Rapid and Accurate Identification of Nontuberculous Mycobacteria Directly from Positive Primary MGIT Cultures by MALDI-TOF MS
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Identification of Clinical Strains
3.2. Identification of Internal Reference Strains
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Falkinham, J.O., III. Ecology of nontuberculous mycobacteria. Microorganisms 2021, 9, 2262. [Google Scholar] [CrossRef] [PubMed]
- Nishiuchi, Y.; Iwamoto, T.; Maruyama, F. Infection sources of a common non- tuberculous mycobacterial pathogen, Mycobacterium avium complex. Front. Med. 2017, 4, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honda, J.R.; Virdi, R.; Chan, E.D. Global environmental nontuberculous mycobacteria and their contemporaneous man-made and natural niches. Front. Microbiol. 2018, 9, 2029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.K.; Upadhyay, V. Epidemiology, diagnosis & treatment of non-tuberculous mycobacterial diseases. Indian J. Med. Res. 2020, 152, 185–226. [Google Scholar] [CrossRef]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J., Jr.; Andrejak, C.; Böttger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur. Respir. J. 2020, 56, 2000535. [Google Scholar] [CrossRef]
- Haworth, C.S.; Banks, J.; Capstick, T.; Fisher, A.J.; Gorsuch, T.; Laurenson, I.F.; Leitch, A.; Loebinger, M.R.; Milburn, H.J.; Nightingale, M.; et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 2017, 72 (Suppl. S2), ii1–ii64. [Google Scholar] [CrossRef] [Green Version]
- Bryant, J.M.; Grogono, D.M.; Rodriguez-Rincon, D.; Everall, I.; Brown, K.P.; Moreno, P.; Verma, D.; Hill, E.; Drijkoningen, J.; Gilligan, P.; et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science 2016, 354, 751–757. [Google Scholar] [CrossRef] [Green Version]
- Seagar, A.L.; Prendergast, C.; Emmanuel, F.X.; Rayner, A.; Thomson, S.; Laurenson, I.F. Evaluation of the GenoType Mycobacteria Direct assay for the simultaneous detection of the Mycobacterium tuberculosis complex and four atypical mycobacterial species in smear-positive respiratory specimens. J. Med. Microbiol. 2008, 57, 605–611. [Google Scholar] [CrossRef]
- Perry, M.D.; White, P.L.; Ruddy, M. Potential for use of the Seegene Anyplex MTB/NTM real-time detection assay in a regional reference laboratory. J. Clin. Microbiol. 2014, 52, 1708–1710. [Google Scholar] [CrossRef] [Green Version]
- Alcaide, F.; Amlerová, J.; Bou, G.; Ceyssens, P.J.; Coll, P.; Corcoran, D.; Fangous, M.S.; González-Álvarez, I.; Gorton, R.; Greub, G.; et al. How to: Identify non-tuberculous Mycobacterium species using MALDI-TOF mass spectrometry. Clin. Microbiol. Infect. 2018, 24, 599–603. [Google Scholar] [CrossRef]
- Wilen, C.B.; McMullen, A.R.; Burnham, C.A. Comparison of sample preparation methods, instrumentation platforms, and contemporary commercial databases for identification of clinically relevant mycobacteria by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2015, 53, 2308–2315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Temporal, D.; Rodríguez-Sánchez, B.; Alcaide, F. Evaluation of MALDI biotyper interpretation criteria for accurate identification of nontuberculous mycobacteria. J. Clin. Microbiol. 2020, 58, e01103-20. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Temporal, D.; Alcaide, F.; Mareković, I.; O’Connor, J.A.; Gorton, R.; van Ingen, J.; van den Bossche, A.; Héry-Arnaud, G.; Beauruelle, C.; Orth-Höller, D.; et al. Multicentre study on the reproducibility of MALDI-TOF MS for nontuberculous mycobacteria identification. Sci. Rep. 2022, 12, 1237. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, L.; Ma, P.; Fan, W.; Gu, B.; Ju, S. Accuracy of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for identification of mycobacteria: A systematic review and meta-analysis. Sci. Rep. 2018, 8, 4131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, J.A.; Lynch-Healy, M.; Corcoran, D.; O’Reilly, B.; O’Mahony, J.; Lucey, B. Improved Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS)-based identification of Mycobacterium spp. by use of a novel two-step cell disruption preparatory technique. J. Clin. Microbiol. 2016, 54, 495–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, R.J., Jr.; Brown, B.A.; Silcox, V.A.; Tsukamura, M.; Nash, D.R.; Steele, L.C.; Steingrube, V.A.; Smith, J.; Sumter, G.; Zhang, Y.S.; et al. Clinical disease, drug susceptibility, and biochemical patterns of the unnamed third biovariant complex of Mycobacterium fortuitum. J. Infect. Dis. 1991, 163, 598–603. [Google Scholar] [CrossRef]
