Epidemiological Study on Salmonella Prevalence in Sow Herds Using Direct and Indirect Detection Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. The Farms and Animals
2.3. Diets
2.4. Biosecurity Check
2.5. Experimental Design
2.5.1. Gilt Integration
2.5.2. Peripartal Period
2.5.3. Piglet Rearing
2.6. Collection of the Samples
2.7. Salmonella Detection
2.7.1. Direct Detection Method
2.7.2. Indirect Detection Method
2.8. Statistical Analysis
3. Results
3.1. Biosecurity Check
3.2. Salmonella Prevalence
3.2.1. Farm A
3.2.2. Farm B
3.2.3. Farm C
3.2.4. Feed Samples
3.3. Salmonella Serovars of PCR-Positive Samples
3.4. Distribution of Frequencies and Agreement of Diagnostic Methods
4. Discussion
4.1. Epidemiological Situation on the Three Farms
4.1.1. Epidemiological Situation among the Gilts and Sows
4.1.2. Epidemiological Situation among the Piglets
4.2. Salmonella Serovars
4.3. Comparison of the Salmonella Detection Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19, e06971. [Google Scholar] [CrossRef]
- Heredia, N.; García, S. Animals as sources of food-borne pathogens: A review. Anim. Nutr. 2018, 4, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Robert-Koch-Institut. Infektionsepidemiologisches Jahrbuch Meldepflichtiger Krankheiten Für 2020; Robert Koch-Institut: Berlin, Germany, 2021. [Google Scholar]
- QS Qualität und Sicherheit GmbH. Leitfaden Und Programme Zum Monitoring Und Zur Reduzierung Von lebensmittelassoziierten Zoonoseerregern Im Rahmen Des QS-Prüfzeichens: I. Salmonellenmonitoring Und-Reduzierungsprogramm Für Die Schweinefleischerzeugung; QS Qualität und Sicherheit GmbH: Bonn, Germany, 2008; pp. 1–24. [Google Scholar]
- Merle, R.; Kösters, S.; May, T.; Portsch, U.; Blaha, T.; Kreienbrock, L. Serological Salmonella monitoring in German pig herds: Results of the years 2003–2008. Prev. Vet.-Med. 2011, 99, 229–233. [Google Scholar] [CrossRef] [PubMed]
- QS Qualität und Sicherheit GmbH. 20 Jahre QS: Salmonellenrisiko Um Über 70% Gesunken. Available online: https://www.q-s.de/pressemeldungen/20-jahre-qs-salmonellenrisiko-um-ueber-70-prozent.html (accessed on 3 June 2022).
- Bonardi, S. Salmonella in the pork production chain and its impact on human health in the European Union. Epidemiol. Infect. 2017, 145, 1513–1526. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Avilés, M.; Garrido-Estepa, M.; Álvarez, J.; de la Torre, A. Salmonella Surveillance Systems in Swine and Humans in Spain: A Review. Vet.-Sci. 2019, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Parker, E.M.; Parker, A.J.; Short, G.; O’Connor, A.M.; Wittum, T.E. Salmonella detection in commercially prepared livestock feed and the raw ingredients and equipment used to manufacture the feed: A systematic review and meta-analysis. Prev. Vet.-Med. 2022, 198, 105546. [Google Scholar] [CrossRef] [PubMed]
- Visscher, C.; Klein, G.; Verspohl, J.; Beyerbach, M.; Stratmann-Selke, J.; Kamphues, J. Serodiversity and serological as well as cultural distribution of Salmonella on farms and in abattoirs in Lower Saxony, Germany. Int. J. Food Microbiol. 2011, 146, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Wales, A.D.; Cook, A.J.C.; Davies, R.H. Producing Salmonella-free pigs: A review focusing on interventions at weaning. Vet.-Rec. 2011, 168, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Felin, E.; Hälli, O.; Heinonen, M.; Jukola, E.; Fredriksson-Ahomaa, M. Assessment of the feasibility of serological monitoring and on-farm information about health status for the future meat inspection of fattening pigs. Prev. Vet.-Med. 2019, 162, 76–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, J.; Dohoo, I.; Christensen, J.; Rajic, A. Factors influencing the prevalence of Salmonella spp. in swine farms: A meta-analysis approach. Prev. Vet.-Med. 2007, 81, 148–177. [Google Scholar] [CrossRef]
