Risk Factors, Diagnosis, and Management of Clostridioides difficile Infection in Patients with Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Risk Factors for Developing and for Severity of CDI in Patients with IBD
3. Impact of CDI on IBD-Related Clinical Outcomes
4. Diagnosis
5. Treatment and Prophylaxis
5.1. Antibiotics
5.2. Faecal Microbiota Transplantation (FMT)
5.3. Monoclonal Antibodies
5.4. Probiotics, Prebiotics, and Future Strategies
6. Managing IBD in Patients with IBD and CDI
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McDonald, L.C.; Gerding, D.N.; Johnson, S.; Bakken, J.S.; Carroll, K.C.; Coffin, S.E.; Dubberke, E.R.; Garey, K.W.; Gould, C.V.; Kelly, C.; et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 2018, 66, e1–e48. [Google Scholar] [CrossRef] [PubMed]
- Leffler, D.A.; Lamont, J.T. Clostridium difficile Infection. N. Engl. J. Med. 2015, 372, 1539–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hensgens, M.; Keessen, E.; Squire, M.; Riley, T.; Koene, M.; de Boer, E.; Lipman, L.; Kuijper, E. Clostridium difficile infection in the community: A zoonotic disease? Clin. Microbiol. Infect. 2012, 18, 635–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Roo, A.C.; Regenbogen, S.E. Clostridium difficile Infection: An Epidemiology Update. Clin. Colon Rectal Surg. 2020, 33, 049–057. [Google Scholar] [CrossRef] [PubMed]
- Zacharioudakis, I.M.; Zervou, F.N.; Pliakos, E.; Ziakas, P.; Mylonakis, E. Colonization With Toxinogenic C. difficile Upon Hospital Admission, and Risk of Infection: A Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2015, 110, 381–390. [Google Scholar] [CrossRef]
- Czepiel, J.; Kędzierska, J.; Biesiada, G.; Birczyńska, M.; Perucki, W.; Nowak, P.; Garlicki, A. Epidemiology of Clostridium difficile infection: Results of a hospital-based study in Krakow, Poland. Epidemiol. Infect. 2015, 143, 3235–3243. [Google Scholar] [CrossRef]
- Lessa, F.C.; Mu, Y.; Bamberg, W.M.; Beldavs, Z.G.; Dumyati, G.K.; Dunn, J.R.; Farley, M.M.; Holzbauer, S.M.; Meek, J.I.; Phipps, E.C.; et al. Burden of Clostridium difficile Infection in the United States. N. Engl. J. Med. 2015, 372, 825–834. [Google Scholar] [CrossRef] [Green Version]
- Guh, A.Y.; Mu, Y.; Winston, L.G.; Johnston, H.; Olson, D.; Farley, M.M.; Wilson, L.E.; Holzbauer, S.M.; Phipps, E.C.; Dumyati, G.K.; et al. Trends in U.S. Burden of Clostridioides difficile Infection and Outcomes. N. Engl. J. Med. 2020, 382, 1320–1330. [Google Scholar] [CrossRef]
- Chitnis, A.S.; Holzbauer, S.M.; Belflower, R.M.; Winston, L.G.; Bamberg, W.M.; Lyons, C.; Farley, M.M.; Dumyati, G.K.; Wilson, L.E.; Beldavs, Z.G.; et al. Epidemiology of Community-Associated Clostridium difficile Infection, 2009 Through 2011. JAMA Intern. Med. 2013, 173, 1359–1367. [Google Scholar] [CrossRef] [Green Version]
- Czepiel, J.; Dróżdż, M.; Pituch, H.; Kuijper, E.J.; Perucki, W.; Mielimonka, A.; Goldman, S.; Wultańska, D.; Garlicki, A.; Biesiada, G. Clostridium difficile infection: Review. Eur. J. Clin. Microbiol. 2019, 38, 1211–1221. [Google Scholar] [CrossRef] [Green Version]
- Guh, A.Y.; Adkins, S.H.; Li, Q.; Bulens, S.N.; Farley, M.M.; Smith, Z.; Holzbauer, S.M.; Whitten, T.; Phipps, E.C.; Hancock, E.B.; et al. Risk Factors for Community-Associated Clostridium difficile Infection in Adults: A Case-Control Study. Open Forum Infect. Dis. 2017, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, H.; Nugent, Z.; Yu, B.N.; Lix, L.M.; Targownik, L.E.; Bernstein, C.N. Higher Incidence of Clostridium difficile Infection Among Individuals With Inflammatory Bowel Disease. Gastroenterology 2017, 153, 430–438.e2. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, G.C.; Kaplan, G.; Harris, M.L.; Brant, S.R. A National Survey of the Prevalence and Impact of Clostridium difficile Infection Among Hospitalized Inflammatory Bowel Disease Patients. Am. J. Gastroenterol. 2008, 103, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, A.N.; McGinley, E.L.; Binion, D.G. Excess hospitalisation burden associated with Clostridium difficile in patients with inflammatory bowel disease. Gut 2007, 57, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Balram, B.; Battat, R.; Al-Khoury, A.; D’Aoust, J.; Afif, W.; Bitton, A.; Lakatos, P.L.; Bessissow, T. Risk Factors Associated with Clostridium difficile Infection in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. J. Crohn’s Colitis 2018, 13, 27–38. [Google Scholar] [CrossRef]
- Trifan, A.; Stanciu, C.; Girleanu, I.; Stoica, O.C.; Singeap, A.M.; Maxim, R.; Chiriac, S.A.; Ciobica, A.; Boiculese, L. Proton pump inhibitors therapy and risk of Clostridium difficile infection: Systematic review and meta-analysis. World J. Gastroenterol. 2017, 23, 6500–6515. [Google Scholar] [CrossRef]
- Brown, K.A.; Khanafer, N.; Daneman, N.; Fisman, D.N. Meta-Analysis of Antibiotics and the Risk of Community-Associated Clostridium difficile Infection. Antimicrob. Agents Chemother. 2013, 57, 2326–2332. [Google Scholar] [CrossRef] [Green Version]
