Effects of a Modern Kefir on Conditions Associated with Moderate Severe Spastic Quadriparesis Cerebral Palsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Type of Study
2.2. Treatment Composition and Clinical Trial Design
2.3. Anthropometric Measurements
2.4. Evaluation of Resting Energy Expenditure
2.5. Diagnosis of Intestinal Disorders and Respiratory Problems in Children
2.6. Blood Leukocyte Count and Serum CRP Analysis
2.7. Statistical Analysis
3. Results
3.1. Characteristics of the Subjects
3.2. Effects of Kefir Administration on Functional Digestive Disorders
3.3. Effects of Kefir Administration on Respiratory Problems
3.4. Effect of kefir Administration on the Differential Count of Leukocytes and Serum CRP Level
3.5. Unexpected Findings and Secondary Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- National Center on Birth Defects and Developmental Disabilities C for DC and P. Data and Statistics for Cerebral Palsy. 2020. Available online: https://www.cdc.gov/ncbddd/cp/data.html#:~:text=Cerebral%20palsy%20(CP)%20is%20the,common%20motor%20disability%20in%20childhood.&text=Recent%20population-based%20studies%20from,births%20or%20per%201%2C000%20children.&text=The%20prevalence%20of%20CP%20is,preterm%20or%20at%20low%20birthweight (accessed on 30 December 2020).
- Secretaría de Salud del Estado de México. Parálisis Cerebral. 2018, pp. 1–3. Available online: https://salud.edomex.gob.mx/cevece/documentos/difusion/tripticos/2018/Semana40.pdf (accessed on 2 February 2020).
- Centro de Rehabilitación Infantil Teletón Aguascalientes. Censo de Pacientes con Parálisis Cerebral y Parálisis Cerebral tipo Cuadriparesia Espástica Severa; Centro de Rehabilitación Infantil Teletón Aguascalientes: Aguascalientes, Mexico, 2019. [Google Scholar]
- Perenc, L.; Przysada, G.; Trzeciak, J. Cerebral Palsy in Children as a Risk Factor for Malnutrition. Ann. Nutr. Metab. 2015, 66, 224–232. [Google Scholar] [CrossRef]
- Martínez de Zabarte Fernández, J.M.; Ros Arnal, I.; Peña Segura, J.L.; García Romero, R.; Rodríguez Martínez, G. Nutritional status of a population with moderate-severe cerebral palsy: Beyond the weight. An. Pediatr. 2020, 92, 192–199. [Google Scholar] [CrossRef]
- Caramico Favero, D.C.O.; Guedes, Z.C.F.; de Morais, M.B. Food intake, nutritional status and gastrointestinal symptoms in children with cerebral palsy. Arq. Gastroenterol. 2018, 55, 352–357. [Google Scholar] [CrossRef]
- Boel, L.; Pernet, K.; Toussaint, M.; Ides, K.; Leemans, G.; Haan, J.; Van Hoorenbeeck, K.; Verhulst, S. Respiratory morbidity in children with cerebral palsy: An overview. Dev. Med. Child Neurol. 2019, 61, 646–653. [Google Scholar] [CrossRef]
- González Jiménez, D.; Díaz Martin, J.J.; Bousoño García, C.; Jiménez Treviño, S. Patología gastrointestinal en niños con parálisis cerebral infantil y otras discapacidades neurológicas. An. Pediatr. 2010, 73, 361.e1–361.e6. [Google Scholar] [CrossRef]
