Analysis of the Diversity of Xylophilus ampelinus Strains Held in CIRM-CFBP Reveals a Strongly Homogenous Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Genome Sequencing
2.3. Comparative Genomics
2.4. gyrB-rpoD Phylogeny
3. Results and Discussion
3.1. Genome Comparison
Genome Name | Taxonomy (in Genbank) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. CECT7646 | X. ampelinus (Type strain) | 1.00 | 1.00 | 0.93 | 0.82 | 0.81 | 0.81 | 0.80 | 0.79 | 0.78 | 0.78 | 0.78 | 0.77 | 0.77 | 0.76 | 0.76 |
2. Xya-CFBP1192 | X. ampelinus (Type strain) | 1.00 | 1.00 | 0.93 | 0.82 | 0.81 | 0.81 | 0.80 | 0.79 | 0.78 | 0.78 | 0.78 | 0.77 | 0.77 | 0.77 | 0.77 |
3. Leaf220 | Xylophilus sp. | 0.48 | 0.48 | 1.00 | 0.25 | 0.81 | 0.81 | 0.23 | 0.78 | 0.21 | 0.22 | 0.22 | 0.21 | 0.21 | 0.21 | 0.21 |
4. ASV27 | Xylophilus sp. | 0.25 | 0.25 | 0.82 | 1.00 | 0.80 | 0.81 | 0.23 | 0.79 | 0.79 | 0.79 | 0.79 | 0.77 | 0.77 | 0.77 | 0.77 |
5. SP210_2 | Xylophilus sp. | 0.24 | 0.24 | 0.24 | 0.24 | 1.00 | 0.98 | 0.22 | 0.78 | 0.21 | 0.22 | 0.22 | 0.20 | 0.20 | 0.21 | 0.20 |
6. SP51_3 | Xylophilus sp. | 0.24 | 0.24 | 0.24 | 0.24 | 0.86 | 1.00 | 0.23 | 0.78 | 0.22 | 0.22 | 0.22 | 0.21 | 0.20 | 0.22 | 0.21 |
7. KACC21265 | X. rhododendri (Type strain) | 0.23 | 0.23 | 0.79 | 0.80 | 0.79 | 0.79 | 1.00 | 0.78 | 0.77 | 0.78 | 0.78 | 0.76 | 0.75 | 0.76 | 0.76 |
8. cluster_DBSCAN_round5_1 | Xylophilus sp. | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.21 | 1.00 | 0.22 | 0.22 | 0.22 | 0.21 | 0.20 | 0.21 | 0.21 |
9. BgEED09 | Xylophilus ampelinus | 0.22 | 0.22 | 0.78 | 0.22 | 0.77 | 0.77 | 0.21 | 0.78 | 1.00 | 1.00 | 0.84 | 0.76 | 0.76 | 0.76 | 0.76 |
10. CCH5-B3 | Xylophilus ampelinus | 0.22 | 0.22 | 0.78 | 0.22 | 0.78 | 0.78 | 0.22 | 0.78 | 0.99 | 1.00 | 0.83 | 0.76 | 0.76 | 0.76 | 0.76 |
11. JQKD01.1 | Xenophilus azovorans DSM 13,620 (Type strain) | 0.22 | 0.22 | 0.78 | 0.22 | 0.78 | 0.78 | 0.21 | 0.78 | 0.29 | 0.28 | 1.00 | 0.21 | 0.21 | 0.21 | 0.21 |
12. Gw_Inlet_bin_57 | Xylophilus sp. | 0.21 | 0.21 | 0.77 | 0.21 | 0.76 | 0.77 | 0.20 | 0.76 | 0.21 | 0.21 | 0.77 | 1.00 | 0.90 | 0.97 | 0.98 |
13. Go_Prim_bin_55 | Xylophilus sp. | 0.21 | 0.21 | 0.77 | 0.21 | 0.76 | 0.76 | 0.20 | 0.76 | 0.21 | 0.21 | 0.76 | 0.99 | 1.00 | 0.98 | 0.98 |
14. Gw_Prim_bin_50 | Xylophilus sp. | 0.21 | 0.21 | 0.77 | 0.21 | 0.76 | 0.77 | 0.21 | 0.76 | 0.21 | 0.21 | 0.77 | 0.90 | 0.91 | 1.00 | 0.98 |
15. Gw_UH_bin_252 | Xylophilus sp. | 0.20 | 0.20 | 0.77 | 0.20 | 0.77 | 0.77 | 0.20 | 0.77 | 0.21 | 0.21 | 0.77 | 0.90 | 0.89 | 0.89 | 1.00 |
3.2. Genetic Diversity of CIRM-CFBP Xylophilus Ampelinus Strains
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panagopoulos, C.G. Xanthomonas ampelina Panagopoulos. In European Handbook of Plant Diseases; Smith, I.M., Dunez, J., Lelliot, R.A., Phillips, D.H., Arche, S.A., Eds.; Blackwell Scientific Publications: Oxford, UK; London, UK; Edinburgh, UK; Boston, MA, USA; Palo Alto, CA, USA; Melbourne, Australia, 1998; pp. 157–158. [Google Scholar]
