Breakthrough Infections: A Challenge towards Measles Elimination?
Abstract
:1. Introduction
2. Measles Vaccines and Immunization Programs
3. Measles Virus Infection and Vaccine Failure
Study | Measles Circulation Level | Study Period | Region/Country | Breakthrough Cases (%) |
---|---|---|---|---|
Cherry et al. (2018) [32] | Post elimination | 2000–2015 | California | 20 |
Sundell et al. (2019) [35] | Post elimination | 2017–2018 | Gothenburg, Sweden | 57 |
Augusto et al. (2019) [38] | Post elimination | 2017 | Portugal | 37 |
López–Perea et al. (2021) [33] | Post elimination | 2014–2020 | Spain | 14 |
Richard et al. (2009) [39] | Endemic | 2006–2009 | Switzerland | 7 |
Risco–Risco et al. (2017) [34] | Endemic | 2003–2014 | Spain | 3 |
Pacenti et al. (2019) [18] | Endemic | 2017–2018 | Veneto, Italy | 3 |
Bianchi et al. (2022) [17] | Endemic | 2017–2021 | Lombardy, Italy | 8 |
4. Vaccine Failure Classification
5. Clinical Manifestations of Breakthrough Cases and Diagnostic Challenges
6. Onward Transmission from Breakthrough Cases
7. Booster Doses and Catch-Up Vaccination
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Measles. Available online: https://www.who.int/news-room/fact-sheets/detail/measles (accessed on 21 May 2022).
- Moss, W.J.; Griffin, D.E. Global Measles Elimination. Nat. Rev. Microbiol. 2006, 4, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Rima, B.; Balkema-Buschmann, A.; Dundon, W.G.; Duprex, P.; Easton, A.; Fouchier, R.; Kurath, G.; Lamb, R.; Lee, B.; Rota, P.; et al. ICTV Virus Taxonomy Profile: Paramyxoviridae. J. Gen. Virol. 2019, 100, 1593–1594. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Manual for the Laboratory Diagnosis of Measles and Rubella Virus Infection; WHO/IVB/07.01; World Health Organization: Geneva, Switzerland, 2007.
- Minnich, L.L.; Goodenough, F.; Ray, C.G. Use of Immunofluorescence to Identify Measles Virus Infections. J. Clin. Microbiol. 1991, 29, 1148–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Guidelines for Measles and Rubella Outbreak Investigation and Response in the WHO European Region; World Health Organization: Geneva, Switzerland, 2013; p. 39.
- Aylward, B.; Hennessey, K.A.; Zagaria, N.; Olivé, J.M.; Cochi, S. When Is a Disease Eradicable? 100 Years of Lessons Learned. Am. J. Public Health 2000, 90, 1515–1520. [Google Scholar]
- Global Vaccine Action Plan 2011–2020. Available online: https://www.who.int/publications-detail-redirect/global-vaccine-action-plan-2011-2020 (accessed on 13 July 2022).
- Global Measles and Rubella Strategic Plan: 2012. Available online: https://www.who.int/publications-detail-redirect/9789241503396 (accessed on 13 July 2022).
- Measles and Rubella Strategic Framework: 2021–2030. Available online: https://www.who.int/publications-detail-redirect/measles-and-rubella-strategic-framework-2021-2030 (accessed on 17 May 2022).