- Colson, S.B.; Siparsky, G.L.; Capocelli, K.E.; Pan, Z.; Sokol, R.J.; Hoffenberg, E.J. Inflammatory Bowel Disease in Pediatric Patients with Cerebral Palsy. J. Pediatr. Gastroenterol. Nutr. 2013, 56, e50. [Google Scholar] [CrossRef] [Green Version]
- Santana Faleiros-Castro, F.; de Paula, E.D.R. Paralisia cerebral tetraplégica e constipação intestinal: Avaliação da reeducação intestinal com uso de massagens e dieta laxante. Rev. Esc. Enferm. USP 2013, 47, 836–842. [Google Scholar] [CrossRef] [Green Version]
- Day, S.M.; Strauss, D.J.; Vachon, P.J.; Rosenbloom, L.; Shavelle, R.M.; Wu, Y.W. Growth patterns in a population of children and adolescents with cerebral palsy. Dev. Med. Child Neurol. 2007, 49, 167–171. [Google Scholar] [CrossRef]
- García Zapata, L.F.; Restrepo Mesa, S.L. La alimentación del niño con parálisis cerebral un reto para el nutricionista dietista: Perspectivas desde una revisión. Perspect. Nutr. Hum. 2010, 12, 77–85. [Google Scholar]
- Chermesh, I.; Shamir, R. El papel de la microbiota en la enfermedad inflamatoria intestinal. Ann. Nestlé 2009, 67, 27–38. [Google Scholar] [CrossRef]
- Lacy, B.E.; Mearin, F.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel Disorders. Gastroenterology 2016, 150, 1393–1407.e5. [Google Scholar] [CrossRef] [Green Version]
- Velasco-Benítez, C.A.; Ortíz-Rivera, C.J.; Sánchez-Pérez, M.P.; Játiva-Mariño, E.; Villamarín-Betancourt, E.A.; Saps, M. Utilidad de los cuestionarios de Roma IV en español para identificar desórdenes gastrointestinales funcionales en pediatría. Grupo de trabajo de la Sociedad Latinoamericana de Gastroenterología, Hepatología y Nutrición Pediátrica (SLAGHNP). Acta Gastroenterol. Lat. 2019, 49, 260–297. [Google Scholar]
- Sullivan, P.B. Nutrition and growth in children with cerebral palsy: Setting the scene. Eur. J. Clin. Nutr. 2013, 67, S3–S4. [Google Scholar] [CrossRef] [Green Version]
- Marimón, J.M. The Lung Microbiome in Health and Respiratory Diseases. Clin. Pulm. Med. 2018, 25, 131–137. [Google Scholar] [CrossRef]
- Sanders, M.E. Probiotics: Definition, sources, selection, and uses. Clin. Infect. Dis. 2008, 46 (Suppl. 2), S58–S61; discussion S144–S151. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, V.C.; De Meirleir, K.L.; Subramanian, K.; Nourani, S.M.; Dagda, R.K.; Delaney, S.L.; Palotás, A. Nutritional modulation of the intestinal microbiota; future opportunities for the prevention and treatment of neuroimmune and neuroinflammatory disease. J. Nutr. Biochem. 2018, 61, 1–16. [Google Scholar] [CrossRef]
- Gómez Eguílaz, M.; Ramón Trapero, J.L.; Pérez Martínez, L.; Blanco, J.R. El eje microbiota-intestino-cerebro y sus grandes proyecciones. Rev. Neurol. 2019, 68, 111. [Google Scholar] [CrossRef]
- Oelschlaeger, T.A. Mechanisms of probiotic actions—A review. Int. J. Med. Microbiol. 2010, 300, 57–62. [Google Scholar] [CrossRef]