- Garrido, V.; Sánchez, S.; Román, B.S.; Fraile, L.; Migura-García, L.; Grilló, M.-J. Salmonella Infection in Mesenteric Lymph Nodes of Breeding Sows. Foodborne Pathog. Dis. 2019, 17, 411–417. [Google Scholar] [CrossRef]
- Wilhelm, E.; Hilbert, F.; Paulsen, P.; Smulders, F.J.M.; Rossmanith, W. Salmonella Diagnosis in Pig Production: Methodological Problems in Monitoring the Prevalence in Pigs and Pork. J. Food Prot. 2007, 70, 1246–1248. [Google Scholar] [CrossRef]
- Seybold, M.; Palzer, A.; Münster, A.; Müller, K.; Ritzmann, M.; Heinritzi, K. Possibilities and limits of a health monitoring programme for pigs. Prakt. Tierarzt 2010, 91, 245–248. [Google Scholar]
- Rao, T.N. Validation of analytical methods. In Calibration and Validation of Analytical Methods—A Sampling of Current Approaches; Intechopen: London, UK, 2018; pp. 131–141. [Google Scholar]
- Malorny, B.; Hoorfar, J. Toward Standardization of Diagnostic PCR Testing of Fecal Samples: Lessons from the Detection of Salmonellae in Pigs. J. Clin. Microbiol. 2005, 43, 3033–3037. [Google Scholar] [CrossRef] [Green Version]
- Correia-Gomes, C.; Leonard, F.; Graham, D. Description of control programmes for Salmonella in pigs in Europe. Progress to date? J. Food Saf. 2021, 41, e12916. [Google Scholar] [CrossRef]
- Turlewicz-Podbielska, H.; Włodarek, J.; Pomorska-Mól, M. Noninvasive strategies for surveillance of swine viral diseases: A review. J. Vet.-Diagn. Investig. 2020, 32, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Nollet, N.; Houf, K.; Dewulf, J.; de Kruif, A.; De Zutter, L.; Maes, D. Transmission of Salmonella from sows to piglets: A longitudinal study. In Proceedings of the 5th International Symposium on the Epidemiology and Control of Foodborne Pathogens in Pork (SAFEPORK 2003), Heraklion, Greek, 1–4 October 2003; pp. 144–146. [Google Scholar]
- Wilkins, W.; Rajić, A.; Waldner, C.; McFall, M.; Chow, E.; Muckle, A.; Rosengren, L. Distribution of Salmonella serovars in breeding, nursery, and grow-to-finish pigs, and risk factors for shedding in ten farrow-to-finish swine farms in Alberta and Saskatchewan. Can. J. Vet. Res. 2010, 74, 81–90. [Google Scholar]
- Davies, P.R.; Funk, J.A.; Morrow, W.E.M. Fecal shedding of Salmonella by gilts before and after introduction to a swine breeding farm. Swine Health Prod. 2000, 8, 25–29. [Google Scholar]
- Lurette, A.; Belloc, C.; Touzeau, S.; Hoch, T.; Seegers, H.; Fourichon, C. Modelling the prevalence of Salmonella carrier pigs at slaughtering age: Influence of management systems and of the Salmonella status of replacement gilts. In Proceedings of the Safepork 2007, Verona, Italy, 9–11 May 2007. [Google Scholar] [CrossRef]
- Nollet, N.; Houf, K.; Dewulf, J.; De Kruif, A.; De Zutter, L.; Maes, D. Salmonella in sows: A longitudinal study in farrow-to-finish pig herds. Vet. Res. 2005, 36, 645–656. [Google Scholar] [CrossRef] [Green Version]
- Funk, J.; Gebreyes, W.A. Risk factors associated with Salmonella prevalence on swine farms. J. Swine Health Prod. 2004, 12, 246–251. [Google Scholar]
- Laanen, M.; Beek, J.; Ribbens, S.; Vangroenweghe, F.; Maes, D.; Dewulf, J. Biosecurity on pig herds: Development of an on-line scoring system and the results of the first 99 participating herds. Vlaams Diergeneeskd. Tijdschr. 2010, 79, 302–306. [Google Scholar]
- Biocheck.UGent. Available online: https://biocheck.ugent.be/en (accessed on 8 July 2021).