- Hashiguchi, T.; Maenaka, K.; Yanagi, Y. Measles Virus Hemagglutinin: Structural Insights into Cell Entry and Measles Vaccine. Front. Microbiol. 2011, 2, 247. [Google Scholar] [CrossRef] [Green Version]
- Baldo, A.; Galanis, E.; Tangy, F.; Herman, P. Biosafety Considerations for Attenuated Measles Virus Vectors Used in Virotherapy and Vaccination. Hum. Vaccines Immunother. 2016, 12, 1102–1116. [Google Scholar] [CrossRef] [Green Version]
- Ciceri, G.; Canuti, M.; Bianchi, S.; Gori, M.; Piralla, A.; Colzani, D.; Libretti, M.; Frati, E.R.; Baggieri, M.; Lai, A.; et al. Genetic Variability of the Measles Virus Hemagglutinin Gene in B3 Genotype Strains Circulating in Northern Italy. Infect. Genet. Evol. 2019, 75, 103943. [Google Scholar] [CrossRef]
- Woelk, C.H.; Jin, L.; Holmes, E.C.; Brown, D.W.G.Y. Immune and Artificial Selection in the Haemagglutinin (H) Glycoprotein of Measles Virus. J. Gen. Virol. 2001, 82, 2463–2474. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, Y.; Zhu, Z.; Liu, C.; Mao, N.; Ji, Y.; Wang, H.; Jiang, X.; Li, C.; Tang, W.; et al. Genetic Characterization of the Hemagglutinin Genes of Wild-Type Measles Virus Circulating in China, 1993–2009. PLoS ONE 2013, 8, e73374. [Google Scholar] [CrossRef]
- Bianchi, S.; Canuti, M.; Ciceri, G.; Gori, M.; Colzani, D.; Dura, M.; Pennati, B.M.; Baggieri, M.; Magurano, F.; Tanzi, E.; et al. Molecular Epidemiology of B3 and D8 Measles Viruses through Hemagglutinin Phylogenetic History. Int. J. Mol. Sci. 2020, 21, 4435. [Google Scholar] [CrossRef]
- Bianchi, S.; Gori, M.; Fappani, C.; Ciceri, G.; Canuti, M.; Colzani, D.; Dura, M.; Terraneo, M.; Lamberti, A.; Baggieri, M.; et al. Characterization of Vaccine Breakthrough Cases during Measles Outbreaks in Milan and Surrounding Areas, Italy, 2017–2021. Viruses 2022, 14, 1068. [Google Scholar] [CrossRef]
- Pacenti, M.; Maione, N.; Lavezzo, E.; Franchin, E.; Dal Bello, F.; Gottardello, L.; Barzon, L. Measles Virus Infection and Immunity in a Suboptimal Vaccination Coverage Setting. Vaccines 2019, 7, 199. [Google Scholar] [CrossRef] [Green Version]
- Moss, W.J. Measles. Lancet 2017, 390, 2490–2502. [Google Scholar] [CrossRef]
- WHO Recommendations for Routine Immunization—Summary Tables. Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/policies/who-recommendations-for-routine-immunization---summary-tables (accessed on 12 June 2022).
- Panum, P.L. Observations Made During the Epidemic of Measles on the Faroe Islands in the Year 1846. JAMA 1940, 115, 1747. [Google Scholar] [CrossRef]
- Krugman, S. Present Status of Measles and Rubella Immunization in the United States: A Medical Progress Report. J. Pediatr. 1977, 90, 1–12. [Google Scholar] [CrossRef]
- Measles, Mumps, and Rubella (MMR) Vaccination|CDC. Available online: https://www.cdc.gov/vaccines/vpd/mmr/public/index.html (accessed on 21 May 2022).
- Muhoza, P.; Danovaro-Holliday, M.C.; Diallo, M.S.; Murphy, P.; Sodha, S.V.; Requejo, J.H.; Wallace, A.S. Routine Vaccination Coverage—Worldwide, 2020. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1495–1500. [Google Scholar] [CrossRef]
- World Health Organization. Weekly Epidemiological Record; World Health Organization: Geneva, Switzerland, 2020; Volume 95, pp. 585–608.
- UNICEF and WHO Warn of Perfect Storm of Conditions for Measles Outbreaks, Affecting Children. Available online: https://www.who.int/news/item/27-04-2022-unicef-and-who-warn-of--perfect-storm--of-conditions-for-measles-outbreaks--affecting-children (accessed on 12 June 2022).