- Furuya-Kanamori, L.; Stone, J.C.; Clark, J.; McKenzie, S.J.; Yakob, L.; Paterson, D.L.; Riley, T.V.; Doi, S.A.R.; Clements, A.C. Comorbidities, Exposure to Medications, and the Risk of Community-Acquired Clostridium difficile Infection: A Systematic Review and Meta-analysis. Infect. Control. Hosp. Epidemiol. 2014, 36, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Gao, T.; He, B.; Pan, Y.; Deng, Q.; Sun, H.; Liu, X.; Chen, J.; Wang, S.; Xia, Y. Association of Clostridium difficile infection in hospital mortality: A systematic review and meta-analysis. Am. J. Infect. Control 2015, 43, 1316–1320. [Google Scholar] [CrossRef]
- Starks, I.; Ayub, G.; Walley, G.; Orendi, J.; Roberts, P.; Maffulli, N. Single-dose cefuroxime with gentamicin reduces Clostridium difficile-associated disease in hip-fracture patients. J. Hosp. Infect. 2008, 70, 21–26. [Google Scholar] [CrossRef]
- Razik, R.; Rumman, A.; Bahreini, Z.; McGeer, A.; Nguyen, G.C. Recurrence of Clostridium difficile Infection in Patients with Inflammatory Bowel Disease: The RECIDIVISM Study. Am. J. Gastroenterol. 2016, 111, 1141–1146. [Google Scholar] [CrossRef] [PubMed]
- Mylonaki, M.; Langmead, L.; Pantes, A.; Johnson, F.; Rampton, D.S. Enteric infection in relapse of inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 2004, 16, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Rodemann, J.F.; Dubberke, E.R.; Reske, K.A.; Seo, D.H.; Stone, C.D. Incidence of Clostridium difficile Infection in Inflammatory Bowel Disease. Clin. Gastroenterol. Hepatol. 2007, 5, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Clayton, E.M.; Rea, M.; Shanahan, F.; Quigley, E.M.M.; Kiely, B.; Hill, C.; Ross, R. The Vexed Relationship Between Clostridium Difficile and Inflammatory Bowel Disease: An Assessment of Carriage in an Outpatient Setting Among Patients in Remission. Am. J. Gastroenterol. 2009, 104, 1162–1169. [Google Scholar] [CrossRef] [PubMed]
- Nakase, H.; Uchino, M.; Shinzaki, S.; Matsuura, M.; Matsuoka, K.; Kobayashi, T. Evidence-based clinical practice guidelines for inflammatory bowel disease. J. Gastroenterol. 2021, 56, 489–526. [Google Scholar] [CrossRef]
- Sehgal, K.; Yadav, D.; Khanna, S. The interplay of Clostridioides difficile infection and inflammatory bowel disease. Ther. Adv. Gastroenterol. 2021, 14, 17562848211020285. [Google Scholar] [CrossRef]
- Khanna, S.; Shin, A.; Kelly, C.P. Management of Clostridium difficile Infection in Inflammatory Bowel Disease: Expert Review from the Clinical Practice Updates Committee of the AGA Institute. Clin. Gastroenterol. Hepatol. 2017, 15, 166–174. [Google Scholar] [CrossRef] [Green Version]
- Wiström, J.; Norrby, S.R.; Myhre, E.B.; Eriksson, S.; Granström, G.; Lagergren, L.; Englund, G.; Nord, C.E.; Svenungsson, B. Frequency of antibiotic-associated diarrhoea in 2462 antibiotic-treated hospitalized patients: A prospective study. J. Antimicrob. Chemother. 2001, 47, 43–50. [Google Scholar] [CrossRef]
- Bartlett, J.G. Clostridium difficile: Clinical Considerations. Clin. Infect. Dis. 1990, 12, S243–S251. [Google Scholar] [CrossRef]
- Tariq, R.; Disbrow, M.B.; DiBaise, J.K.; Orenstein, R.; Saha, S.; Solanky, D.; Loftus, E.V.; Pardi, D.S.; Khanna, S. Efficacy of Fecal Microbiota Transplantation for Recurrent C. difficile Infection in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2019, 26, 1415–1420. [Google Scholar] [CrossRef]
- Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, B.; Lomer, M.C.E.; Parkes, G.C.; Selinger, C.; et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 2019, 68 (Suppl. 3), s1–s106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toruner, M.; Loftus, E.; Harmsen, W.S.; Zinsmeister, A.R.; Orenstein, R.; Sandborn, W.J.; Colombel, J.; Egan, L.J. Risk Factors for Opportunistic Infections in Patients With Inflammatory Bowel Disease. Gastroenterology 2008, 134, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Ljung, T.; Karlén, P.; Schmidt, D.; Hellstrom, P.; Lapidus, A.; Janczewska, I.; Sjöqvist, U.; Löfberg, R. Infliximab in inflammatory bowel disease: Clinical outcome in a population based cohort from Stockholm County. Gut 2004, 53, 849–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombel, J.-F.; Sands, B.E.; Rutgeerts, P.; Sandborn, W.; Danese, S.; D’Haens, G.; Panaccione, R.; Loftus, E.V.; Sankoh, S.; Fox, I.; et al. The safety of vedolizumab for ulcerative colitis and Crohn’s disease. Gut 2016, 66, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Garcia, P.G.; Chebli, L.A.; Ribeiro, T.C.D.R.; Gaburri, P.D.; Pace, F.H.D.L.; Barbosa, K.V.B.D.; Costa, L.A.; Cruz, W.D.A.; de Assis, I.C.; Moraes, B.R.M.; et al. Impact of superimposed Clostridium difficile infection in Crohn’s or ulcerative colitis flares in the outpatient setting. Int. J. Color. Dis. 2018, 33, 1285–1294. [Google Scholar] [CrossRef]
