Macrolides from Streptomyces sp. SN5452 and Their Antifungal Activity against Pyricularia oryzae
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Actinomycete Material
2.3. Fermentation and Extraction
2.4. Isolation and Purification
2.5. Effect of Compounds on the Mycelial Growth of P. oryzae
2.6. Effect of Compounds on the Conidia Germination of P. oryzae
3. Results
3.1. Identification of Strain SN5452
3.2. Extraction, Separation and Purifcation of Extract
3.3. Structure Elucidation of Compounds
3.4. Antifungal Activity Assay
3.5. Structure Activity Relationship Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Sakulkoo, W.; Osés-Ruiz, M.; Garcia, O.E.; Soanes, D.M.; Littlejohn, G.R.; Hacker, C.; Correia, A.; Valent, B.; Talbot, N.J. A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus. Science 2018, 359, 1399–1403. [Google Scholar] [CrossRef] [PubMed]
- Talbot, N.J. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 2003, 57, 177–202. [Google Scholar] [CrossRef]
- Lam, V.B.; Meyer, T.; Arias, A.A.; Ongena, M.; Oni, F.E.; Höfte, M. Bacillus cyclic lipopeptides Iturin and Fengycin control rice blast caused by Pyricularia oryzae in potting and acid sulfate soils by direct antagonism and induced systemic resistance. Microorganisms 2021, 9, 1441. [Google Scholar] [CrossRef]
- Odjo, T.; Diagne, D.; Adreit, H.; Milazzo, J.; Raveloson, H.; Andriantsimialona, D.; Kassankogno, A.I.; Ravel, S.; Gumedzoé, Y.M.D.; Ouedraogo, I.; et al. Structure of African populations of Pyricularia oryzae from rice. Phytopathology 2021, 111, 1428–1437. [Google Scholar] [CrossRef]
- Dang, Y.J.; Wei, Y.; Wang, Y.Y.; Liu, S.S.; Julia, C.; Zhang, S.H. Cleavage of PrePL by Lon promotes growth and pathogenesis in Magnaporthe oryzae. Environ. Microbiol. 2021, 23, 4881–4895. [Google Scholar] [CrossRef]
- Manandhar, H.K.; Jorgensen, H.J.L.; Smedegaard-Petersen, V.; Mathur, S.B. Seedborne infection of rice by Pyricularia oryzae and its transmission to seedlings. Plant Dis. 1998, 82, 1093–1099. [Google Scholar] [CrossRef]
- Hayashi, K.; Yoshida, T.; Hayano-Saito, Y. Detection of white head symptoms of panicle blast caused by Pyricularia oryzae using cut-flower dye. Plant Methods 2019, 15, 159. [Google Scholar] [CrossRef]
- Langner, T.; Białas, A.; Kamoun, S. The blast fungus decoded: Genomes in flux. mBio 2018, 9, e00571-18. [Google Scholar] [CrossRef]
- Law, J.W.; Ser, H.L.; Khan, T.M.; Chuah, L.H.; Pusparajah, P.; Chan, K.G.; Goh, B.H.; Lee, L.H. The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front. Microbiol. 2017, 8, 3. [Google Scholar] [CrossRef]
- Kunova, A.; Pizzatti, C.; Cortesi, P. Impact of tricyclazole and azoxystrobin on growth, sporulation and secondary infection of the rice blast fungus, Magnaporthe oryzae. Pest Manag. Sci. 2013, 69, 278–284. [Google Scholar] [CrossRef]
- Asibi, A.E.; Chai, Q.; Coulter, J.A. Rice blast: A disease with implications for global food security. Agronomy 2019, 9, 451. [Google Scholar] [CrossRef]
- Peng, Q.; Zhao, H.; Zhao, G.; Gao, X.; Miao, J.; Liu, X. Resistance assessment of pyraoxystrobin in Magnaporthe oryzae and the detection of a point mutation in cyt b that confers resistance. Pestic. Biochem. Physiol. 2022, 180, 105006. [Google Scholar] [CrossRef]