- Cherry, J.D.; Feigin, R.D.; Lobes, L.A.; Hinthorn, D.R.; Shackelford, P.G.; Shirley, R.H.; Lins, R.D.; Choi, S.C. Urban Measles in the Vaccine Era: A Clinical, Epidemiologic, and Serologic Study. J. Pediatr. 1972, 81, 217–230. [Google Scholar] [CrossRef]
- Cherry, J.D.; Feigin, R.D.; Shackelford, P.G.; Hinthorn, D.R.; Schmidt, R.R. A Clinical and Serologic Study of 103 Children with Measles Vaccine Failure. J. Pediatr. 1973, 82, 802–808. [Google Scholar] [CrossRef]
- Plotkin, S.A. Failures of Protection by Measles Vaccine. J. Pediatr. 1973, 82, 908–911. [Google Scholar] [CrossRef]
- LeBaron, C.W.; Beeler, J.; Sullivan, B.J.; Forghani, B.; Bi, D.; Beck, C.; Audet, S.; Gargiullo, P. Persistence of Measles Antibodies after 2 Doses of Measles Vaccine in a Postelimination Environment. Arch. Pediatr. Adolesc. Med. 2007, 161, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Arima, Y.; Oishi, K. Letter to the Editor: Measles Cases among Fully Vaccinated Persons. Eurosurveillance 2018, 23, 1800449. [Google Scholar] [CrossRef] [PubMed]
- Cherry, J.D.; Zahn, M. Clinical Characteristics of Measles in Previously Vaccinated and Unvaccinated Patients in California. Clin. Infect. Dis. 2018, 67, 1315–1319. [Google Scholar] [CrossRef] [Green Version]
- López-Perea, N.; Fernández-García, A.; Echevarría, J.E.; de Ory, F.; Pérez-Olmeda, M.; Masa-Calles, J. Measles in Vaccinated People: Epidemiology and Challenges in Surveillance and Diagnosis in the Post-Elimination Phase. Spain, 2014–2020. Viruses 2021, 13, 1982. [Google Scholar] [CrossRef]
- Risco-Risco, C.; Masa-Calles, J.; López-Perea, N.; Echevarría, J.E.; Rodríguez-Caravaca, G. Epidemiology of Measles in Vaccinated People, Spain 2003-2014. Enferm. Infect. Microbiol. Clin. 2017, 35, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Sundell, N.; Dotevall, L.; Sansone, M.; Andersson, M.; Lindh, M.; Wahlberg, T.; Tyrberg, T.; Westin, J.; Liljeqvist, J.-Å.; Bergström, T.; et al. Measles Outbreak in Gothenburg Urban Area, Sweden, 2017 to 2018: Low Viral Load in Breakthrough Infections. Eurosurveillance 2019, 24, 1900114. [Google Scholar] [CrossRef]
- Mossong, J.; Muller, C.P. Modelling Measles Re-Emergence as a Result of Waning of Immunity in Vaccinated Populations. Vaccine 2003, 21, 4597–4603. [Google Scholar] [CrossRef]
- Markowitz, L.E.; Preblud, S.R.; Fine, P.E.; Orenstein, W.A. Duration of Live Measles Vaccine-Induced Immunity. Pediatr. Infect. Dis. J. 1990, 9, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Augusto, G.F.; Silva, A.; Pereira, N.; Fernandes, T.; Leça, A.; Valente, P.; Calé, E.; Aguiar, B.A.; Martins, A.; Palminha, P.; et al. Report of Simultaneous Measles Outbreaks in Two Different Health Regions in Portugal, February to May 2017: Lessons Learnt and Upcoming Challenges. Eurosurveillance 2019, 24, 1800026. [Google Scholar] [CrossRef]
- Richard, J.L.; Spicher, V.M. Large Measles Epidemic in Switzerland from 2006 to 2009: Consequences for the Elimination of Measles in Europe. Eurosurveillance 2009, 14, 19443. [Google Scholar] [CrossRef]
- World Health Organization. Manual for the Laboratory-Based Surveillance of Measles, Rubella, and Congenital Rubella Syndrome; World Health Organization: Geneva, Switzerland, 2018.
- Rota, J.S.; Hickman, C.J.; Sowers, S.B.; Rota, P.A.; Mercader, S.; Bellini, W.J. Two Case Studies of Modified Measles in Vaccinated Physicians Exposed to Primary Measles Cases: High Risk of Infection but Low Risk of Transmission. J. Infect. Dis. 2011, 204 (Suppl. S1), S559–S563. [Google Scholar] [CrossRef]
- Hahné, S.J.M.; Nic Lochlainn, L.M.; van Burgel, N.D.; Kerkhof, J.; Sane, J.; Yap, K.B.; van Binnendijk, R.S. Measles Outbreak Among Previously Immunized Healthcare Workers, the Netherlands, 2014. J. Infect. Dis. 2016, 214, 1980–1986. [Google Scholar] [CrossRef]