- Issa, M.; Ananthakrishnan, A.N.; Binion, D.G. Clostridium difficile and inflammatory bowel disease. Inflamm. Bowel Dis. 2008, 14, 1432–1442. [Google Scholar] [CrossRef]
- Issa, M.; Vijayapal, A.; Graham, M.B.; Beaulieu, D.B.; Otterson, M.F.; Lundeen, S.; Skaros, S.; Weber, L.R.; Komorowski, R.A.; Knox, J.F.; et al. Impact of Clostridium difficile on Inflammatory Bowel Disease. Clin. Gastroenterol. Hepatol. 2007, 5, 345–351. [Google Scholar] [CrossRef]
- Guarner, F. Enteric Flora in Health and Disease. Digestion 2006, 73, 5–12. [Google Scholar] [CrossRef]
- Goldberg, E.; Amir, I.; Zafran, M.; Gophna, U.; Samra, Z.; Pitlik, S.; Bishara, J. The correlation between Clostridium-difficile infection and human gut concentrations of Bacteroidetes phylum and clostridial species. Eur. J. Clin. Microbiol. 2013, 33, 377–383. [Google Scholar] [CrossRef]
- Bibbò, S.; Lopetuso, L.R.; Ianiro, G.; Di Rienzo, T.; Gasbarrini, A.; Cammarota, G. Role of Microbiota and Innate Immunity in Recurrent Clostridium difficile Infection. J. Immunol. Res. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Png, C.W.; Lindén, S.K.; Gilshenan, K.S.; Zoetendal, E.G.; McSweeney, C.S.; Sly, L.I.; McGuckin, M.; Florin, T.H.J. Mucolytic Bacteria With Increased Prevalence in IBD Mucosa Augment In Vitro Utilization of Mucin by Other Bacteria. Am. J. Gastroenterol. 2010, 105, 2420–2428. [Google Scholar] [CrossRef] [PubMed]
- Machiels, K.; Joossens, M.; Sabino, J.; De Preter, V.; Arijs, I.; Eeckhaut, V.; Ballet, V.; Claes, K.; Van Immerseel, F.; Verbeke, K.; et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 2014, 63, 1275–1283. [Google Scholar] [CrossRef]
- Barbara, G.; Barbaro, M.R.; Fuschi, D.; Palombo, M.; Falangone, F.; Cremon, C.; Marasco, G.; Stanghellini, V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front. Nutr. 2021, 8. [Google Scholar] [CrossRef] [PubMed]
- Giesemann, T.; Guttenberg, G.; Aktories, K.; Giesemann, T.; Guttenberg, G.; Aktories, K. Human α-Defensins Inhibit Clostridium difficile Toxin B. Gastroenterology 2008, 134, 2049–2058. [Google Scholar] [CrossRef]
- Cunliffe, R.N.; Rose, F.R.A.J.; Keyte, J.; Abberley, L.; Chan, W.C.; Mahida, Y.R. Human defensin 5 is stored in precursor form in normal Paneth cells and is expressed by some villous epithelial cells and by metaplastic Paneth cells in the colon in inflammatory bowel disease. Gut 2001, 48, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Monaghan, T.; Cockayne, A.; Mahida, Y.R. Pathogenesis of Clostridium difficile Infection and Its Potential Role in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2015, 21, 1957–1966. [Google Scholar] [CrossRef]
- Wehkamp, J.; Koslowski, M.; Wang, G.; Stange, E.F. Barrier dysfunction due to distinct defensin deficiencies in small intestinal and colonic Crohn’s disease. Mucosal Immunol. 2008, 1, S67–S74. [Google Scholar] [CrossRef] [Green Version]
- Dial, S.; Delaney, J.A.C.; Barkun, A.N.; Suissa, S. Use of Gastric Acid–Suppressive Agents and the Risk of Community-Acquired Clostridium difficile–Associated Disease. JAMA 2005, 294, 2989–2995. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.; Lewis, A.; Leopold, D.; Dunstan, F.; Woodhouse, K. Gastric acid suppression does not promote clostridial diarrhoea in the elderly. QJM Int. J. Med. 2000, 93, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; Song, K.-H.; Bae, J.Y.; Yoon, D.; Hwang, J.-H.; Choe, P.G.; Park, W.B.; Bang, J.H.; Kim, E.S.; Park, S.W.; et al. Risk factors for poor outcome in community-onset Clostridium difficile infection. Antimicrob. Resist. Infect. Control 2018, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Peled, N.; Pitlik, S.; Samra, Z.; Kazakov, A.; Bloch, Y.; Bishara, J. Predicting Clostridium difficile Toxin in Hospitalized Patients With Antibiotic-Associated Diarrhea. Infect. Control Hosp. Epidemiology 2007, 28, 377–381. [Google Scholar] [CrossRef]
- Rodríguez-Pardo, D.; Almirante, B.; Bartolomé, R.M.; Pomar, V.; Mirelis, B.; Navarro, F.; Soriano, A.; Sorlí, L.; Martínez-Montauti, J.; Molins, M.T.; et al. Epidemiology of Clostridium difficile Infection and Risk Factors for Unfavorable Clinical Outcomes: Results of a Hospital-Based Study in Barcelona, Spain. J. Clin. Microbiol. 2013, 51, 1465–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachu, A.; Dinesh, K.; Siyad, I.; Kumar, A.; Vasudevan, A.; Karim, S. A prospective cross sectional study of detection of Clostridium difficile toxin in patients with antibiotic associated diarrhoea. Iran. J. Microbiol. 2018, 10, 1–6. [Google Scholar] [PubMed]
- Tariq, R.; Law, C.C.; Khanna, S.; Murthy, S.; McCurdy, J.D. The Impact of Clostridium difficile Infection on Mortality in Patients With Inflammatory Bowel Disease. J. Clin. Gastroenterol. 2019, 53, 127–133. [Google Scholar] [CrossRef]
