G.; van Duijkeren, E.; Lipman, L.J.A. Escherichia Fergusonii. Vet. Microbiol. 2014, 172, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Alteri, C.J.; Himpsl, S.D.; Mobley, H.L.T. Preferential Use of Central Metabolism In Vivo Reveals a Nutritional Basis for Polymicrobial Infection. PLoS Pathog. 2015, 11, e1004601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kvich, L.; Burmølle, M.; Bjarnsholt, T.; Lichtenberg, M. Do Mixed-Species Biofilms Dominate in Chronic Infections?–Need for In Situ Visualization of Bacterial Organization. Front. Cell. Infect. Microbiol. 2020, 10, 396. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Jacquiod, S.; Brejnrod, A.; Russel, J.; Burmølle, M.; Sørensen, S.J. Deciphering Links between Bacterial Interactions and Spatial Organization in Multispecies Biofilms. ISME J. 2019, 13, 3054–3066. [Google Scholar] [CrossRef] [PubMed]
- Nüesch-Inderbinen, M.T.; Baschera, M.; Zurfluh, K.; Hächler, H.; Nüesch, H.; Stephan, R. Clonal Diversity, Virulence Potential and Antimicrobial Resistance of Escherichia coli Causing Community Acquired Urinary Tract Infection in Switzerland. Front. Microbiol. 2017, 8, 2334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galván, E.M.; Mateyca, C.; Ielpi, L. Role of Interspecies Interactions in Dual-Species Biofilms Developed In Vitro by Uropathogens Isolated from Polymicrobial Urinary Catheter-Associated Bacteriuria. Biofouling 2016, 32, 1067–1077. [Google Scholar] [CrossRef]
- Lehman, S.M.; Donlan, R.M. Bacteriophage-Mediated Control of a Two-Species Biofilm Formed by Microorganisms Causing Catheter-Associated Urinary Tract Infections in an In Vitro Urinary Catheter Model. Antimicrob. Agents Chemother. 2015, 59, 1127–1137. [Google Scholar] [CrossRef] [Green Version]
- Armbruster, C.E.; Smith, S.N.; Johnson, A.O.; DeOrnellas, V.; Eaton, K.A.; Yep, A.; Mody, L.; Wu, W.; Mobley, H.L.T. The Pathogenic Potential of Proteus mirabilis Is Enhanced by Other Uropathogens during Polymicrobial Urinary Tract Infection. Infect. Immun. 2017, 85, 808–824. [Google Scholar] [CrossRef] [Green Version]
- Bush, L.M.; Kaye, D. Catheter-Associated Urinary Tract Infection IDSA Guidelines: Why the Levofloxacin? Clin. Infect. Dis. 2010, 51, 479–780. [Google Scholar] [CrossRef]
- Kang, C.I.; Kim, J.; Park, D.W.; Kim, B.N.; Ha, U.S.; Lee, S.J.; Yeo, J.K.; Min, S.K.; Lee, H.; Wie, S.H. Clinical Practice Guidelines for the Antibiotic Treatment of Community-Acquired Urinary Tract Infections. Infect. Chemother. 2018, 50, 67. [Google Scholar] [CrossRef]
- Madsen, J.S.; Sørensen, S.J.; Burmølle, M. Bacterial Social Interactions and the Emergence of Community-Intrinsic Properties. Curr. Opin. Microbiol. 2018, 42, 104–109. [Google Scholar] [CrossRef]
- Armbruster, C.E.; Hong, W.; Pang, B.; Weimer, K.E.D.; Juneau, R.A.; Turner, J.; Edward Swords, W. Indirect Pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in Polymicrobial Otitis Media Occurs via Interspecies Quorum Signaling. mBio 2010, 1, e00102-10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Brucker, K.; Tan, Y.; Vints, K.; De Cremer, K.; Braem, A.; Verstraeten, N.; Michiels, J.; Vleugels, J.; Cammue, B.P.A.; Thevissen, K. Fungal β-1,3-Glucan Increases Ofloxacin Tolerance of Escherichia coli in a Polymicrobial E. coli/Candida albicans Biofilm. Antimicrob. Agents Chemother. 2015, 59, 3052–3058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanum, N.; Ansari, T.; Khan, H.M.S.; Sajid-Ur-Rehman, M.; Gulfishan; Khan, Y. Influence of Ph and Temperature on Stability of Sulfamethoxazole Alone and in Combination with Trimethoprim (Co Trimoxazole). Asian J. Chem. 2012, 24, 1851–1854. [Google Scholar]
- Flores-Mireles, A.; Hreha, T.N.; Hunstad, D.A. Pathophysiology, Treatment, and Prevention of Catheter-Associated Urinary Tract Infection. Top. Spinal Cord Inj. Rehabil. 2019, 25, 228–240. [Google Scholar] [CrossRef]