- Van der Heijden, H.; Boleij, P.; Loeffen, W.; Bongers, J.; Van der Wolf, P.; Tielen, M. Development and validation of an indirect ELISA for the detection of antibodies against Salmonella in swine. In Proceedings of the 15th IPVS Congress, Birmingham, UK, 5–9 July 1998; p. 69. [Google Scholar]
- Belœil, P.; Chauvin, C.; Proux, K.; Rose, N.; Queguiner, S.; Eveno, E.; Houdayer, C.; Rose, V.; Fravalo, P.; Madec, F. Longitudinal serological responses to Salmonella enterica of growing pigs in a subclinically infected herd. Prev. Vet.-Med. 2003, 60, 207–226. [Google Scholar] [CrossRef]
- Bertschinger, H.; Geyer, H. Zur Blutentnahme und intravenösen Injektion beim Schwein. Schweiz. Arch. Tierheilkd. 1975, 117, 701–711. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization (ISO). ISO 6579-1:2017 Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella–Part 1: Detection of Salmonella spp.; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Sachs, L. Angewandte Statistik: Anwendung Statistischer Methoden; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Biocheck.UGent. Biosecurity Statistics for Pigs—Worldwide. Available online: https://biocheckgent.com/en/worldwide?species=1&questionnaire=57&country=world (accessed on 27 May 2022).
- Akil, L.; Ahmad, H.A.; Reddy, R.S. Effects of Climate Change on Salmonella Infections. Foodborne Pathog. Dis. 2014, 11, 974–980. [Google Scholar] [CrossRef] [Green Version]
- Wales, A.D.; Davies, R.H. Salmonella Vaccination in Pigs: A Review. Zoonoses Public Health 2017, 64, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bearson, B.L.; Bearson, S.M.D.; Brunelle, B.W.; O Bayles, D.; Lee, I.S.; Kich, J.D. Salmonella DIVA vaccine reduces disease, colonization and shedding due to virulent S. Typhimurium infection in swine. J. Med. Microbiol. 2017, 66, 651–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buch, J.-M.; Visscher, C.; zu Sundern, A.S.; Schulte-Wülwer, J.; Deermann, A.; Holling, C. Prevalence of Salmonella by Serological and Direct Detection Methods in Piglets from Inconspicuous, Conspicuous, and Vaccinated Sow Herds. Animals 2020, 10, 29. [Google Scholar] [CrossRef]
- van der Wolf, P.; Meijerink, M.; Libbrecht, E.; Tacken, G.; Gijsen, E.; Lillie-Jaschniski, K.; Schüller, V. Salmonella Typhimurium environmental reduction in a farrow-to-finish pig herd using a live attenuated Salmonella Typhimurium vaccine. Porc. Health Manag. 2021, 7, 43. [Google Scholar] [CrossRef]
- Loynachan, A.T.; Harris, D.L. Dose Determination for Acute Salmonella Infection in Pigs. Appl. Environ. Microbiol. 2005, 71, 2753–2755. [Google Scholar] [CrossRef] [Green Version]
- Österberg, J.; Wallgren, P. Effects of a challenge dose of Salmonella Typhimurium or Salmonella Yoruba on the patterns of excretion and antibody responses of pigs. Vet.-Rec. 2008, 162, 580–585. [Google Scholar] [CrossRef]