- Khanna, S.; Pardi, D.S. Poor outcomes after Clostridium difficile infection in IBD. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 307–308. [Google Scholar] [CrossRef] [PubMed]
- Trifan, A.; Stanciu, C.; Stoica, O.; Girleanu, I.; Cojocariu, C. Impact of Clostridium difficile infection on inflammatory bowel disease outcome: A review. World J. Gastroenterol. 2014, 20, 11736–11742. [Google Scholar] [CrossRef]
- Murthy, S.K.; Steinhart, A.H.; Tinmouth, J.; Austin, P.; Daneman, N.; Nguyen, G.C. Impact of Clostridium difficile colitis on 5-year health outcomes in patients with ulcerative colitis. Aliment. Pharmacol. Ther. 2012, 36, 1032–1039. [Google Scholar] [CrossRef]
- Jodorkovsky, D.; Young, Y.; Abreu, M.T. Clinical Outcomes of Patients with Ulcerative Colitis and Co-existing Clostridium difficile Infection. Am. J. Dig. Dis. 2009, 55, 415–420. [Google Scholar] [CrossRef]
- Law, C.C.Y.; Tariq, R.; Khanna, S.; Murthy, S.; McCurdy, J.D. Systematic review with meta-analysis: The impact of Clostridium difficile infection on the short- and long-term risks of colectomy in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2017, 45, 1011–1020. [Google Scholar] [CrossRef] [Green Version]
- Ricciardi, R.; Rothenberger, D.A.; Madoff, R.D.; Baxter, N.N. Increasing Prevalence and Severity of Clostridium difficile Colitis in Hospitalized Patients in the United States. Arch. Surg. 2007, 142, 624–631. [Google Scholar] [CrossRef] [Green Version]
- Bagdasarian, N.; Rao, K.; Malani, P.N. Diagnosis and Treatment of Clostridium difficile in Adults. JAMA 2015, 313, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Debast, S.; Bauer, M.; Kuijper, E. European Society of Clinical Microbiology and Infectious Diseases: Update of the Treatment Guidance Document for Clostridium difficile Infection. Clin. Microbiol. Infect. 2014, 20, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodhand, J.; Alazawi, W.; Rampton, D.S. Systematic review: Clostridium difficile and inflammatory bowel disease. Aliment. Pharmacol. Ther. 2010, 33, 428–441. [Google Scholar] [CrossRef] [PubMed]
- Autenrieth, D.M.; Baumgart, D.C. Toxic megacolon. Inflamm. Bowel Dis. 2012, 18, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Sailhamer, E.A.; Carson, K.; Chang, Y.; Zacharias, N.; Spaniolas, K.; Tabbara, M.; Alam, H.B.; DeMoya, M.A.; Velmahos, G.C. Fulminant Clostridium difficile Colitis. Arch. Surg. 2009, 144, 433–439. [Google Scholar] [CrossRef]
- Cohen, S.H.; Gerding, D.N.; Johnson, S.; Kelly, C.P.; Loo, V.G.; McDonald, L.C.; Pépin, J.L.; Wilcox, M.H. Clinical Practice Guidelines for Clostridium difficile Infection in Adults: 2010 Update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect. Control Hosp. Epidemiology 2010, 31, 431–455. [Google Scholar] [CrossRef]
- Hall, J.F.; Berger, D. Outcome of colectomy for Clostridium difficile colitis: A plea for early surgical management. Am. J. Surg. 2008, 196, 384–388. [Google Scholar] [CrossRef]
- Bhangu, A.; Nepogodiev, D.; Gupta, A.; Torrance, A.; Singh, P. Systematic review and meta-analysis of outcomes following emergency surgery for Clostridium difficile colitis. Br. J. Surg. 2012, 99, 1501–1513. [Google Scholar] [CrossRef]
- Ferrada, P.; Velopulos, C.G.; Sultan, S.; Haut, E.R.; Johnson, E.; Praba-Egge, A.; Enniss, T.; Dorion, H.; Martin, N.; Bosarge, P.; et al. Timing and type of surgical treatment of Clostridium difficile–associated disease. J. Trauma Acute Care Surg. 2014, 76, 1484–1493. [Google Scholar] [CrossRef]
- Van Der Wilden, G.M.; Velmahos, G.C.; Chang, Y.; Bajwa, E.; O’Donnell, W.J.; Finn, K.; Harris, N.S.; Yeh, D.D.; King, D.R.; De Moya, M.A.; et al. Effects of a New Hospital-Wide Surgical Consultation Protocol in Patients with Clostridium difficile Colitis. Surg. Infect. 2017, 18, 563–569. [Google Scholar] [CrossRef]
- Johnson, S.; Lavergne, V.; Skinner, A.M.; Gonzales-Luna, A.J.; Garey, K.W.; Kelly, C.P.; Wilcox, M.H. Clinical Practice Guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA): 2021 Focused Update Guidelines on Management of Clostridioides difficile Infection in Adults. Clin. Infect. Dis. 2021, 73, e1029–e1044. [Google Scholar] [CrossRef] [PubMed]
- Jarrad, A.M.; Karoli, T.; Blaskovich, M.A.T.; Lyras, D.; Cooper, M.A. Clostridium difficile Drug Pipeline: Challenges in Discovery and Development of New Agents. J. Med. Chem. 2015, 58, 5164–5185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolton, R.P.; Culshaw, M.A. Faecal metronidazole concentrations during oral and intravenous therapy for antibiotic associated colitis due to Clostridium difficile. Gut 1986, 27, 1169–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, S.; Louie, T.J.; Gerding, D.N.; Cornely, O.; Chasan-Taber, S.; Fitts, D.; Gelone, S.P.; Broom, C.; Davidson, D.M.; for the Polymer Alternative for CDI Treatment (PACT) investigators. Vancomycin, Metronidazole, or Tolevamer for Clostridium difficile Infection: Results From Two Multinational, Randomized, Controlled Trials. Clin. Infect. Dis. 2014, 59, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Zar, F.A.; Bakkanagari, S.R.; Moorthi, K.M.L.S.T.; Davis, M.B. A Comparison of Vancomycin and Metronidazole for the Treatment of Clostridium difficile-Associated Diarrhea, Stratified by Disease Severity. Clin. Infect. Dis. 2007, 45, 302–307. [Google Scholar] [CrossRef]