- Willems, A.; Gillis, M.; Kersters, K.; van den Broecke, L.; de Ley, J. The taxonomic position of Xanthomonas ampelina. EPPO Bull. 1987, 17, 237–240. [Google Scholar] [CrossRef]
- Panagopoulos, C.G. The disease ‘Tsilik marasi’ of grapevine: Its description and identification of the causal agent (Xanthomonas ampelina sp. nov.). Ann. De L’institut Phytopathol. Benaki 1969, 9, 59–81. [Google Scholar]
- Grasso, S.; Moller, W.J.; Refatti, E.; Magnano Di San Lio, G.; Granata, G. The bacterium Xanthomonas ampelina as causal agent of a grape decline in Sicily. Riv. Di Patol. Veg. 1979, 15, 91–106. [Google Scholar]
- Prunier, J.P.; Ridé, M.; Lafon, R.; Bullit, J. La nécrose bactérienne de la vigne. Comptes Rendus Académie Agric. France 1970, 56, 975–982. [Google Scholar]
- Erasmus, H.D.; Matthee, F.N.; Louw, H.A. A comparison between plant pathogenic species of Pseudomonas, Xanthomonas and Erwinia, with special reference to the bacterium responsible for bacterial blight of vines. Phytophylactica 1974, 6, 11–18. [Google Scholar]
- Lopez, M.M.; Gracia, M.; Sampayo, M. Studies on Xanthomonas ampelina Panagopoulos in Spain. In Proceedings of the 5th Congress of the Mediterranean Phytopathological Union, Patras, Greece, 21–27 September 1980; pp. 56–57. [Google Scholar]
- Peros, J.P.; Berger, G.; Ridé, M. Effect of grapevine cultivar, strain of Xylophilus ampelinus and culture medium on in vitro development of bacterial necrosis. Vitis 1995, 34, 189–190. [Google Scholar]
- Du Plessis, S.J. Bacterial Blight of Vines (Vlamsiekte) in South Africa Caused by Erwinia vitivora (Bacc.); Bulletin No. 214; Department of Agriculture and Forestry Science: Pretoria, South Africa, 1940; p. 105. [Google Scholar]
- Botha, W.J.; Serfontein, S.; Greyling, M.M.; Berger, D.K. Detection of Xylophilus ampelinus in grapevine cuttings using a nested polymerase chain reaction. Plant Pathol. 2001, 50, 515–526. [Google Scholar] [CrossRef]
- Willems, A.; Gillis, M.; Kersters, K.; Van Den Broecke, L.; De Ley, J. Transfer of Xanthomonas ampelina Panagopoulos 1969 to a new genus, Xylophilus gen. nov., as Xylophilus ampelinus (Panagopoulos 1969) comb. nov. Int. J. Syst. Bacteriol. 1987, 37, 422–430. [Google Scholar] [CrossRef]
- Lee, S.A.; Heo, J.; Kim, T.W.; Sang, M.K.; Song, J.; Soon-Wo Kwon, S.W.; Weon, H.Y. Xylophilus rhododendri sp. nov., isolated from flower of royal azalea, Rhododendron schlippenbachii. Curr. Microbiol. 2020, 77, 4160–4166. [Google Scholar] [CrossRef] [PubMed]
- Roberts, W.P. Grapevine Heat Treatment–Xanthomonas ampelina; Final report to Grape and Wine Research & Development Corporation; Wine Australia: Adelaide, Australia, 1993; p. 19. Available online: https://www.wineaustralia.com/getmedia/410a0c86-fcee-4259-acd2-c5c3c281041e/DPI-3V-Final-Report (accessed on 26 July 2022).