Catheter No. | Closest Relative | Similarity (%) | Ref. No. |
---|---|---|---|
1 | Pseudomonas aeruginosa DSM 50071 | 100 | CNUSM001 |
Escherichia fergusonii ATCC 35469 | 99.57 | CNUSM002 | |
2 | Pseudomonas aeruginosa DSM 50071 | 99.81 | CNUSM003 |
Aerococcus urinae NBRC 15544 | 99.44 | CNUSM004 | |
3 | Pseudomonas aeruginosa DSM 50071 | 100 | CNUSM005 |
Pseudomonas aeruginosa DSM 50071 | 99.89 | CNUSM006 | |
Enterococcus faecium DSM 20477 | 99.72 | CNUSM007 | |
Pseudomonas aeruginosa DSM 50071 | 99.46 | CNUSM008 | |
4 | Pseudomonas aeruginosa DSM 50071 | 99.91 | CNUSM009 |
Proteus vulgaris ATCC 29905 | 99.9 | CNUSM010 | |
5 | Pseudomonas aeruginosa DSM 50071 | 100 | CNUSM011 |
Klebsiella oxytoca ATCC 13182 | 99.64 | CNUSM012 | |
Escherichia fergusonii ATCC 35469 | 99.42 | CNUSM013 | |
6 | Pseudomonas aeruginosa DSM 50071 | 100 | CNUSM014 |
Citrobacter freundii NBRC 12681 | 100 | CNUSM015 | |
7 | Pseudomonas aeruginosa DSM 50071 | 99.43 | CNUSM016 |
Klebsiella grimontii SB73 | 99.41 | CNUSM017 | |
8 | Pseudomonas aeruginosa DSM 50071 | 100 | CNUSM018 |
Klebsiella variicola F2R9 | 99.5 | CNUSM019 | |
9 | Pseudomonas aeruginosa DSM 50071 | 100 | CNUSM020 |
Escherichia fergusonii ATCC 35469 | 99.81 | CNUSM021 | |
Klebsiella oxytoca ATCC 13182 | 99.66 | CNUSM022 | |
10 | Pseudomonas aeruginosa DSM 50071 | 100 | CNUSM023 |
Enterococcus faecalis ATCC 19433 | 99.62 | CNUSM024 | |
11 | Proteus mirabilis JCM 1669 | 99.72 | CNUSM025 |
Escherichia coli NBRC 102203 | 99.58 | CNUSM026 | |
12 | Pseudomonas aeruginosa DSM 50071 | 99.82 | CNUSM027 |
Escherichia coli NBRC 102203 | 99.56 | CNUSM028 | |
13 | Escherichia fergusonii ATCC 35469 | 99.82 | CNUSM029 |
Pseudomonas aeruginosa DSM 50071 | 99.57 | CNUSM030 | |
14 | Pseudomonas aeruginosa DSM 50071 | 99.83 | CNUSM031 |
Escherichia fergusonii ATCC 35469 | 99.64 | CNUSM032 | |
15 | Pseudomonas aeruginosa DSM 50071 | 99.91 | CNUSM033 |
Escherichia fergusonii ATCC 35469 | 99.64 | CNUSM034 |
Strain | ARG | Antibiotic Class |
---|---|---|
E. coli (CNUSM028) | Penicillin_Binding_Protein_Ecoli | Β-lactams |
AmpC2 | Β-lactams | |
ZEG | Β-lactams | |
ACT | Β-lactams | |
P. aeruginosa (CNUSM009) | apH | Aminoglycosides |
OXA | Β-lactams | |
PDC | Β-lactams | |
mcr | Colistins | |
OqxBgb | Fluoroquinolones | |
bcr1 | Phenicols | |
catB | Phenicols | |
K. oxytoca (CNUSM012) | OXY | Β-lactams |
CTX-M | Β-lactams | |
ampH | Β-lactams | |
OqxBgb | Fluoroquinolones | |
P. mirabilis (CNUSM025) | tetJ | Tetracyclines |
catA | Phenicols |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Wang, L.; Alm, M.; Thomsen, P.; Monsen, T.; Ramstedt, M.; Burmølle, M. Enhanced Antibiotic Tolerance of an In Vitro Multispecies Uropathogen Biofilm Model, Useful for Studies of Catheter-Associated Urinary Tract Infections. Microorganisms 2022, 10, 1207. https://doi.org/10.3390/microorganisms10061207
Hou J, Wang L, Alm M, Thomsen P, Monsen T, Ramstedt M, Burmølle M. Enhanced Antibiotic Tolerance of an In Vitro Multispecies Uropathogen Biofilm Model, Useful for Studies of Catheter-Associated Urinary Tract Infections. Microorganisms. 2022; 10(6):1207. https://doi.org/10.3390/microorganisms10061207
Chicago/Turabian StyleHou, Jiapeng, Lutian Wang, Martin Alm, Peter Thomsen, Tor Monsen, Madeleine Ramstedt, and Mette Burmølle. 2022. "Enhanced Antibiotic Tolerance of an In Vitro Multispecies Uropathogen Biofilm Model, Useful for Studies of Catheter-Associated Urinary Tract Infections" Microorganisms 10, no. 6: 1207. https://doi.org/10.3390/microorganisms10061207
APA StyleHou, J., Wang, L., Alm, M., Thomsen, P., Monsen, T., Ramstedt, M., & Burmølle, M. (2022). Enhanced Antibiotic Tolerance of an In Vitro Multispecies Uropathogen Biofilm Model, Useful for Studies of Catheter-Associated Urinary Tract Infections. Microorganisms, 10(6), 1207. https://doi.org/10.3390/microorganisms10061207