- Ivanek, R.; Österberg, J.; Gautam, R.; Lewerin, S.S. Salmonella Fecal Shedding and Immune Responses are Dose- and Serotype-Dependent in Pigs. PLoS ONE 2012, 7, e34660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, B.; Baggesen, D.; Bager, F.; Haugegaard, J.; Lind, P. The serological response to Salmonella serovars Typhimurium and Infantis in experimentally infected pigs. The time course followed with an indirect anti-LPS ELISA and bacteriological examinations. Vet. Microbiol. 1995, 47, 205–218. [Google Scholar] [CrossRef]
- Funk, J.; Davies, P.; Nichols, M. Longitudinal study of Salmonella enterica in growing pigs reared in multiple-site swine production systems. Vet.-Microbiol. 2001, 83, 45–60. [Google Scholar] [CrossRef]
- Bode, K. Serologische und Epdemiologische Untersuchungen zur Salmonellendynamik in Schweinebeständen für die Optimierung des Salmonellenmonitorings beim Schwein; Tieräztliche Hochschule Hannover: Hannover, Germany, 2007. [Google Scholar]
- Roesler, U.; Heller, P.; Waldmann, K.-H.; Truyen, U.; Hensel, A. Immunization of Sows in an Integrated Pig-breeding Herd using a Homologous Inactivated Salmonella Vaccine Decreases the Prevalence of Salmonella Typhimurium Infection in the Offspring. J. Vet.-Med. Ser. B 2006, 53, 224–228. [Google Scholar] [CrossRef]
- Kranker, S.; Alban, L.; Boes, J.; Dahl, J. Longitudinal Study of Salmonella enterica Serotype Typhimurium Infection in Three Danish Farrow-to-Finish Swine Herds. J. Clin. Microbiol. 2003, 41, 2282–2288. [Google Scholar] [CrossRef] [Green Version]
- Proux, K.; Houdayer, C.; Humbert, F.; Cariolet, R.; Rose, V.; Eveno, E.; Madec, F. Development of a complete ELISA using Salmonella lipopolysaccharides of various serogroups allowing to detect all infected pigs. Vet. Res. 2000, 31, 481–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zu Sundern, A.S.; Holling, C.; Rohn, K.; Schulte-Wülwer, J.; Deermann, A.; Visscher, C. Influence of colostrum supply on Salmonella spp. seroprevalence in piglet rearing and possibilities to increase colostrum production by optimised feeding. J. Appl. Anim. Nutr. 2020, 8, 83–91. [Google Scholar] [CrossRef]
- Zu Sundern, A.S.; Holling, C.; Rohn, K.; Schulte-Wülwer, J.; Deermann, A.; Visscher, C. Relationships between colostrum supply of suckling piglets and Salmonella prevalence in piglet rearing. Porc. Health Manag. 2018, 4, 9. [Google Scholar] [CrossRef]
- Hill, A.A.; Simmons, R.R.L.; Kelly, L.; Snary, E.L. A Farm Transmission Model for Salmonella in Pigs, Applicable to E.U. Member States. Risk Anal. 2016, 36, 461–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbrugghe, E.; Boyen, F.; Van Parys, A.; Van Deun, K.; Croubels, S.; Thompson, A.; Shearer, N.; Leyman, B.; Haesebrouck, F.; Pasmans, F. Stress induced Salmonella Typhimurium recrudescence in pigs coincides with cortisol induced increased intracellular proliferation in macrophages. Vet. Res. 2011, 42, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacy, M.; French, J. Effective broiler house clean out & disinfection techniques. Circ.-Coop. Ext. Serv. Univ. Ga. 1989, 815, 1–12. [Google Scholar]