- Levett, P.N. Time-dependent killing of Clostridium difficile by metronidazole and vancomycin. J. Antimicrob. Chemother. 1991, 27, 55–62. [Google Scholar] [CrossRef]
- Louie, T.J.; Miller, M.A.; Mullane, K.M.; Weiss, K.; Lentnek, A.; Golan, Y.; Gorbach, S.; Sears, P.; Shue, Y.-K. Fidaxomicin versus Vancomycin for Clostridium difficile Infection. N. Engl. J. Med. 2011, 364, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Babakhani, F.; Bouillaut, L.; Gomez, A.; Sears, P.; Nguyen, L.; Sonenshein, A.L. Fidaxomicin Inhibits Spore Production in Clostridium difficile. Clin. Infect. Dis. 2012, 55, S162–S169. [Google Scholar] [CrossRef] [Green Version]
- Louie, T.J.; Emery, J.; Krulicki, W.; Byrne, B.; Mah, M. OPT-80 Eliminates Clostridium difficile and Is Sparing of Bacteroides Species during Treatment of C. difficile Infection. Antimicrob. Agents Chemother. 2009, 53, 261–263. [Google Scholar] [CrossRef] [Green Version]
- Cornely, O.A.A.; Miller, M.A.; Louie, T.J.; Crook, D.W.; Gorbach, S.L. Treatment of First Recurrence of Clostridium difficile Infection: Fidaxomicin Versus Vancomycin. Clin. Infect. Dis. 2012, 55, S154–S161. [Google Scholar] [CrossRef]
- Nelson, R.L.; Suda, K.J.; Evans, C.T. Antibiotic treatment for Clostridium difficile -associated diarrhoea in adults. Cochrane Database Syst. Rev. 2017, 2017, CD004610. [Google Scholar] [CrossRef]
- Biswas, J.; Patel, A.; Otter, J.; Wade, P.; Newsholme, W.; van Kleef, E.; Goldenberg, S. Reduction in Clostridium difficile environmental contamination by hospitalized patients treated with fidaxomicin. J. Hosp. Infect. 2015, 90, 267–270. [Google Scholar] [CrossRef] [Green Version]
- Mullane, K.M.; Miller, M.A.; Weiss, K.; Lentnek, A.; Golan, Y.; Sears, P.S.; Shue, Y.-K.; Louie, T.J.; Gorbach, S.L. Efficacy of Fidaxomicin Versus Vancomycin as Therapy for Clostridium difficile Infection in Individuals Taking Concomitant Antibiotics for Other Concurrent Infections. Clin. Infect. Dis. 2011, 53, 440–447. [Google Scholar] [CrossRef]
- Venugopal, A.A.; Johnson, S. Fidaxomicin: A Novel Macrocyclic Antibiotic Approved for Treatment of Clostridium difficile Infection. Clin. Infect. Dis. 2011, 54, 568–574. [Google Scholar] [CrossRef] [Green Version]
- Lei, D.K.; Ollech, J.E.; Andersen, M.; Weisshof, R.; Zmeter, N.; Sossenheimer, P.; Rubin, D.T. Long-Duration Oral Vancomycin to Treat Clostridioides difficile in Patients With Inflammatory Bowel Disease Is Associated With a Low Rate of Recurrence. Am. J. Gastroenterol. 2019, 114, 1904–1908. [Google Scholar] [CrossRef]
- Allegretti, J.R.; Kelly, C.R.; Grinspan, A.; Mullish, B.H.; Hurtado, J.; Carrellas, M.; Marcus, J.; Marchesi, J.R.; McDonald, J.A.K.; Gerardin, Y.; et al. Inflammatory Bowel Disease Outcomes Following Fecal Microbiota Transplantation for Recurrent C. difficile Infection. Inflamm. Bowel Dis. 2020, 27, 1371–1378. [Google Scholar] [CrossRef]
- Khoruts, A.; Rank, K.M.; Newman, K.M.; Viskocil, K.; Vaughn, B.P.; Hamilton, M.J.; Sadowsky, M.J. Inflammatory Bowel Disease Affects the Outcome of Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection. Clin. Gastroenterol. Hepatol. 2016, 14, 1433–1438. [Google Scholar] [CrossRef] [Green Version]
- Khoruts, A.; Staley, C.; Sadowsky, M.J. Faecal microbiota transplantation for Clostridioides difficile: Mechanisms and pharmacology. Nat. Rev. Gastroenterol. Hepatol. 2020, 18, 67–80. [Google Scholar] [CrossRef]
- Meighani, A.; Hart, B.R.; Bourgi, K.; Miller, N.; John, A.; Ramesh, M. Outcomes of Fecal Microbiota Transplantation for Clostridium difficile Infection in Patients with Inflammatory Bowel Disease. Am. J. Dig. Dis. 2017, 62, 2870–2875. [Google Scholar] [CrossRef]
- Ianiro, G.; Maida, M.; Burisch, J.; Simonelli, C.; Hold, G.; Ventimiglia, M.; Gasbarrini, A.; Cammarota, G. Efficacy of different faecal microbiota transplantation protocols for Clostridium difficile infection: A systematic review and meta-analysis. United Eur. Gastroenterol. J. 2018, 6, 1232–1244. [Google Scholar] [CrossRef] [Green Version]
- Terveer, E.M.; Van Beurden, Y.H.; Van Dorp, S.; Keller, J.J.; Kuijper, E. Is the Lower Gastrointestinal Route Really Preferred Over the Upper Gastrointestinal Route for Fecal Microbiota Transfer? J. Clin. Gastroenterol. 2016, 50, 895. [Google Scholar] [CrossRef]
- Hota, S.S.; Sales, V.; Tomlinson, G.; Salpeter, M.J.; McGeer, A.; Coburn, B.; Guttman, D.S.; Low, D.E.; Poutanen, S. Oral Vancomycin Followed by Fecal Transplantation Versus Tapering Oral Vancomycin Treatment for Recurrent Clostridium difficile Infection: An Open-Label, Randomized Controlled Trial. Clin. Infect. Dis. 2016, 64, 265–271. [Google Scholar] [CrossRef]