- Hubiche, T.; Brazier, C.; Vabret, A.; Reynaud, S.; Roudiere, L.; del Giudice, P. Measles Transmission in a Fully Vaccinated Closed Cohort: Data From a Nosocomial Clustered Cases in a Teenage Psychiatric Unit. Pediatr. Infect. Dis. J. 2019, 38, e230. [Google Scholar] [CrossRef]
- de Oliveira, S.A.; Jin, L.; Siqueira, M.M.; Cohen, B.J. Atypical Measles in a Patient Twice Vaccinated against Measles: Transmission from an Unvaccinated Household Contact. Vaccine 2000, 19, 1093–1096. [Google Scholar] [CrossRef]
- Wiedermann, U.; Garner-Spitzer, E.; Wagner, A. Primary Vaccine Failure to Routine Vaccines: Why and What to Do? Hum. Vaccines Immunother. 2016, 12, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Javelle, E.; Colson, P.; Parola, P.; Raoult, D. Measles, the Need for a Paradigm Shift. Eur. J. Epidemiol. 2019, 34, 897–915. [Google Scholar] [CrossRef]
- Sniadack, D.H.; Crowcroft, N.S.; Durrheim, D.N.; Rota, P.A. Roadmap to Elimination—Standard Measles and Rubella Surveillance. Wkly. Epidemiol. Rec. 2017, 9, 10–92. [Google Scholar]
- Pannuti, C.S.; Morello, R.J.; de Moraes, J.C.; Curti, S.P.; Afonso, A.M.S.; Camargo, M.C.C.; de Souza, V.A.U.F. Identification of Primary and Secondary Measles Vaccine Failures by Measurement of Immunoglobulin G Avidity in Measles Cases during the 1997 São Paulo Epidemic. Clin. Vaccine Immunol. 2004, 11, 119–122. [Google Scholar] [CrossRef] [Green Version]
- Mercader, S.; Garcia, P.; Bellini, W.J. Measles Virus IgG Avidity Assay for Use in Classification of Measles Vaccine Failure in Measles Elimination Settings. Clin. Vaccine Immunol. 2012, 19, 1810–1817. [Google Scholar] [CrossRef] [Green Version]
- Moss, W. Measles in Vaccinated Individuals and the Future of Measles Elimination. Clin. Infect. Dis. 2018, 67, 1320–1321. [Google Scholar] [CrossRef]
- Pinkbook: Measles|CDC. Available online: https://www.cdc.gov/vaccines/pubs/pinkbook/meas.html (accessed on 3 June 2022).
- Ramsay, M.; Brown, K. Guest Editorial: The Public Health Implications of Secondary Measles Vaccine Failure. J. Prim. Health Care 2013, 5, 92. [Google Scholar] [CrossRef]
- Measles Vaccines: WHO Position Paper—April 2017. Available online: https://www.who.int/publications-detail-redirect/WER9217 (accessed on 26 February 2022).
- Immunisation and Childhood Vaccination—European Centre for Disease Prevention and Control. Available online: https://www.ecdc.europa.eu/en/all-topics-z/measles/prevention-and-control/immunisation-and-childhood-vaccination (accessed on 3 June 2022).
- Atrasheuskaya, A.V.; Kulak, M.V.; Neverov, A.A.; Rubin, S.; Ignatyev, G.M. Measles Cases in Highly Vaccinated Population of Novosibirsk, Russia, 2000–2005. Vaccine 2008, 26, 2111–2118. [Google Scholar] [CrossRef]
- Cheng, V.C.C.; Wong, S.-C.; Wong, S.C.Y.; Sridhar, S.; Chen, J.H.K.; Yip, C.C.Y.; Hung, D.L.L.; Li, X.; Chuang, V.W.M.; Tsang, O.T.Y.; et al. Measles Outbreak from Hong Kong International Airport to the Hospital Due to Secondary Vaccine Failure in Healthcare Workers. Infect. Control Hosp. Epidemiol. 2019, 40, 1407–1415. [Google Scholar] [CrossRef]
- Mathias, R.G.; Meekison, W.G.; Arcand, T.A.; Schechter, M.T. The Role of Secondary Vaccine Failures in Measles Outbreaks. Am. J. Public Health 1989, 79, 475–478. [Google Scholar] [CrossRef] [Green Version]
- Rosen, J.B.; Rota, J.S.; Hickman, C.J.; Sowers, S.B.; Mercader, S.; Rota, P.A.; Bellini, W.J.; Huang, A.J.; Doll, M.K.; Zucker, J.R.; et al. Outbreak of Measles Among Persons With Prior Evidence of Immunity, New York City, 2011. Clin. Infect. Dis. 2014, 58, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