- Belœil, P.-A.; Fravalo, P.; Fablet, C.; Jolly, J.-P.; Eveno, E.; Hascoet, Y.; Chauvin, C.; Salvat, G.; Madec, F. Risk factors for Salmonella enterica subsp. enterica shedding by market-age pigs in French farrow-to-finish herds. Prev. Vet.-Med. 2004, 63, 103–120. [Google Scholar] [CrossRef] [PubMed]
- Farzan, A.; Friendship, R.M.; Dewey, C.E.; Poppe, C.; Funk, J. Evaluation of the Risk Factors for Shedding Salmonella with or without Antimicrobial Resistance in Swine Using Multinomial Regression Method. Zoonoses Public Health 2010, 57, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Andres, V.M.; Davies, R.H. Biosecurity Measures to Control Salmonella and Other Infectious Agents in Pig Farms: A Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 317–335. [Google Scholar] [CrossRef]
- Roesner, P.; Eisenberg, T.; Hornstein, O.; Gebele, U.; Schulte-Wülwer, J.; Schulze-Horsel, T. Salmonellen beim Schwein—Beratungsempfehlungen der Schweinegesundheitsdienste; Ausarbeitung der SGD—Arbeitsgruppe „Salmonellen“: Hessen, Germany, 2020; pp. 1–62. [Google Scholar]
- van der Heijden, M.; van Dam, H.; Niewerth, D.; Frankena, K. Effectiveness of Salmonella control strategies in fattening pigs. In Proceedings of the SafePork 2005—Sixth International Symposium on the Epidemiology and Control of Foodborne Pathogens in Pork, Rohnert Park, CA, USA, 6–9 September 2005; pp. 145–148. [Google Scholar]
- Pires, A.; Funk, J.; Bolin, C. Risk factors associated with persistence of Salmonella shedding in finishing pigs. Prev. Vet.-Med. 2014, 116, 120–128. [Google Scholar] [CrossRef]
- Bernad-Roche, M.; Casanova-Higes, A.; Marín-Alcalá, C.; Cebollada-Solanas, A.; Mainar-Jaime, R. Salmonella Infection in Nursery Piglets and Its Role in the Spread of Salmonellosis to Further Production Periods. Pathogens 2021, 10, 123. [Google Scholar] [CrossRef] [PubMed]
- Casanova-Higes, A.; Alcalá, C.M.M.; Andrés-Barranco, S.; Cebollada-Solanas, A.; Alvarez, J.; Mainar-Jaime, R.C. Weaned piglets: Another factor to be considered for the control of Salmonella infection in breeding pig farms. Vet. Res. 2019, 50, 45. [Google Scholar] [CrossRef] [Green Version]
- Alarcón, L.V.; Allepuz, A.; Mateu, E. Biosecurity in pig farms: A review. Porc. Health Manag. 2021, 7, 5. [Google Scholar] [CrossRef]
- Malorny, B.; Paccassoni, E.; Fach, P.; Bunge, C.; Martin, A.; Helmuth, R. Diagnostic Real-Time PCR for Detection of Salmonella in Food. Appl. Environ. Microbiol. 2004, 70, 7046–7052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koyuncu, S.; Andersson, M.G.; Häggblom, P. Accuracy and Sensitivity of Commercial PCR-Based Methods for Detection of Salmonella enterica in Feed. Appl. Environ. Microbiol. 2010, 76, 2815–2822. [Google Scholar] [CrossRef] [Green Version]
- Larsen, S.T.; Mckean, J.D.; Hurd, H.S.; Rostagno, M.H.; Griffith, R.W.; Wesley, I.V. Impact of Commercial Preharvest Transportation and Holding on the Prevalence of Salmonella enterica in Cull Sows. J. Food Prot. 2003, 66, 1134–1138. [Google Scholar] [CrossRef] [PubMed]