- Zolnikova, O.; Komkova, I.; Potskherashvili, N.; Trukhmanov, A.; Ivashkin, V. Application of probiotics for acute respiratory tract infections. Ital. J. Med. 2018, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, R.P.; Taneja, S.; Chowdhury, R.; Strand, T.A.; Bhandari, N. Effect of prebiotic and probiotic supplementation on neurodevelopment in preterm very low birth weight infants: Findings from a meta-analysis. Pediatr. Res. 2020, 87, 811–822. [Google Scholar] [CrossRef]
- Upadhyay, J.; Tiwari, N.; Ansari, M.N. Cerebral palsy: Aetiology, pathophysiology and therapeutic interventions. Clin. Exp. Pharmacol. Physiol. 2020, 47, 1891–1901. [Google Scholar] [CrossRef]
- Jacobs, S.E.; Hickey, L.; Donath, S.; Opie, G.F.; Anderson, P.J.; Garland, S.M.; Cheong, J.L.Y. Probiotics, prematurity and neurodevelopment: Follow-up of a randomised trial. BMJ Paediatr. Open 2017, 1, e000176. [Google Scholar] [CrossRef] [Green Version]
- Altay, F.; Karbancioglu-Güler, F.; Daskaya-Dikmen, C.; Heperkan, D. A review on traditional Turkish fermented non-alcoholic beverages: Microbiota, fermentation process and quality characteristics. Int. J. Food Microbiol. 2013, 167, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Dertli, E.; Çon, A.H. Microbial diversity of traditional kefir grains and their role on kefir aroma. LWT Food. Sci. Technol. 2017, 85, 151–157. [Google Scholar] [CrossRef]
- Lopitz-Otsoa, F.; Rementeria, A.; Elguezabal, N.; Garaizar, J. Kefir: A symbiotic yeasts-bacteria community with alleged healthy capabilities. Rev. Iberoam. Micol. 2006, 23, 67–74. [Google Scholar] [CrossRef]
- Mishra, V.; Shah, C.; Mokashe, N.; Chavan, R.; Yadav, H.; Prajapati, J. Probiotics as Potential Antioxidants: A Systematic Review. J. Agric. Food Chem. 2015, 63, 3615–3626. [Google Scholar] [CrossRef]
- Van Wyk, J. Kefir: The Champagne of Fermented Beverages. In Fermented Beverages; Grumezescu, A.M., Holban, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 473–527. [Google Scholar] [CrossRef]
- Kesenkaş, H.; Gürsoy, O.; Özbaş, H. Kefir. In Fermented Foods in Health and Disease Prevention; Frias, J., Martinez-Villaluenga, C., Peñas, E., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 339–361. [Google Scholar] [CrossRef]
- CHR HANSEN. eXact® KEFIR 12. Volume 1. 2018. Available online: https://www.chr-hansen.com/en/food-cultures-and-enzymes/fresh-dairy/cards/collection-cards/exact (accessed on 1 May 2019).
- Bozova, B.; Kok Tas, T.; Guzel Seydim, Z. Effects of Kefir Powder Fortification on Yogurt Qual. Tarım. Bilim. Derg. 2018, 24, 238–244. [Google Scholar] [CrossRef]
- Song, L.; Aryana, K.J. Reconstituted yogurt from yogurt cultured milk powder mix has better overall characteristics than reconstituted yogurt from commercial yogurt powder. J. Dairy Sci. 2014, 97, 6007–6015. [Google Scholar] [CrossRef]
- CHR HANSEN. FD-DVS eXact® KEFIR 1. 2012. Available online: https://www.chr-hansen.com/en/food-cultures-and-enzymes/fresh-dairy/cards/collection-cards/exact (accessed on 1 May 2019).
- CHR HANSEN. FeelGood Kefir. Prod. Inf. 2018, 3. Available online: https://www.fromagex.com/int_en/exactr-kefir-12-frozen-500u.html#product-detailed (accessed on 8 April 2019).