- Defay, F.; De Serres, G.; Skowronski, D.M.; Boulianne, N.; Ouakki, M.; Landry, M.; Brousseau, N.; Ward, B.J. Measles in Children Vaccinated with 2 Doses of MMR. Pediatrics 2013, 132, e1126–e1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edmonson, M.B.; Addiss, D.G.; McPherson, J.T.; Berg, J.L.; Circo, S.R.; Davis, J.P. Mild Measles and Secondary Vaccine Failure During a Sustained Outbreak in a Highly Vaccinated Population. JAMA 1990, 263, 2467–2471. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, M.; Hickman, C.J.; Colley, H.; Arciuolo, R.J.; Mahle, C.E.; Deocharan, B.; Siemetzki-Kapoor, U.; Zucker, J.R.; Rosen, J.B. Measles Infection in Persons with Secondary Vaccine Failure, New York City, 2018–2019. Vaccine 2021, 39, 5346–5350. [Google Scholar] [CrossRef] [PubMed]
- Helfand, R.F.; Kim, D.K.; Gary, H.E.; Edwards, G.L.; Bisson, G.P.; Papania, M.J.; Heath, J.L.; Schaff, D.L.; Bellini, W.J.; Redd, S.C.; et al. Nonclassic Measles Infections in an Immune Population Exposed to Measles during a College Bus Trip. J. Med. Virol. 1998, 56, 337–341. [Google Scholar] [CrossRef]
- Coleman, K.P.; Markey, P.G. Measles Transmission in Immunized and Partially Immunized Air Travellers. Epidemiol. Infect. 2010, 138, 1012–1015. [Google Scholar] [CrossRef]
- Sheppeard, V.; Forssman, B.; Ferson, M.J.; Moreira, C.; Campbell-Lloyd, S.; Dwyer, D.E.; McAnulty, J.M. Vaccine Failures and Vaccine Effectiveness in Children during Measles Outbreaks in New South Wales, March-May 2006. Commun. Dis. Intell. Q. Rep. 2009, 33, 21–26. [Google Scholar]
- Hickman, C.J.; Hyde, T.B.; Sowers, S.B.; Mercader, S.; McGrew, M.; Williams, N.J.; Beeler, J.A.; Audet, S.; Kiehl, B.; Nandy, R.; et al. Laboratory Characterization of Measles Virus Infection in Previously Vaccinated and Unvaccinated Individuals. J. Infect. Dis. 2011, 204 (Suppl. S1), S549–S558. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.; Klein, R.; Popescu, S.; Rose, K.; Kretschmer, M.; Carrigan, A.; Trembath, F.; Koski, L.; Zabel, K.; Ostdiek, S.; et al. Lack of Measles Transmission to Susceptible Contacts from a Health Care Worker with Probable Secondary Vaccine Failure—Maricopa County, Arizona, 2015. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 832–833. [Google Scholar] [CrossRef] [Green Version]
- Santibanez, S.; Prosenc, K.; Lohr, D.; Pfaff, G.; Jordan Markocic, O.; Jordan, O.; Mankertz, A. Measles Virus Spread Initiated at International Mass Gatherings in Europe, 2011. Eurosurveillance 2014, 19, 20891. [Google Scholar] [CrossRef] [Green Version]
- Seto, J.; Ikeda, T.; Tanaka, S.; Komabayashi, K.; Matoba, Y.; Suzuki, Y.; Takeuchi, S.; Yamauchi, T.; Mizuta, K. Detection of Modified Measles and Super-Spreader Using a Real-Time Reverse Transcription PCR in the Largest Measles Outbreak, Yamagata, Japan, 2017 in Its Elimination Era. Epidemiol. Infect. 2018, 146, 1707–1713. [Google Scholar] [CrossRef] [Green Version]
- Dine, M.S.; Hutchins, S.S.; Thomas, A.; Williams, I.; Bellini, W.J.; Redd, S.C. Persistence of Vaccine-Induced Antibody to Measles 26–33 Years after Vaccination. J. Infect. Dis. 2004, 189 (Suppl. S1), S123–S130. [Google Scholar] [CrossRef]
- Ovsyannikova, I.G.; Dhiman, N.; Jacobson, R.M.; Vierkant, R.A.; Poland, G.A. Frequency of Measles Virus-Specific CD4+ and CD8+ T Cells in Subjects Seronegative or Highly Seropositive for Measles Vaccine. Clin. Diagn. Lab. Immunol. 2003, 10, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.-H.W.; Pan, C.-H.; Adams, R.J.; Laube, B.L.; Griffin, D.E. Vaccine-Induced Measles Virus-Specific T Cells Do Not Prevent Infection or Disease but Facilitate Subsequent Clearance of Viral RNA. mBio 2014, 5, e01047. [Google Scholar] [CrossRef] [Green Version]
- Holzmann, H.; Hengel, H.; Tenbusch, M.; Doerr, H.W. Eradication of Measles: Remaining Challenges. Med. Microbiol. Immunol. 2016, 205, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Gaythorpe, K.A.; Abbas, K.; Huber, J.; Karachaliou, A.; Thakkar, N.; Woodruff, K.; Li, X.; Echeverria-Londono, S.; VIMC Working Group on COVID-19 Impact on Vaccine Preventable Disease; Ferrari, M.; et al. Impact of COVID-19-Related Disruptions to Measles, Meningococcal A, and Yellow Fever Vaccination in 10 Countries. Elife 2021, 10, e67023. [Google Scholar] [CrossRef]