- Scherer, K.; Szabó, I.; Rösler, U.; Appel, B.; Hensel, A.; Nöckler, K. Time Course of Infection with Salmonella Typhimurium and Its Influence on Fecal Shedding, Distribution in Inner Organs, and Antibody Response in Fattening Pigs. J. Food Prot. 2008, 71, 699–705. [Google Scholar] [CrossRef]
- Pires, A.F.A.; Funk, J.A.; Bolin, C.A. Longitudinal study of Salmonella shedding in naturally infected finishing pigs. Epidemiol. Infect. 2013, 141, 1928–1936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funk, J.A.; Davies, P.R.; Nichols, M.A. The Effect of Fecal Sample Weight on Detection of Salmonella enterica in Swine Feces. J. Vet.-Diagn. Investig. 2000, 12, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Arnold, M.E.; Cook, A.J.C.; Davies, R. A modelling approach to estimate the sensitivity of pooled faecal samples for isolation of Salmonella in pigs. J. R. Soc. Interface 2005, 2, 365–372. [Google Scholar] [CrossRef] [Green Version]
Parameter | Farm A | Farm B | Farm C | National Average (GER) |
---|---|---|---|---|
External | ||||
A—purchase of animals and semen | 96 | 84 | 100 | 89 |
B—transport of animals, carcasses, and excrements | 100 | 67 | 90 | 77 |
C—supply of feed, water, and objects | 57 | 47 | 67 | 47 |
D—human traffic | 100 | 88 | 100 | 72 |
E—vermin and bird control | 90 | 60 | 100 | 72 |
F—location of the farm | 80 | 0 | 90 | 52 |
External sum * (A–F) | 90 | 64 | 92 | 72 |
Internal | ||||
G—on-farm disease management | 80 | 80 | 100 | 64 |
H—farrowing and suckling period | 64 | 36 | 64 | 50 |
I—nursery unit | 100 | 86 | 36 | 71 |
J—fattening unit | - | 64 | 79 | 61 |
K—measures between production units | 68 | 36 | 64 | 41 |
L—cleaning and disinfection | 75 | 50 | 85 | 55 |
Internal sum * (G–L) | 76 | 54 | 70 | 53 |
External + internal sum (A–L) | 83 | 59 | 81 | 63 |
Time Point | Direct | Indirect (Serum) | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Pos. Samples/% | Average OD | Pos. Samples/% | ||||||||
No. | Week | Event | Bs | f | OD15 | OD40 | bs-f | bs-OD15 | bs-OD40 | |
Gilt integration | ||||||||||
n | 144 | 90 | 234 | |||||||
1 | −1 | Pre-housing | 1/4.2 | - | - | - | - | - | - | - |
2 | 0 | Housing | 5/20.8 | 0/0.0 | 19.7 | 51/65.4 | 9/11.5 | 0.0134 | 0.0001 | 0.3087 |
3 | 2 | Half of quar. | 8/33.3 | - | - | - | - | - | - | - |
4 | 4 | End of quar. | 11/45.8 | 0/0.0 | 117.2 | 78/100.0 | 72/92.3 | <0.0001 | <0.0001 | <0.0001 |
5 | 5 | Moving to m.c. | 2/8.3 | 0/0.0 | - | - | - | 0.1929 | - | - |
6 | 8 | End | 4/16.7 | - | 131.5 | 78/100.0 | 77/98.3 | - | <0.0001 | <0.0001 |
Total gilts | 31/21.5 | 0/0.0 | - | 207/88.5 | 158/67.5 | - | - | - | ||
Peripartal | ||||||||||
n | 160 | - | 320 | |||||||
1 | −1 | Pre-housing | 0/0.0 | - | 58.4 | 67/83.8 | 40/50.0 | - | <0.0001 | <0.0001 |
2 | 1 | Farrowing | - | - | 47.8 | 188/78.3 | 120/50.0 | - | - | - |