- Li, C.; Wang, K.; Zhang, H.; Yang, D.; Deng, Y.; Wang, Y.; Qi, Z. Development of a LAMP method for detecting F129L mutant in azoxystrobin-resistant Pyricularia oryzae. Fungal Biol. 2022, 126, 47–53. [Google Scholar] [CrossRef]
- Zheng, F.; Li, Y.C.; Zhang, Z.X.; Jia, J.L.; Hu, P.T.; Zhang, C.Q.; Xu, H.H. Novel strategy with an eco-friendly polyurethane system to improve rainfastness of tea saponin for highly efficient rice blast control. J. Clean. Prod. 2020, 264, 121685. [Google Scholar] [CrossRef]
- Pooja, K.; Katoch, A. Past, present and future of rice blast management. Plant Sci. Today 2014, 1, 165–173. [Google Scholar] [CrossRef]
- Yoon, M.Y.; Cha, B.; Kim, J.C. Recent trends in studies on botanical fungicides in agriculture. Plant Pathol. J. 2013, 29, 1–9. [Google Scholar] [CrossRef]
- Palaniyandi, S.A.; Yang, S.H.; Zhang, L.X.; Suh, J.W. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 2013, 97, 9621–9636. [Google Scholar] [CrossRef]
- Chaiharn, M.; Theantana, T.; Pathom-Aree, W. Evaluation of biocontrol activities of Streptomyces spp. against rice blast disease fungi. Pathogens 2020, 9, 126. [Google Scholar] [CrossRef]
- Zhao, J.W.; Han, L.Y.; Yu, M.Y.; Cao, P.; Li, D.M.; Guo, X.W.; Liu, Y.Q.; Wang, X.J.; Xiang, W.J. Characterization of Streptomyces sporangiiformans sp. nov., a novel soil actinomycete with antibacterial activity against Ralstonia solanacearum. Microorganisms 2019, 7, 360. [Google Scholar] [CrossRef]
- Yadav, A.N.; Verma, P.; Kumar, S.; Kumar, V.; Kumar, M.; Chellammal, T.; Sugitha, K.; Singh, B.P.; Saxena, A.K.; Dhaliwal, H.S. Actinobacteria from Rhizosphere: Molecular Diversity, Distributions, and Potential Biotechnological Applications. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2018; pp. 13–41. [Google Scholar]
- Hwang, K.S.; Kim, H.U.; Charusanti, P.; Palsson, B.Ø.; Lee, S.Y. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol. Adv. 2014, 32, 255–268. [Google Scholar] [CrossRef]
- Copping, L.G.; Duke, S.O. Natural products that have been used commercially as crop protection agents. Pest Manag. Sci. 2007, 63, 524–554. [Google Scholar] [CrossRef]
- Han, C.Y.; Yu, Z.Y.; Zhang, Y.T.; Wang, Z.Y.; Zhao, J.W.; Huang, S.X.; Ma, Z.H.; Wen, Z.Y.; Liu, C.X.; Xiang, W.S. Discovery of Frenolicin B as potential agrochemical fungicide for controlling Fusarium head blight on wheat. J. Agric. Food Chem. 2021, 69, 2108–2117. [Google Scholar] [CrossRef]
- Shi, L.Q.; Wu, Z.Y.; Zhang, Y.N.; Zhang, Z.G.; Fang, W.; Wang, Y.Y.; Wan, Z.Y.; Wang, K.M.; Ke, S.Y. Herbicidal secondary metabolites from actinomycetes: Structure diversity, modes of action, and their roles in the development of herbicides. J. Agric. Food Chem. 2020, 68, 17–32. [Google Scholar] [CrossRef]
- Kaur, T.; Vasudev, A.; Sohal, S.K.; Manhas, R.K. Insecticidal and growth inhibitory potential of Streptomyces hydrogenans DH16 on major pest of India, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). BMC Microbiol. 2014, 14, 227. [Google Scholar] [CrossRef]
- Bi, Y.H.; Yu, Z.G. Diterpenoids from Streptomyces sp. SN194 and their antifungal activity against Botrytis cinerea. J. Agric. Food Chem. 2016, 64, 8525–8529. [Google Scholar] [CrossRef]