- Kao, D.; Roach, B.; Silva, M.; Beck, P.; Rioux, K.; Kaplan, G.G.; Chang, H.-J.; Coward, S.; Goodman, K.J.; Xu, H.; et al. Effect of Oral Capsule– vs Colonoscopy-Delivered Fecal Microbiota Transplantation on Recurrent Clostridium difficile Infection. JAMA 2017, 318, 1985–1993. [Google Scholar] [CrossRef] [Green Version]
- Allegretti, J.R.; Fischer, M.; Sagi, S.V.; Bohm, M.E.; Fadda, H.M.; Ranmal, S.R.; Budree, S.; Basit, A.W.; Glettig, D.L.; de la Serna, E.L.; et al. Fecal Microbiota Transplantation Capsules with Targeted Colonic Versus Gastric Delivery in Recurrent Clostridium difficile Infection: A Comparative Cohort Analysis of High and Lose Dose. Am. J. Dig. Dis. 2018, 64, 1672–1678. [Google Scholar] [CrossRef]
- Konijeti, G.G.; Sauk, J.; Shrime, M.G.; Gupta, M.; Ananthakrishnan, A.N. Cost-effectiveness of Competing Strategies for Management of Recurrent Clostridium difficile Infection: A Decision Analysis. Clin. Infect. Dis. 2014, 58, 1507–1514. [Google Scholar] [CrossRef] [Green Version]
- Ianiro, G.; Bibbò, S.; Porcari, S.; Settanni, C.R.; Giambò, F.; Curta, A.R.; Quaranta, G.; Scaldaferri, F.; Masucci, L.; Sanguinetti, M.; et al. Fecal microbiota transplantation for recurrent C. difficile infection in patients with inflammatory bowel disease: Experience of a large-volume European FMT center. Gut Microbes 2021, 13, 1994834. [Google Scholar] [CrossRef]
- Jiang, M.; Leung, N.-H.; Ip, M.; You, J.H.S. Cost-effectiveness analysis of ribotype-guided fecal microbiota transplantation in Chinese patients with severe Clostridium difficile infection. PLoS ONE 2018, 13, e0201539. [Google Scholar] [CrossRef]
- Wilcox, M.H.; Gerding, D.N.; Poxton, I.R.; Kelly, C.; Nathan, R.; Birch, T.; Cornely, O.A.; Rahav, G.; Bouza, E.; Lee, C.; et al. Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection. N. Engl. J. Med. 2017, 376, 305–317. [Google Scholar] [CrossRef]
- Paschos, P.; Ioakim, K.; Malandris, K.; Koukoufiki, A.; Nayfeh, T.; Akriviadis, E.; Tsapas, A.; Bekiari, E. Add-on interventions for the prevention of recurrent Clostridioides Difficile infection: A systematic review and network meta-analysis. Anaerobe 2021, 71, 102441. [Google Scholar] [CrossRef]
- Goldenberg, J.Z.; Ma, S.S.Y.; Saxton, J.D.; Martzen, M.R.; Vandvik, P.O.; Thorlund, K.; Guyatt, G.H.; Johnston, B.C. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst. Rev. 2013, CD006095. [Google Scholar] [CrossRef]
- Johnson, S.; Maziade, P.-J.; McFarland, L.V.; Trick, W.; Donskey, C.; Currie, B.; Low, D.E.; Goldstein, E.J. Is primary prevention of Clostridium difficile infection possible with specific probiotics? Int. J. Infect. Dis. 2012, 16, e786–e792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castagliuolo, I.; Riegler, M.F.; Valenick, L.; LaMont, J.T.; Pothoulakis, C. Saccharomyces boulardii Protease Inhibits the Effects of Clostridium difficile Toxins A and B in Human Colonic Mucosa. Infect. Immun. 1999, 67, 302–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auclair, J.; Frappier, M.; Millette, M. Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+): Characterization, Manufacture, Mechanisms of Action, and Quality Control of a Specific Probiotic Combination for Primary Prevention of Clostridium difficile Infection. Clin. Infect. Dis. 2015, 60, S135–S143. [Google Scholar] [CrossRef] [PubMed]
- Pike, C.M.; Theriot, C.M. Mechanisms of Colonization Resistance Against Clostridioides difficile. J. Infect. Dis. 2020, 223, S194–S200. [Google Scholar] [CrossRef] [PubMed]
- Gerding, D.N.; Meyer, T.; Lee, C.; Cohen, S.H.; Murthy, U.K.; Poirier, A.; Van Schooneveld, T.C.; Pardi, D.S.; Ramos, A.; Barron, M.A.; et al. Administration of Spores of Nontoxigenic Clostridium difficile Strain M3 for Prevention of RecurrentC difficileInfection. JAMA 2015, 313, 1719–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Permpoonpattana, P.; Hong, H.A.; Phetcharaburanin, J.; Huang, J.-M.; Cook, J.; Fairweather, N.F.; Cutting, S.M. Immunization with Bacillus Spores Expressing Toxin A Peptide Repeats Protects against Infection with Clostridium difficile Strains Producing Toxins A and B. Infect. Immun. 2011, 79, 2295–2302. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S.; Burmeister, S.; Brazier, J. Effect of the Prebiotic Oligofructose on Relapse of Clostridium difficile-Associated Diarrhea: A Randomized, Controlled Study. Clin. Gastroenterol. Hepatol. 2005, 3, 442–448. [Google Scholar] [CrossRef]
- Martin, J.; Wilcox, M. New and emerging therapies for Clostridium difficile infection. Curr. Opin. Infect. Dis. 2016, 29, 546–554. [Google Scholar] [CrossRef]
- McFarland, L.V. Therapies on the horizon for Clostridium difficile infections. Expert Opin. Investig. Drugs 2016, 25, 541–555. [Google Scholar] [CrossRef]