- Psallidas, P.G.; Argyropoulou, A. Effect of hot water treatment on Xylophilus ampelinus in dormant grape cuttings. In Proceedings of the 8th International Conference on Plant Pathogenic Bacteria, Versailles, France, 9–12 June 1992; INRA: Paris, France, 1994; Volume 66, pp. 993–998. [Google Scholar]
- EPPO. Xylophilus ampelinus. EPPO Datasheets on Pests Recommended for Regulation. 2022. Available online: https://gd.eppo.int (accessed on 26 July 2022).
- Sánchez-Hernández, E.; Buzón-Durán, L.; Langa-Lomba, N.; Casanova-Gascón, J.; Lorenzo-Vidal, B.; Martín-Gil, J.; Martín-Ramos, P. Characterization and Antimicrobial Activity of a Halophyte from the Asturian Coast (Spain): Limonium binervosum (G.E.Sm.) C.E.Salmon. Plants 2021, 10, 1852. [Google Scholar] [CrossRef] [PubMed]
- Grall, S.; Roulland, C.; Guillaumès, J.; Manceau, C. Bleeding sap and old wood are the two main sources of contamination of merging organs of vine plants by Xylophilus ampelinus, the causal agent of bacterial necrosis. Appl. Environ. Microbiol. 2005, 71, 8292–8300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perz, A.I.; Giles, C.B.; Brown, C.A.; Porter, H.; Roopnarinesingh, X.; Wren, J.D. MNEMONIC: MetageNomic Experiment Mining to create an OTU Network of Inhabitant Correlations. BMC Bioinform. 2019, 20, 96. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.C.; Iwasaki, W. MetaMetaDB: A Database and Analytic System for Investigating Microbial Habitability. PLoS ONE 2014, 9, e87126. [Google Scholar] [CrossRef] [PubMed]
- Chacón, F.I.; Sineli, P.E.; Mansilla, F.I.; Pereyra, M.M.; Diaz, M.A.; Volentini, S.I.; Poehlein, A.; Meinhardt, F.; Daniel, R.; Dib, J.R. Native Cultivable Bacteria from the Blueberry Microbiome as Novel Potential Biocontrol Agents. Microorganisms 2022, 10, 969. [Google Scholar] [CrossRef]
- Komatsu, T.; Shinmura, A.; Kondo, N. DNA type analysis to differentiate strains of Xylophilus ampelinus from Europe and Hokkaido, Japan. J. Gen. Plant Pathol. 2016, 82, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Fischer-Le Saux, M.; Bonneau, S.; Essakhi, S.; Manceau, C.; Jacques, M.-A. Aggressive emerging pathovars of Xanthomonas arboricola represent widespread epidemic clones that are distinct from poorly pathogenic strains, as revealed by multilocus sequence typing. Appl. Environ. Microbiol. 2015, 81, 4651–4668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, M.S.H.; Morgan, R.L.; Sarkar, S.F.; Wang, P.W.; Guttman, D.S. Phylogenetic Characterization of Virulence and Resistance Phenotypes of Pseudomonas syringae. Appl. Environ. Microbiol. 2005, 71, 5182–5191. [Google Scholar] [CrossRef] [Green Version]
- Cunty, A.; Poliakoff, F.; Rivoal, C.; Cesbron, S.; Fischer-Le Saux, M.; Lemaire, C.; Jacques, M.-A.; Manceau, C.; Vanneste, J.L. Characterization of Pseudomonas syringae pv. actinidiae (Psa) isolated from France and assignment of Psa biovar 4 to a de novo pathovar: Pseudomonas syringae pv. actinidifoliorum pv. nov. Plant Pathol. 2014, 64, 582–596. [Google Scholar] [CrossRef]
- Merda, D.; Briand, M.; Bosis, E.; Rousseau, C.; Portier, P.; Barret, M.; Jacques, M.-A.; Fischer-Le Saux, M. Ancestral acquisitions, gene flow and multiple evolutionary trajectories of the type three secretion system and effectors in Xanthomonas plant pathogens. Mol. Ecol. 2017, 26, 5939–5952. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Zhu, H.; Ruan, J.; Qian, W.; Fang, X.; Shi, Z.; Li, Y.; Li, S.; Shan, G.; Kristiansen, K.; et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010, 20, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 18, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Sardà Carbasse, J.; Peinado-Olarte, R.L.; Göker, M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acid Res. 2022, 50, D801–D807. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA 11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Pritchard, L.; Glover, R.H.; Humphris, S.; Elphinstone, J.G.; Toth, I.K. (2016) Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. Anal. Methods 2016, 8, 12–24. [Google Scholar] [CrossRef]
- Jullien, N. AmplifX 1.7.0; Aix-Marseille University, CNRS, INP, Institute of Neurophysiopathology: Marseille, France; Available online: https://inp.univ-amu.fr/en/amplifx-manage-test-and-design-your-primers-for-pcr (accessed on 26 July 2022).