- Stevenson, R.D. Use of Segmental Measures to Estimate Stature in Children with Cerebral Palsy. Arch. Pediatr. Adolesc. Med. 1995, 149, 658–662. [Google Scholar] [CrossRef]
- Aragonés, J.H.; de Julián, E.C. Hematología práctica: Interpretación del hemograma y de las pruebas de coagulación. In Proceedings of the de Actualización Pediatría, Madrid, Spain, 1–3 February 2018; pp. 507–526. [Google Scholar]
- Kumarasamy, N.; Mahajan, A.P.; Flanigan, T.P.; Hemalatha, R.; Mayer, K.H.; Carpenter, C.C.J.; Thyagarajan, S.P.; Solomon, S. Total lymphocyte count (TLC) is a useful tool for the timing of opportunistic infection prophylaxis in India and other resource-constrained countries. J. Acquir. Immune. Defic. Syndr. 2002, 31, 378–383. [Google Scholar] [CrossRef]
- Manzano, S.; Bailey, B.; Gervaix, A.; Cousineau, J.; Delvin, E.; Girodias, J.B. Markers for bacterial infection in children with fever without source. Arch. Dis. Child 2011, 96, 440–446. [Google Scholar] [CrossRef]
- Krick, J.; Murphy-Miller, P.; Zeger, S.; Wright, E. Pattern of growth in children with cerebral palsy. J. Am. Diet. Assoc. 1996, 96, 680–685. [Google Scholar] [CrossRef]
- Karim, T.; Jahan, I.; Dossetor, R.; Giang, N.T.H.; Van Anh, N.T.; Dung, T.Q.; Chau, C.M.; Van Bang, N.; Badawi, N.; Khandaker, G.; et al. Nutritional Status of Children with Cerebral Palsy-Findings from Prospective Hospital-Based Surveillance in Vietnam Indicate a Need for Action. Nutrients 2019, 11, 2132. [Google Scholar] [CrossRef] [Green Version]
- Bandini, L.G.; Schoeller, D.A.; Fukagawa, N.K.; Wykes, L.J.; Dietz, W.H. Body composition and energy expenditure in adolescents with cerebral palsy or myelodysplasia. Pediatr. Res. 1991, 29, 70–77. [Google Scholar] [CrossRef] [Green Version]
- García Contreras, A.; Vásquez Garibay, E.; Sánchez Ramírez, C.; Fafutis Morris, M.; Delgado Rizo, V. Lactobacillus reuteri DSM 17938 and Agave Inulin in Children with Cerebral Palsy and Chronic Constipation: A Double-Blind Randomized Placebo Controlled Clinical Trial. Nutrients 2020, 12, 2971. [Google Scholar] [CrossRef]
- Marchand, V.; Motil, K.J. Nutrition Support for Neurologically Impaired Children. J. Pediatr. Gastroenterol. Nutr. 2006, 43, 123–135. [Google Scholar] [CrossRef]
- Garcia Contreras, A.A.; Vasquez Garibay, E.M.; Romero Velarde, E.; Ibarra Gutierrez, A.I.; Troyo Sanroman, R. Gasto energético en niños con parálisis cerebral infantil y desnutrición moderada y grave durante la recuperación nutricia. Nutr. Hosp. 2015, 31, 2062–2069. [Google Scholar] [CrossRef]
- El-Shamy, S.M.; Abdelaal, A.A.M. WalkAide Efficacy on Gait and Energy Expenditure in Children with Hemiplegic Cerebral Palsy. Am. J. Phys. Med. Rehabil. 2016, 95, 629–638. [Google Scholar] [CrossRef]
- Alberto, B.-V.C. Trastornos Digestivos Funcionales, una Visión Latino-Iberoamericana, 1st ed.; Grupo Distribuna: Bogotá, Colombia, 2021. [Google Scholar]
- Rahmani, P.; Ghouran-Orimi, A.; Motamed, F.; Moradzadeh, A. Evaluating the effects of probiotics in pediatrics with recurrent abdominal pain. Korean J. Pediatr. 2020, 63, 485–490. [Google Scholar] [CrossRef]