- van Eck, K.; Faro, D.; Wattenberg, M.; de Jong, A.; Kuipers, S.; van Ingen, J. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry fails to identify nontuberculous mycobacteria from primary cultures of respiratory samples. J. Clin. Microbiol. 2016, 54, 1915–1917. [Google Scholar] [CrossRef] [Green Version]
- Kalaiarasan, E.; Thangavelu, K.; Krishnapriya, K.; Muthuraj, M.; Jose, M.; Joseph, N.M. Diagnostic performance of real time PCR and MALDI-TOF in the detection of nontuberculous mycobacteria from clinical isolates. Tuberculosis 2020, 125, 101988. [Google Scholar] [CrossRef]
- Huang, T.S.; Lee, C.C.; Tu, H.Z.; Lee, S.S. Rapid identification of mycobacteria from positive MGIT broths of primary cultures by MALDI-TOF mass spectrometry. PLoS ONE 2018, 13, e0192291. [Google Scholar] [CrossRef]
- Miller, E.; Cantrell, C.; Beard, M.; Derylak, A.; Babady, N.E.; McMillen, T.; Miranda, E.; Body, B.; Tang, Y.W.; Vasireddy, R.; et al. Performance of Vitek MS v3.0 for identification of Mycobacterium species from patient samples by use of automated liquid medium systems. J. Clin. Microbiol. 2018, 56, e00219-18. [Google Scholar] [CrossRef] [Green Version]
- Yoo, I.Y.; Shim, H.J.; Yun, S.A.; Kang, O.K.; Chung, Y.N.; Kim, T.Y.; Lee, H.; Kim, J.; Park, Y.J.; Huh, H.J.; et al. Evaluation of the ASTA MicroIDSys matrix-assisted laser desorption ionization time-of-flight mass spectrometry system for identification of mycobacteria directly from positive MGIT liquid cultures. Int. J. Infect. Dis. 2021, 102, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Epperson, L.E.; Timke, M.; Hasan, N.A.; Godo, P.; Durbin, D.; Helstrom, N.K.; Shi, G.; Kostrzewa, M.; Strong, M.; Salfinger, M. Evaluation of a novel MALDI biotyper algorithm to distinguish Mycobacterium intracellulare from Mycobacterium chimaera. Front. Microbiol. 2018, 9, 3140. [Google Scholar] [CrossRef] [PubMed]
- MBT Mycobacteria IVD Module. Available online: https://www.bruker.com/en/products-and-solutions/microbiology-and-diagnostics/microbial-identification-for-clinical-laboratories-ivd-ce/mbt-mycobacteria-ivd-module.html (accessed on 1 June 2022).
Species (n.) | No. of Identified Isolates from Clinical Samples with Score (S) of: | ||
---|---|---|---|
1.6 ≤ S < 1.8 | 1.8 ≤ S < 2 | S ≥ 2.0 | |
M. paragordonae/gordonae (16) | 2 | 14 | |
M. chimaera/intracellulare group (15) | 1 | 14 | |
M. avium (13) | 1 | 12 | |
M. fortuitum (4) | 4 | ||
M. kansasii (4) | 4 | ||
M. abscessus (1) | 1 | ||
M. mucogenicum/phocaicum (1) | 1 | ||
M. xenopi (1) | 1 | ||
M. chelonae (1) | 1 | ||
M. celatum (1) | 1 | ||
M. lentiflavum (1) | 1 | ||
M. marinum (1) | 1 | ||
M. septicum (1) § | 1 | ||
Total 60 (%) | 3 (5%) | 6 (10%) | 51 (85%) |
Species (n.) | No. of Identified Isolates from Internal Reference Strains with Score (S) of: | ||
---|---|---|---|
1.6 ≤ S < 1.8 | 1.8 ≤ S < 2 | S ≥ 2.0 | |
M. chimaera/intracellulare group (3) | 3 | ||
M. mucogenicum/phocaicum (2) § | 2 | ||
M. abscessus (2) M. avium (1) | 1 | 2 | |
M. kansasii (1) | 1 | ||
M. gordonae (1) | 1 | ||
M. triplex (1) | 1 | ||
M. simiae (1) | 1 | ||
M. xenopi (1) | 1 | ||
M. malmoense (1) | 1 | ||
M. marinum (1) | 1 | ||
M. parascrofulaceum (1) | 1 | ||
Total 16 (%) | 0 (0%) | 5 (31%) | 11 (69%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rindi, L.; Puglisi, V.; Franconi, I.; Fais, R.; Lupetti, A. Rapid and Accurate Identification of Nontuberculous Mycobacteria Directly from Positive Primary MGIT Cultures by MALDI-TOF MS. Microorganisms 2022, 10, 1447. https://doi.org/10.3390/microorganisms10071447
Rindi L, Puglisi V, Franconi I, Fais R, Lupetti A. Rapid and Accurate Identification of Nontuberculous Mycobacteria Directly from Positive Primary MGIT Cultures by MALDI-TOF MS. Microorganisms. 2022; 10(7):1447. https://doi.org/10.3390/microorganisms10071447
Chicago/Turabian StyleRindi, Laura, Vincenzo Puglisi, Iacopo Franconi, Roberta Fais, and Antonella Lupetti. 2022. "Rapid and Accurate Identification of Nontuberculous Mycobacteria Directly from Positive Primary MGIT Cultures by MALDI-TOF MS" Microorganisms 10, no. 7: 1447. https://doi.org/10.3390/microorganisms10071447
APA StyleRindi, L., Puglisi, V., Franconi, I., Fais, R., & Lupetti, A. (2022). Rapid and Accurate Identification of Nontuberculous Mycobacteria Directly from Positive Primary MGIT Cultures by MALDI-TOF MS. Microorganisms, 10(7), 1447. https://doi.org/10.3390/microorganisms10071447