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [Green Version]
- Lefort, V.; Desper, R.; Gascuel, O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 2015, 32, 2798–2800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farris, J.S. Estimating phylogenetic trees from distance matrices. Am. Nat. 1972, 106, 645–667. [Google Scholar] [CrossRef]
- Parkinson, N.; Cowie, C.; Heeney, J.; Stead, D. Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. Int. J. Syst. Evol. Microbiol. 2009, 59, 264–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manceau, C.; Charbit, E.; Lecerf, M.; Portier, P. Acidovorax valerianellae: Bacterial black spot of lamb’s lettuce. In Plant-Pathogenic Acidovorax Species; Burdman, S., Walcott, W., Eds.; APS Publications: Edinburgh, UK, 2018; pp. 121–130. [Google Scholar]
- Portier, P.; Pédron, J.; Taghouti, G.; Fischer-Le Saux, M.; Caullireau, E.; Bertrand, C.; Laurent, A.; Chawki, K.; Oulgazi, S.; Moumni, M.; et al. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int. J. Syst. Evol. Microbiol. 2019, 69, 3214–3223. [Google Scholar]
- Gonçalves, R.M.; Balbi-Peña, M.I.; Soman, J.M.; Maringoni, A.C.; Taghouti, G.; Fischer-Le Saux, M.; Portier, P. Genetic diversity of Curtobacterium flaccumfaciens revealed by multilocus sequence analysis. Eur. J. Plant Pathol. 2019, 154, 189–202. [Google Scholar] [CrossRef]
- Broders, K.; Aspin, A.; Bailey, J.; Chapman, T.; Portier, P.; Weir, B.S. Building More Resilient Culture Collections: A Call for Increased Deposits of Plant-Associated Bacteria. Microorganisms 2022, 10, 741. [Google Scholar] [CrossRef]
Isolate/Genome | Taxonomy | Isolate/MAG | Biotope | Biosample | Bioproject | Assembly | Total Length (bp) | Assembly Level |
---|---|---|---|---|---|---|---|---|
CECT 7646T | Xylophilus ampelinus | Isolate | Plant, Vitis vinifera | SAMN09074800 | PRJNA463320 | GCA_003217575.1 | 3731505 | Scaffold |
CCH5-B3 | Xylophilus ampelinus | Isolate | Biofilm, hospital ward | SAMN04299458 | PRJNA299404 | GCA_001556675.1 | 6019991 | Contig |
BgEED09 | Xylophilus ampelinus | Isolate | Human duodenum | SAMEA5664384 | PRJEB32184 | GCA_901875635.1 | 6174221 | Contig |
KACC 21265 | Xylophilus rhododendri | Isolate | Plant, Rhododendron schlippenbachii | SAMN13783577 | PRJNA600143 | GCA_009906855.1 | 5873400 | Complete Genome |
ASV27 | Xylophilus sp. | Isolate | Plant, Sarracenia purpurea | SAMN17004937 | PRJNA224116 | GCA_016428875.1 | 4734944 | Contig |
leaf220 | Xylophilus sp. | Isolate | Plant, Arabidopsis thaliana | SAMN04151686 | PRJNA297956 | GCA_001421705.1 | 4483623 | Scaffold |
Gw_UH_bin_252 | Xylophilus sp. | MAG | Wastewater treatment | SAMN18119505 | PRJNA524094 | GCA_017989255.1 | 1400660 | Scaffold |