- Capozza, M.; Laforgia, N.; Rizzo, V.; Salvatore, S.; Guandalini, S.; Baldassarre, M. Probiotics and Functional Gastrointestinal Disorders in Pediatric Age: A Narrative Review. Front. Pediatr. 2022, 10, 805466. [Google Scholar] [CrossRef]
- Ding, F.C.L.; Karkhaneh, M.; Zorzela, L.; Jou, H.; Vohra, S. Probiotics for paediatric functional abdominal pain disorders: A rapid review. Paediatr. Child Health 2019, 24, 383–394. [Google Scholar] [CrossRef]
- Bekar, O.; Yilmaz, Y.; Gulten, M. Kefir Improves the Efficacy and Tolerability of Triple Therapy in Eradicating Helicobacter pylori. J. Med. Food 2011, 14, 344–347. [Google Scholar] [CrossRef]
- O’Brien, K.V.; Stewart, L.K.; Forney, L.A.; Aryana, K.J.; Prinyawiwatkul, W.; Boeneke, C.A. The effects of postexercise consumption of a kefir beverage on performance and recovery during intensive endurance training. J. Dairy Sci. 2015, 98, 7446–7449. [Google Scholar] [CrossRef]
- Jayasimhan, S.; Yap, N.-Y.; Roest, Y.; Rajandram, R.; Chin, K.-F. Efficacy of microbial cell preparation in improving chronic constipation: A randomized, double-blind, placebo-controlled trial. Clin. Nutr. 2013, 32, 928–934. [Google Scholar] [CrossRef] [Green Version]
- Latvala, S.; Philipp, S.; Lehtinen, M.J.; Lehtoranta, L.; Ouwehand, A.C. ACO Health Benefits of a Combination Probiotics; FlorMidabilTM. Int. J. Probiotics Prebiotics 2019, 14, 9–17. [Google Scholar] [CrossRef]
- Maisawa, S.; Sasaki, M.; Ida, S.; Uchida, K.; Kagimoto, S.; Shimizu, T.; Yoden, A. Characteristics of inflammatory bowel disease with an onset before eight years of age: A multicenter epidemiological survey in Japan. J. Gastroenterol. Hepatol. 2013, 28, 499–504. [Google Scholar] [CrossRef]
- Hamida, R.S.; Shami, A.; Ali, M.A.; Almohawes, Z.N.; Mohammed, A.E.; Bin-Meferij, M.M. Kefir: A protective dietary supplementation against viral infection. Biomed. Pharmacother. 2021, 133, 110974. [Google Scholar] [CrossRef]
- Lehtoranta, L.; Pitkäranta, A.; Korpela, R. Probiotics in respiratory virus infections. Eur. J. Clin. Microbiol. Infect Dis. 2014, 33, 1289–1302. [Google Scholar] [CrossRef]
- Kranewitter, M.C.; Fuentes, M.; Costamagna, A.; Fabro, A.; Theiller, E.; Minella, K.; Aró, C.; Reus, V.; Peretti Bevilacqua, M.F.; Giugni, M.C.; et al. Beneficios de incorporar un simbiótico a la dieta de adultos mayores con infecciones recurrentes. Acta Bioquim. Clin. Latinoam. 2009, 43, 637–646. [Google Scholar]
- Hsu, Y.-J.; Huang, W.-C.; Lin, J.-S.; Chen, Y.-M.; Ho, S.-T.; Huang, C.-C.; Tung, Y.T. Kefir Supplementation Modifies Gut Microbiota Composition, Reduces Physical Fatigue, and Improves Exercise Performance in Mice. Nutrients 2018, 10, 862. [Google Scholar] [CrossRef] [Green Version]
- Illg, Z.; Muller, G.; Mueller, M.; Nippert, J.; Allen, B. Analysis of absolute lymphocyte count in patients with COVID-19. Am. J. Emerg. Med. 2021, 46, 16–19. [Google Scholar] [CrossRef]