- Tian, H.; Shafi, J.; Ji, M.S.; Bi, Y.H.; Yu, Z.G. Antimicrobial metabolites from Streptomyces sp. SN0280. J. Nat. Prod. 2017, 80, 1015–1019. [Google Scholar] [CrossRef]
- Heo, J.; Hamada, M.; Cho, H.; Weon, H.Y.; Kim, J.S.; Hong, S.B.; Kim, S.J.; Kwon, S.W. Weissella cryptocerci sp. nov., isolated from gut of the insect Cryptocercus kyebangensis. Int. J. Syst. Evol. Microbiol. 2019, 69, 2801–2806. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. Mega7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Atlas, R.M. The Handbook of Microbiological Media for the Examination of Food, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Shirling, E.B.; Gottlieb, D. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 1966, 16, 313–340. [Google Scholar] [CrossRef]
- Li, R.Y.; Wu, X.M.; Yin, X.H.; Long, Y.H.; Li, M. Naturally produced citral can significantly inhibit normal physiology and induce cytotoxicity on Magnaporthe grisea. Pestic. Biochem. Physiol. 2015, 118, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.Q.; Zhao, G.S.; Wang, B.; Du, Y.X.; Li, Z.W.; Gao, X.H.; Zhang, C.; Liu, X.L. Three point-mutations in cytochrome b confer resistance to trifloxystrobin in Magnaporthe oryzae. Pest Manag. Sci. 2020, 76, 4258–4267. [Google Scholar] [CrossRef]
- Maciel, J.L.; Ceresini, P.C.; Castroagudin, V.L.; Zala, M.; Kema, G.H.; McDonald, B.A. Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 25 years after its emergence in Brazil. Phytopathology 2014, 104, 95–110. [Google Scholar] [CrossRef]
- Shaaban, K.A.; Singh, S.; Elshahawi, S.I.; Wang, X.C.; Ponomareva, L.V.; Sunkara, M.; Copley, G.C.; Hower, J.C.; Morris, A.J.; Kharel, M.K.; et al. Venturicidin C, a new 20-membered macrolide produced by Streptomyces sp. TS-2-2. J. Antibiot. 2014, 67, 223–230. [Google Scholar] [CrossRef]
- Chadha, S. Molecular detection of Magnaporthe oryzae from rice seeds. Methods Mol. Biol. 2021, 2356, 187–197. [Google Scholar]
- Park, S.Y.; Milgroom, M.G.; Han, S.S.; Kang, S.; Lee, Y.H. Genetic differentiation of Magnaporthe oryzae populations from scouting plots and commercial rice fields in Korea. Phytopathology 2008, 98, 436–442. [Google Scholar] [CrossRef]
- Ling, L.; Han, X.Y.; Li, X.; Zhang, X.; Wang, H.; Zhang, L.D.; Cao, P.; Wu, Y.T.; Wang, X.J.; Zhao, J.W.; et al. A Streptomyces sp. NEAU-HV9: Isolation, identification, and potential as a biocontrol agent against Ralstonia Solanacearum of tomato plants. Microorganisms 2020, 8, 351. [Google Scholar] [CrossRef]
- Montesinos, E. Development, registration and commercialization of microbial pesticides for plant protection. Int. Microbiol. 2003, 6, 245–252. [Google Scholar] [CrossRef]
- Umezawa, H.; Hamada, M.; Suhara, Y.; Hashimoto, T.; Ikekawa, T. Kasugamycin, a new antibiotic. J. Antibiot. 1965, 18, 101–104. [Google Scholar]
- Kaziem, A.E.; Gao, Y.H.; Zhang, Y.; Qin, X.Y.; Xiao, Y.N.; Zhang, Y.H.; You, H.; Li, J.H.; He, S. α-Amylase triggered carriers based on cyclodextrin anchored hollow mesoporous silica for enhancing insecticidal activity of avermectin against Plutella xylostella. J. Hazard Mater. 2018, 359, 213–221. [Google Scholar] [CrossRef]