Go_Prim_bin_55 | Xylophilus sp. | MAG | Wastewater treatment | SAMN18119707 | PRJNA524094 | GCA_017990095.1 | 2320559 | Scaffold |
Gw_Prim_bin_50 | Xylophilus sp. | MAG | Wastewater treatment | SAMN18119294 | PRJNA524094 | GCA_018005875.1 | 1282324 | Scaffold |
Gw_Inlet_bin_57 | Xylophilus sp. | MAG | Wastewater treatment | SAMN18119261 | PRJNA524094 | GCA_018006615.1 | 1897017 | Scaffold |
SP210_2 | Xylophilus sp. | MAG | Plant, rice | SAMEA8944525 | PRJEB45634 | GCA_913776965.1 | 4051675 | Contig |
SP51_3 | Xylophilus sp. | MAG | Plant, rice | SAMEA8944104 | PRJEB45634 | GCA_913777525.1 | 3038960 | Contig |
cluster_DBSCAN_round5_1 | Xylophilus sp. | MAG | Insect, Lagria villosa | SAMN12995593 | PRJNA531449 | GCA_009914555.1 | 4706822 | Contig |
Gene | Primer | Sequence 5’-3’ | Expected Size (bp) | Tm | |
---|---|---|---|---|---|
gyrB | gyrB_XyF | AGATGGACGACAAGCACGAG | 841 | 60 | |
gyrB_XyR | TTGGTCTGGCTGCTGAACTT | 60 | |||
30X | |||||
95 °C | 95 °C | 65 °C | 72 °C | 72 °C | 15 °C |
5′ | 30′′ | 30′′ | 30′′ | 5′ | ∞ |
Gene | Primer | Sequence 5’-3’ | Expected size (bp) | Tm | |
rpoD | rpoD-XyF | AAGGAACGCGCCTTGATGA | 767 | 60 | |
rpoD-XyR | CCGTAGCCTTCCTTGTCGTAG | 60 | |||
PCR Program | |||||
30X | |||||
95 °C | 95 °C | 58 °C | 72 °C | 72 °C | 15 °C |
5′ | 30′′ | 30′′ | 30′′ | 5′ | ∞ |
Strain | Size | Scaffolds | %GC | N50 | N50 BP | Coverage | CDS | NCBI Accession |
---|---|---|---|---|---|---|---|---|
CFBP 1192T | 3,736,570 | 85 | 67.8 | 9 | 138.681 | 225 | 3307 | JAMOFZ000000000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portier, P.; Taghouti, G.; Bertrand, P.-E.; Briand, M.; Dutrieux, C.; Lathus, A.; Fischer-Le Saux, M. Analysis of the Diversity of Xylophilus ampelinus Strains Held in CIRM-CFBP Reveals a Strongly Homogenous Species. Microorganisms 2022, 10, 1531. https://doi.org/10.3390/microorganisms10081531
Portier P, Taghouti G, Bertrand P-E, Briand M, Dutrieux C, Lathus A, Fischer-Le Saux M. Analysis of the Diversity of Xylophilus ampelinus Strains Held in CIRM-CFBP Reveals a Strongly Homogenous Species. Microorganisms. 2022; 10(8):1531. https://doi.org/10.3390/microorganisms10081531
Chicago/Turabian StylePortier, Perrine, Géraldine Taghouti, Paul-Emile Bertrand, Martial Briand, Cécile Dutrieux, Audrey Lathus, and Marion Fischer-Le Saux. 2022. "Analysis of the Diversity of Xylophilus ampelinus Strains Held in CIRM-CFBP Reveals a Strongly Homogenous Species" Microorganisms 10, no. 8: 1531. https://doi.org/10.3390/microorganisms10081531
APA StylePortier, P., Taghouti, G., Bertrand, P. -E., Briand, M., Dutrieux, C., Lathus, A., & Fischer-Le Saux, M. (2022). Analysis of the Diversity of Xylophilus ampelinus Strains Held in CIRM-CFBP Reveals a Strongly Homogenous Species. Microorganisms, 10(8), 1531. https://doi.org/10.3390/microorganisms10081531