- de Bruyn, G.; Saleh, J.; Workman, D.; Pollak, R.; Elinoff, V.; Fraser, N.J.; Lefebvre, G.; Martens, M.; Mills, R.E.; Nathan, R.; et al. Defining the optimal formulation and schedule of a candidate toxoid vaccine against Clostridium difficile infection: A randomized Phase 2 clinical trial. Vaccine 2016, 34, 2170–2178. [Google Scholar] [CrossRef] [Green Version]
- Sheldon, E.; Kitchin, N.; Peng, Y.; Eiden, J.; Gruber, W.; Johnson, E.; Jansen, K.U.; Pride, M.W.; Pedneault, L. A phase 1, placebo-controlled, randomized study of the safety, tolerability, and immunogenicity of a Clostridium difficile vaccine administered with or without aluminum hydroxide in healthy adults. Vaccine 2016, 34, 2082–2091. [Google Scholar] [CrossRef] [PubMed]
- Heuler, J.; Fortier, L.-C.; Sun, X. Clostridioides difficile phage biology and application. FEMS Microbiol. Rev. 2021, 45, fuab012. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Gupta, J.; Kumar, S.; Kumar, A. Gut biofilm forming bacteria in inflammatory bowel disease. Microb. Pathog. 2017, 112, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Chandra, N.; Srivastava, A.; Kumar, S. Bacterial biofilms in human gastrointestinal tract: An intricate balance between health and inflammatory bowel diseases. World J. Pharmacol. 2019, 8, 26–40. [Google Scholar] [CrossRef]
- Swidsinski, A.; Weber, J.; Loening-Baucke, V.; Hale, L.P.; Lochs, H. Spatial Organization and Composition of the Mucosal Flora in Patients with Inflammatory Bowel Disease. J. Clin. Microbiol. 2005, 43, 3380–3389. [Google Scholar] [CrossRef] [Green Version]
- Drescher, K.; Nadell, C.D.; Stone, H.A.; Wingreen, N.S.; Bassler, B.L. Solutions to the Public Goods Dilemma in Bacterial Biofilms. Curr. Biol. 2013, 24, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Dawson, L.F.; Peltier, J.; Hall, C.L.; Harrison, M.A.; Derakhshan, M.; Shaw, H.A.; Fairweather, N.F.; Wren, B.W. Extracellular DNA, cell surface proteins and c-di-GMP promote biofilm formation in Clostridioides difficile. Sci. Rep. 2021, 11, 1–21. [Google Scholar] [CrossRef]
- Normington, C.; Moura, I.B.; Bryant, J.A.; Ewin, D.J.; Clark, E.V.; Kettle, M.J.; Harris, H.C.; Spittal, W.; Davis, G.; Henn, M.R.; et al. Biofilms harbour Clostridioides difficile, serving as a reservoir for recurrent infection. NPJ Biofilms Microbiomes 2021, 7, 1–10. [Google Scholar] [CrossRef]
- Poquet, I.; Saujet, L.; Canette, A.; Monot, M.; Mihajlovic, J.; Ghigo, J.-M.; Soutourina, O.; Briandet, R.; Martin-Verstraete, I.; Dupuy, B. Clostridium difficile Biofilm: Remodeling Metabolism and Cell Surface to Build a Sparse and Heterogeneously Aggregated Architecture. Front. Microbiol. 2018, 9, 2084. [Google Scholar] [CrossRef]
- Semenyuk, E.G.; Laning, M.L.; Foley, J.; Johnston, P.F.; Knight, K.L.; Gerding, D.N.; Driks, A. Spore Formation and Toxin Production in Clostridium difficile Biofilms. PLoS ONE 2014, 9, e87757. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.W.; Mah, T.-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 2017, 41, 276–301. [Google Scholar] [CrossRef] [PubMed]
- Abu Rahmoun, L.; Azrad, M.; Peretz, A. Antibiotic Resistance and Biofilm Production Capacity in Clostridioides difficile. Front. Cell. Infect. Microbiol. 2021, 11, 683464. [Google Scholar] [CrossRef] [PubMed]
- James, G.A.; Chesnel, L.; Boegli, L.; Pulcini, E.D.; Fisher, S.; Stewart, P.S. Analysis of Clostridium difficile biofilms: Imaging and antimicrobial treatment. J. Antimicrob. Chemother. 2017, 73, 102–108. [Google Scholar] [CrossRef]
- Thapa, T.; Leuzzi, R.; Ng, Y.K.; Baban, S.T.; Adamo, R.; Kuehne, S.A.; Scarselli, M.; Minton, N.; Serruto, D.; Unnikrishnan, M. Multiple Factors Modulate Biofilm Formation by the Anaerobic Pathogen Clostridium difficile. J. Bacteriol. 2012, 195, 545–555. [Google Scholar] [CrossRef] [Green Version]
- Mathur, H.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. The efficacy of thuricin CD, tigecycline, vancomycin, teicoplanin, rifampicin and nitazoxanide, independently and in paired combinations against Clostridium difficile biofilms and planktonic cells. Gut Pathog. 2016, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Meza-Torres, J.; Auria, E.; Dupuy, B.; Tremblay, Y.D.N. Wolf in Sheep’s Clothing: Clostridioides difficile Biofilm as a Reservoir for Recurrent Infections. Microorganisms 2021, 9, 1922. [Google Scholar] [CrossRef]
- Maaser, C.; Sturm, A.; Vavricka, S.R.; Kucharzik, T.; Fiorino, G.; Annese, V.; Calabrese, E.; Baumgart, D.C.; Bettenworth, D.; Borralho Nunes, P.; et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications. J. Crohn’s Colitis 2018, 13, 144–164K. [Google Scholar] [CrossRef] [Green Version]
- Feuerstein, J.D.; Isaacs, K.L.; Schneider, Y.; Siddique, S.M.; Falck-Ytter, Y.; Singh, S.; Chachu, K.; Day, L.; Lebwohl, B.; Muniraj, T.; et al. AGA Clinical Practice Guidelines on the Management of Moderate to Severe Ulcerative Colitis. Gastroenterology 2020, 158, 1450–1461. [Google Scholar] [CrossRef] [Green Version]