- St-Onge, M.-P.; Farnworth, E.R.; Savard, T.; Chabot, D.; Mafu, A.; Jones, P.J.H. Kefir consumption does not alter plasma lipid levels or cholesterol fractional synthesis rates relative to milk in hyperlipidemic men: A randomized controlled trial [ISRCTN10820810]. BMC Complement. Altern. Med. 2002, 2, 1. [Google Scholar] [CrossRef]
- Smoak, P.; Harman, N.; Flores, V.; Kisiolek, J.; Pullen, N.A.; Lisano, J.; Hayward, R.; Stewart, L.K. Kefir Is a Viable Exercise Recovery Beverage for Cancer Survivors Enrolled in a Structured Exercise Program. Med. Sci. Sport Exerc. 2021, 53, 2045–2053. [Google Scholar] [CrossRef]
- Hiippala, K.; Jouhten, H.; Ronkainen, A.; Hartikainen, A.; Kainulainen, V.; Jalanka, J.; Satokari, R. The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation. Nutrients 2018, 10, 988. [Google Scholar] [CrossRef] [Green Version]
- Peluzio, M.; Dias, M.; Martinez, J.A.; Milagro, F.I. Kefir and Intestinal Microbiota Modulation: Implications in Human Health. Front. Nutr. 2021, 8, 638740. [Google Scholar] [CrossRef]
- Gomes, A.C.; Bueno, A.A.; de Souza, R.G.M.; Mota, J.F. Gut microbiota, probiotics and diabetes. Nutr. J. 2014, 13, 60. [Google Scholar] [CrossRef] [Green Version]
- Bell, V.; Ferrão, J.; Pimentel, L.; Pintado, M.; Fernandes, T. One Health, Fermented Foods, and Gut Microbiota. Foods 2018, 7, 195. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xiao, G.; Yao, Y.; Guo, S.; Lu, K.; Sheng, Z. The Role of Bifidobacteria in Gut Barrier Function After Thermal Injury in Rats. J. Trauma Inj. Infect Crit. Care 2006, 61, 650–657. [Google Scholar] [CrossRef]
- Le Roy, C.; Barja, S.; Sepúlveda, C.; Guzmán, M.L.; Olivarez, M.; Figueroa, M.J.; Alvarez, M. Deficiencia de vitamina D y de hierro en niños y adolescentes con parálisis cerebral. Neurología 2021, 36, 112–118. [Google Scholar] [CrossRef]
- El Shemy, S.A.; Amer, F.E.; Madani, H.A. Impact of Iron Deficiency Anemia on Functional Abilities and Muscle Strength in Children with Spastic Cerebral Palsy. Pakistan J. Biol. Sci. PJBS 2019, 22, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Ibáñez, L.; Vidal, X.; Ballarín, E.; Laporte, J.-R. Population-based drug-induced agranulocytosis. Arch. Intern. Med. 2005, 165, 869–874. [Google Scholar] [CrossRef]
Yogurt Group n = 8 | Kefir Group n = 11 | p * | |
---|---|---|---|
Age | 5.88 (4–9) | 6.18 (4–8) | 0.907 |
Weight | 14.21 (11.30–23.3) | 14.41 (9.1–18.7) | 0.590 |
Height | 1.00 (0.90–0.122) | 1.03 (0.91–1.22) | 0.399 |
BMI | 13.89 (11.74–15.65) | 13.30 (11.15–15.32) | 0.488 |
REE | 882 (677–1093) | 992.72 (732–1252) | 0.176 |
Weight (g) | Height (cm) | BMI (kg/m2) | REE (Kcal) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W0 | W7 | p * | p ** | W0 | W7 | p * | p ** | W0 | W7 | p * | p ** | W0 | W7 | p * | p ** | |
Yogurt (n = 8) | 14.21 ±1.45 | 14.40 ±1.57 | 0.19 | 1.00 ± 0.11 | 1.01 ± 0.04 | 0.06 | 13.89 ± 0.46 | 13.80 ± 0.47 | 0.47 | 882.02 ± 52.08 | 835.25 ± 71.42 | 0.26 | ||||