3 | 3 | Weaning | 1/1.3 | - | - | - | - | - | - | - |
Total peripartal | 1/0.6 | - | - | 255/79.7 | 160/50.0 | - | - | - | ||
Piglet rearing | ||||||||||
n | 320 | 224 | ||||||||
1 | −1 | Pre-housing | 31/48.4 | - | - | - | - | - | - | - |
2 | 0 | Housing | 18/28.1 | - | - | - | - | - | - | - |
3 | 3 | Midpoint | 44/68.8 | - | - | - | - | - | - | - |
4 | 7 | Before moving out | 33/51.6 | - | 20.0 | 90/40.2 | 39/17.4 | - | 0.1044 | <0.0001 |
5 | 8 | After moving out | 34/53.1 | - | - | - | - | - | - | - |
Total piglets | 160/50.0 | - | - | 90/40.2 | 39/17.4 | - | - | - | ||
n | 624 | 90 | 778 | 778 | ||||||
Total farm A | 192/30.8 | 0/0.0 | 552/71.0 | 357/45.9 |
Time Point | Direct | Indirect (Serum) | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Pos. Samples/% | Average OD | Pos. Samples/% | ||||||||
No. | Week | Event | bs | f | OD15 | OD40 | bs-f | bs-OD15 | bs-OD40 | |
Gilt integration | ||||||||||
n | 36 | 85 | 208 | |||||||
1 | −1 | Pre-housing | 0/0.0 | - | - | - | - | - | - | - |
2 | 0 | Housing | 1/16.7 | 1/3.3 | 35.1 | 53/75.7 | 23/32.9 | 0.3095 | 0.0068 | 0.6582 |
3 | 2 | Half of quar. | 1/16.7 | - | - | - | - | - | - | - |
4 | 4 | End of quar. | 0/0.0 | 2/6.7 | 47.8 | 63/91.3 | 35/50.7 | 1.0000 | <0.0001 | 0.0271 |
5 | 5 | Moving to m.c. | 0/0.0 | 0/0.0 | - | - | - | - | - | - |
6 | 8 | End | 0/0.0 | - | 40.4 | 58/84.1 | 30/43.5 | - | <0.0001 | 0.0752 |
Total gilts | 2/5.6 | 3/3.5 | - | 174/83.7 | 88/42.3 | - | - | - | ||
Peripartal | ||||||||||
n | 160 | - | 312 | |||||||
1 | −1 | Pre-housing | 4/5.0 | - | 40.8 | 46/59.0 | 13/16.7 | - | <0.0001 | 0.0180 |
2 | 1 | Farrowing | - | - | 24.6 | 188/80.8 | 45/19.2 | - | - | - |
3 | 4 | Weaning | 1/1.3 | - | - | - | - | - | - | |
Total peripartal | 5/3.1 | - | - | 234/75.0 | 58/18.6 | - | - | - | ||
Piglet rearing | ||||||||||
n | 120 | - | 144 | |||||||
1 | −1 | Pre-housing | 10/41.7 | - | - | - | - | - | - | - |
2 | 0 | Housing | 8/33.3 | - | - | - | - | - | - | - |
3 | 4 | Midpoint | 21/87.5 | - | - | - | - | - | - | - |
4 | 7 | Before moving out | 21/87.5 | - | 51.8 | 111/77.1 | 78/54.2 | - | 0.2496 | 0.0021 |
5 | 8 | After moving out | 16/66.7 | - | - | - | - | - | - | - |
Total piglets | 76/63.3 | - | - | 111/77.1 | 78/54.2 | - | - | - | ||
n | 316 | 85 | 664 | 664 | ||||||
Total farm B | 83/26.3 | 3/3.5 | 519/78.2 | 224/33.7 |
Time Point | Direct | Indirect (Serum) | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Pos. Samples/% | Average OD | Pos. Samples/% | ||||||||
No. | Week | Event | bs | f | OD15 | OD40 | bs-f | bs-OD15 | bs-OD40 | |
Gilt integration | ||||||||||
n | 144 | 90 | 234 | |||||||
1 | −1 | Pre-housing | 0/0.0 | - | - | - | - | - | - | - |
2 | 0 | Housing | 4/16.7 | 0/0.0 | 23.9 | 48/61.5 | 10/12.8 | 0.0336 | 0.0001 | 0.7352 |
3 | 2 | Half of quar. | 4/16.7 | - | - | - | - | - | - | - |
4 | 4 | End of quar. | 9/37.5 | 5/16.7 | 38.2 | 48/61.5 | 20/25.6 | 0.0826 | 0.0381 | 0.2601 |
5 | 5 | Moving to m.c. | 18/75.0 | 8/26.7 | - | - | - | 0.0004 | - | - |