- Lukin, D.J.; Lawlor, G.; Hudesman, D.P.; Durbin, L.; Axelrad, J.E.; Passi, M.; Cavaliere, K.; Coburn, E.; Loftus, M.; Jen, H.; et al. Escalation of Immunosuppressive Therapy for Inflammatory Bowel Disease Is Not Associated With Adverse Outcomes After Infection With Clostridium difficile. Inflamm. Bowel Dis. 2018, 25, 775–781. [Google Scholar] [CrossRef]
- Ben-Horin, S.; Margalit, M.; Bossuyt, P.; Maul, J.; Shapira, Y.; Bojic, D.; Chermesh, I.; Al-Rifai, A.; Schoepfer, A.; Bosani, M.; et al. Combination Immunomodulator and Antibiotic Treatment in Patients With Inflammatory Bowel Disease and Clostridium difficile Infection. Clin. Gastroenterol. Hepatol. 2009, 7, 981–987. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, X.; Wu, F.; Peng, D.; Wu, G.; Yang, L.; Yuan, L. Role of a multidisciplinary team (MDT) in the diagnosis, treatment, and outcomes of inflammatory bowel disease: A single Chinese center’s experience. Biosci. Trends 2021, 15, 171–179. [Google Scholar] [CrossRef]
- Bousquet, C.; Lasfargues, C.; Chalabi, M.; Billah, S.M.; Susini, C.; Vezzosi, D.; Caron, P.; Pyronnet, S. Current Scientific Rationale for the Use of Somatostatin Analogs and mTOR Inhibitors in Neuroendocrine Tumor Therapy. J. Clin. Endocrinol. Metab. 2012, 97, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Vedantam, G.; Kochanowsky, R.M.; Lindsey, J.; Mallozzi, M.; Roxas, J.L.; Adamson, C.; Anwar, F.; Clark, A.; Claus-Walker, R.; Mansoor, A.; et al. An Engineered Synthetic Biologic Protects Against Clostridium difficile Infection. Front. Microbiol. 2018, 9, 2080. [Google Scholar] [CrossRef] [PubMed]
IBD Population | General Population | |
---|---|---|
Impact of PPIs use on risk of CDI | 0.98 OR [0.54, 1.78] [15] | 1.99 OR [1.73, 2.30] [16] |
Impact of Antibiotics use on risk of CDI | 1.85 OR [1.36, 2.52] [15] | 3.55 OR (2.56–4.94) [17] |
Impact of Steroids use on risk of CDI | 0.96 [0.55, 1.69] [15] | 1.81 OR (1.15–2.84) [18] |
Difference in hospital mortality in patients with CDI | 3.64 OR [2.66, 4.98] [15] | 1.899 OR [1.269–2.840] [19] |
Difference in average age of first CDI presentation | 47.5 year for UC, 41 year for CD [14] | 55 year [13] |
Difference in recurrence rates of CDI | 13% [12] | 7% [12] |
HR for rCDI between IBD and not IBD population | HR: 2.28; 95% CI: 1.16–4.48, p < 0.001 [12] |
In IBD population with diarrhea, always perform: |
|
If acute severe ulcerative colitis (ASUC) is suspected (>6 bloody stools per day and at least one among these systemic toxicity signs (temperature > 37.8 °C, pulse > 90 bpm, hemoglobin <105 g/L, or C-reactive protein > 30 mg/L), always perform: |
|
While stool cultures and exams for C. difficile detection are pending [31] |
|
If C. difficile is confirmed [71]: |
|
Dosages | Mechanism of Action | Clinical Uses in CDI | |
---|---|---|---|
Fidaxomicin | 200 mg twice daily for 10 days per os, with or without | inhibition of RNA synthesis | No-fulminant episodes |
Vancomycin | from 125 mg to 500 mg four times daily for 10–14 days per os | inhibition of bacterial cell wall synthesis | No-fulminant episodes Combined to metronidazole IV during fulminant episode without ileus |
Metronidazole | 500 mg three times daily for 10–14 days per os/IV | inhibition of nucleic acid synthesis | Per os if alternative agents are unavailable for unsevere episodes Intravenously Combined to Vancomycin during fulminant episode without ileus |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Vecchio, L.E.; Fiorani, M.; Tohumcu, E.; Bibbò, S.; Porcari, S.; Mele, M.C.; Pizzoferrato, M.; Gasbarrini, A.; Cammarota, G.; Ianiro, G. Risk Factors, Diagnosis, and Management of Clostridioides difficile Infection in Patients with Inflammatory Bowel Disease. Microorganisms 2022, 10, 1315. https://doi.org/10.3390/microorganisms10071315
Del Vecchio LE, Fiorani M, Tohumcu E, Bibbò S, Porcari S, Mele MC, Pizzoferrato M, Gasbarrini A, Cammarota G, Ianiro G. Risk Factors, Diagnosis, and Management of Clostridioides difficile Infection in Patients with Inflammatory Bowel Disease. Microorganisms. 2022; 10(7):1315. https://doi.org/10.3390/microorganisms10071315
Chicago/Turabian StyleDel Vecchio, Livio Enrico, Marcello Fiorani, Ege Tohumcu, Stefano Bibbò, Serena Porcari, Maria Cristina Mele, Marco Pizzoferrato, Antonio Gasbarrini, Giovanni Cammarota, and Gianluca Ianiro. 2022. "Risk Factors, Diagnosis, and Management of Clostridioides difficile Infection in Patients with Inflammatory Bowel Disease" Microorganisms 10, no. 7: 1315. https://doi.org/10.3390/microorganisms10071315
APA StyleDel Vecchio, L. E., Fiorani, M., Tohumcu, E., Bibbò, S., Porcari, S., Mele, M. C., Pizzoferrato, M., Gasbarrini, A., Cammarota, G., & Ianiro, G. (2022). Risk Factors, Diagnosis, and Management of Clostridioides difficile Infection in Patients with Inflammatory Bowel Disease. Microorganisms, 10(7), 1315. https://doi.org/10.3390/microorganisms10071315