- Venkatesan, P. Worrying Global Decline in Measles Immunisation. Lancet Microbe 2022, 3, e9. [Google Scholar] [CrossRef]
Study | Evidence/No Evidence of Transmission |
---|---|
No evidence of transmission from vaccine failure cases | |
Rota et al. (2011) [58] | No evidence of transmission from two MV positive fully vaccinated physicians. More than 100 patients and close familiar contacts were exposed, but no additional cases were identified. |
Hickman et al. (2011) [65] | No evidence of transmission from eight individuals with primary or secondary vaccine failure. |
Jones et al. (2015) [66] | No evidence of measles transmission from a vaccinated nurse that tested positive in both molecular and serological tests. A total of 71 vaccinated HCW were exposed to the nurse and 478 patients and family members were potentially exposed. |
Sundall et al. (2015) [35] | No identification of onward transmission from 16 measles breakthrough cases. |
Hahné et al. (2016) [42] | No evidence of measles transmission from seven immunized HCW despite they travelled abroad, used public transportation, and worked at the hospital. |
Augusto et al. (2019) [38] | No secondary cases generated by ten vaccinated individuals infected during two different outbreaks in Portugal. |
Evidence of transmission from vaccine failure cases | |
Edmonson et al. (1990) [60] | A fully vaccinated high school student with serologically confirmed measles transmitted the virus to 13 previously vaccinated classmates and gave rise to a measles outbreak involving 218 cases. |
Rosen et al. (2014) [58] | Report of an outbreak of five measles cases in New York City during which a fully vaccinated index patient with documented secondary vaccine failure transmitted MV infection to four contacts with documented vaccination or prior positive anti-MV IgG antibody tests. A total of 88 individuals were exposed to the index cases and an additional 231 contacts were identified as exposed to the secondary patients. No tertiary cases were identified among these contacts. |
Santibanez et al. (2014) [67] | Evidence of MV transmission from a secondary vaccine failure case within a family after MV spread initiated at an international mass gathering. |
Cherry et al. (2018) [32] | Evidence of transmission from three vaccine failure cases with ≥2 doses to household contacts or close friends. |
Bianchi et al. (2022) [17] | Evidence of onward transmission for ten vaccinated subjects. In eight outbreaks vaccinees were the index case and transmitted MV to two to four people. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fappani, C.; Gori, M.; Canuti, M.; Terraneo, M.; Colzani, D.; Tanzi, E.; Amendola, A.; Bianchi, S. Breakthrough Infections: A Challenge towards Measles Elimination? Microorganisms 2022, 10, 1567. https://doi.org/10.3390/microorganisms10081567
Fappani C, Gori M, Canuti M, Terraneo M, Colzani D, Tanzi E, Amendola A, Bianchi S. Breakthrough Infections: A Challenge towards Measles Elimination? Microorganisms. 2022; 10(8):1567. https://doi.org/10.3390/microorganisms10081567
Chicago/Turabian StyleFappani, Clara, Maria Gori, Marta Canuti, Mara Terraneo, Daniela Colzani, Elisabetta Tanzi, Antonella Amendola, and Silvia Bianchi. 2022. "Breakthrough Infections: A Challenge towards Measles Elimination?" Microorganisms 10, no. 8: 1567. https://doi.org/10.3390/microorganisms10081567
APA StyleFappani, C., Gori, M., Canuti, M., Terraneo, M., Colzani, D., Tanzi, E., Amendola, A., & Bianchi, S. (2022). Breakthrough Infections: A Challenge towards Measles Elimination? Microorganisms, 10(8), 1567. https://doi.org/10.3390/microorganisms10081567