Kefir (n = 11) | 14.41 ± 0.91 | 14.77 ± 1.00 | 0.02 | 1.03 ± 0.02 | 1.045 ± 0.02 | 0.003 | 13.35 ± 0.40 | 13.36 ± 0.40 | 0.34 | 992.72 ± 58.72 | 1001.54 ± 74.61 | 0.84 | ||||
0.84 | 0.51 | 0.48 | 0.12 |
Functional Digestive Disorders under Rome IV Criteria | ||||||||
---|---|---|---|---|---|---|---|---|
YOGURT | KEFIR | |||||||
Cases W0 | Cases W7 | % ** | p * | Cases W0 | Cases W7 | % ** | p * | |
Functional constipation | 6 | 1 | 83.3 | 0.5 | 9 | 1 | 88.8 | 0.016 |
Functional dyspepsia/postprandial distress syndrome | 3 | 4 | 1CI | 1.00 | 3 | 0 | 100 | 1.00 |
Epigastric pain syndrome | 0 | 0 | - | - | 1 | 0 | 100 | - |
Abdominal functional migraine | 0 | 0 | - | - | 1 | 0 | 100 | - |
Functional abdominal pain | 0 | 0 | - | - | 1 | 0 | 100 | - |
Irritable bowel syndrome | 0 | 0 | - | - | 1 | 0 | 100 | - |
Functional nausea | 1 | 1 | 0 | 0 | 0 | - | - | |
Cyclic vomiting syndrome | 0 | 1 | 1CI | - | 0 | 0 | - | - |
Aerophagia | 0 | 0 | - | - | 1 | 0 | 100 | - |
Frequency of Throat Infections W0 vs. W7 | Frequency of Ear Infections W0 vs. W7 | Frequency of the Common Cold W0 vs. W7 | Frequency of Cough or Shortness of Breath W0 vs. W7 | Frequency of the Presence of Respiratory Secretions W0 vs. W7 | ||
---|---|---|---|---|---|---|
KEFIR | p * | 0.081 | 0.003 | 0.012 | 0.39 | 0.285 |
p ** | 0.157 | 0.317 | 0.257 | 0.157 | 1.000 | |
YOGURT | p * | 0.480 | 0.064 | 0.101 | 1.000 | 0.490 |
p ** | 0.157 | 0.317 | 0.564 | 0.157 | 0.083 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Hernández, A.I.; Salinas, E.; Tirado González, D.N.; Velasco Benitez, C.; Jiménez, M.; Córdova-Dávalos, L.E.; Cervantes-García, D.; Rodríguez Nava, V.F.; Bermúdez-Humarán, L.G. Effects of a Modern Kefir on Conditions Associated with Moderate Severe Spastic Quadriparesis Cerebral Palsy. Microorganisms 2022, 10, 1291. https://doi.org/10.3390/microorganisms10071291
Rodríguez-Hernández AI, Salinas E, Tirado González DN, Velasco Benitez C, Jiménez M, Córdova-Dávalos LE, Cervantes-García D, Rodríguez Nava VF, Bermúdez-Humarán LG. Effects of a Modern Kefir on Conditions Associated with Moderate Severe Spastic Quadriparesis Cerebral Palsy. Microorganisms. 2022; 10(7):1291. https://doi.org/10.3390/microorganisms10071291
Chicago/Turabian StyleRodríguez-Hernández, Adán Israel, Eva Salinas, Deli Nazmín Tirado González, Carlos Velasco Benitez, Mariela Jiménez, Laura E Córdova-Dávalos, Daniel Cervantes-García, Victor Federico Rodríguez Nava, and Luis G. Bermúdez-Humarán. 2022. "Effects of a Modern Kefir on Conditions Associated with Moderate Severe Spastic Quadriparesis Cerebral Palsy" Microorganisms 10, no. 7: 1291. https://doi.org/10.3390/microorganisms10071291
APA StyleRodríguez-Hernández, A. I., Salinas, E., Tirado González, D. N., Velasco Benitez, C., Jiménez, M., Córdova-Dávalos, L. E., Cervantes-García, D., Rodríguez Nava, V. F., & Bermúdez-Humarán, L. G. (2022). Effects of a Modern Kefir on Conditions Associated with Moderate Severe Spastic Quadriparesis Cerebral Palsy. Microorganisms, 10(7), 1291. https://doi.org/10.3390/microorganisms10071291