6 | 8 | End | 9/37.5 | - | 89.1 | 77/98.7 | 62/79.5 | - | <0.0001 | <0.0001 |
Total gilts | 44/30.6 | 13/14.4 | - | 173/73.9 | 92/39.3 | - | - | - | ||
Peripartal | ||||||||||
n | 156 | - | 316 | |||||||
1 | −1 | Pre-housing | 3/3.8 | - | 76.9 | 73/92.4 | 55/69.6 | - | <0.0001 | <0.0001 |
2 | 1 | Farrowing | - | - | 67.4 | 199/84.0 | 157/66.2 | - | - | - |
3 | 4 | Weaning | 17/21.8 | - | - | - | - | - | - | |
Total peripartal | 20/12.8 | - | - | 272/86.1 | 212/67.1 | - | - | - | ||
Piglet rearing | ||||||||||
n | 294 | - | 228 | |||||||
1 | −1 | Pre-housing 1 | 0/0.0 | - | - | - | - | - | - | - |
2 | 0 | Housing 1 | 11/26.2 | - | - | - | - | - | - | - |
3 | 3 | Midpoint | 2/4.8 | - | - | - | - | - | - | - |
3a | 3 | Pre-housing 2 | 0/0.0 | - | - | - | - | - | - | |
3b | 4 | Housing 2 | 3/7.1 | - | - | - | - | - | - | - |
4 | 6 | Before moving out | 1/2.4 | - | 3.6 | 10/4.4 | 2/0.9 | - | 0.7028 | 0.3991 |
5 | 7 | After moving out | 0/0.0 | - | - | - | - | - | - | - |
Total piglets | 17/5.8 | - | - | 10/4.4 | 2/0.9 | - | - | - | ||
n | 594 | 90 | 778 | 778 | ||||||
Total farm C | 81/13.6 | 13/14.4 | 455/58.5 | 306/39.3 |
Subunit | Kappa | |||||
---|---|---|---|---|---|---|
Boot Swab | Feces | OD15 | OD40 | |||
Gilts Integration | p-value McNemar test | Boot swab | −0.20 | 0.56 | 0.21 | |
Feces | <0.0001 | 0.68 | 0.32 | |||
OD15 | 0.0023 | <0.0001 | - | |||
OD40 | <0.0001 | <0.0001 | - | |||
Peripartal | p-value McNemar test | Boot swab | - | 0.69 | 0.32 | |
Feces | - | - | - | |||
OD15 | <0.0001 | - | - | |||
OD40 | <0.0001 | - | - | |||
Piglet Rearing | p-value McNemar test | Boot swab | - | 0.01 | −0.15 | |
Feces | - | - | - | |||
OD15 | <0.0001 | - | - | |||
OD40 | <0.0001 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hollmann, I.; Lingens, J.B.; Wilke, V.; Homann, C.; Teich, K.; Buch, J.; Chuppava, B.; Visscher, C. Epidemiological Study on Salmonella Prevalence in Sow Herds Using Direct and Indirect Detection Methods. Microorganisms 2022, 10, 1532. https://doi.org/10.3390/microorganisms10081532
Hollmann I, Lingens JB, Wilke V, Homann C, Teich K, Buch J, Chuppava B, Visscher C. Epidemiological Study on Salmonella Prevalence in Sow Herds Using Direct and Indirect Detection Methods. Microorganisms. 2022; 10(8):1532. https://doi.org/10.3390/microorganisms10081532
Chicago/Turabian StyleHollmann, Isabell, Jan Berend Lingens, Volker Wilke, Christian Homann, Klaus Teich, Juhle Buch, Bussarakam Chuppava, and Christian Visscher. 2022. "Epidemiological Study on Salmonella Prevalence in Sow Herds Using Direct and Indirect Detection Methods" Microorganisms 10, no. 8: 1532. https://doi.org/10.3390/microorganisms10081532
APA StyleHollmann, I., Lingens, J. B., Wilke, V., Homann, C., Teich, K., Buch, J., Chuppava, B., & Visscher, C. (2022). Epidemiological Study on Salmonella Prevalence in Sow Herds Using Direct and Indirect Detection Methods. Microorganisms, 10(8), 1532. https://doi.org/10.3390/microorganisms10081532