- Wang, P.; Lu, Y.; Dong, J.; Jing, L.; Yuan, Z.Q.; Yang, J.G.; Qiao, Y. Control effect of 13 pesticides on Pieris rapae in the cauliflower field. Agrochemicals 2017, 56, 300–302. [Google Scholar]
- Burg, R.W.; Miller, B.M.; Baker, E.E.; Birnbaum, J.; Currie, S.A.; Hartman, R.; Kong, Y.L.; Monaghan, R.L.; Olson, G.; Putter, I.; et al. Avermectins, new family of potent anthelmintic agents: Producing organismand fermentation. Antimicrob. Agents Chemother. 1979, 15, 361–367. [Google Scholar] [CrossRef]
- Le, K.D.; Yu, N.H.; Park, A.R.; Park, D.J.; Kim, C.J.; Kim, J.C. Streptomyces sp. AN090126 as a biocontrol agent against bacterial and fungal plant diseases. Microorganisms 2022, 10, 791. [Google Scholar] [CrossRef]
- Zhao, H.M.; Yang, A.P.; Zhang, N.; Li, S.Y.; Yuan, T.J.; Ding, N.; Zhang, S.W.; Bao, S.; Wang, C.; Zhang, Y.N.; et al. Insecticidal endostemonines A-J produced by endophytic Streptomyces from Stemona sessilifolia. J. Agric. Food Chem. 2020, 68, 1588–1595. [Google Scholar] [CrossRef]
- Kim, H.J.; Bo, A.B.; Kim, J.D.; Kim, Y.S.; Khaitov, B.; Ko, Y.K.; Cho, K.M.; Jang, K.S.; Park, K.W.; Choi, J.S. Herbicidal characteristics and structural identification of the potential active compounds from Streptomyces sp. KRA17-580. J. Agric. Food Chem. 2020, 68, 15373–15380. [Google Scholar] [CrossRef]
- Brufani, M.; Cerrini, S.; Fedeli, W.; Musu, C.; Cellai, L.; Keller-Schierlein, W. Structures of the venturicidins A and B. Experientia 1971, 27, 604–606. [Google Scholar] [CrossRef]
- Omura, S.; Tanaka, Y.; Nakagawa, A.; Iwai, Y.; Inoue, M.; Tanaka, H. Irumamycin, a new antibiotic active against phytopathogenic fungi. J. Antibiot. 1982, 35, 256–257. [Google Scholar] [CrossRef]
- Omura, S.; Nakagawa, A.; Imamura, N.; Kushida, K.; Liu, C.M.; Sello, L.H.; Westley, J.W. Structure of a new macrolide antibiotic, X-14952B. J. Antibiot. 1985, 38, 674–676. [Google Scholar] [CrossRef]
- Ohta, S.; Uy, M.M.; Yanai, M.; Ohta, E.; Hirata, T.; Ikegami, S. Exiguolide, a new macrolide from the marine sponge Geodia exigua. Tetrahedron Lett. 2006, 47, 1957–1960. [Google Scholar] [CrossRef]
- Peng, F.; Wang, C.X.; Xie, Y.; Jing, H.L.; Che, L.J.; Uribe, P.; Bull, A.T.; Goodfellow, M.; Jiang, H.; Lian, Y.Y. A new 20-membered macrolide produced by a marine-derived Micromonospora strain. Nat. Prod. Res. 2013, 27, 1366–1371. [Google Scholar]
- Li, H.H.; Zhang, M.X.; Li, H.J.; Yu, H.; Chen, S.; Wu, W.H.; Sun, P. Discovery of venturicidin congeners and identification of the biosynthetic gene cluster from Streptomyces sp. NRRL S-4. J. Nat. Prod. 2021, 84, 110–119. [Google Scholar] [CrossRef]
Position | δH, Mult (J in Hz) | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
2 α | 2.74, d (15.6) | 2.57, q (7.8) | 2.76, d (16.2) | 2.57, q (7.8) |
2 β | 2.51, overlap | 2.56, d (16.2) | ||
2-CH3 | 1.12, overlap | 1.13, d (7.2) | ||
3-OH | 5.49, s | 4.93, s | 5.50, overlap | 4.93, s |
4 α | 2.16, d (17.4) | 2.08, m | 2.18, m | 2.07, m |
4 β | 1.92, m | 2.00, m | 1.97, m | 2.03, m |
5 | 5.45, m | 5.46, m | 5.45, m | 5.46, m |
6-CH3 | 1.41, s | 1.41, s | 1.41, s | 1.41, s |
7 | 4.33, brs | 4.30, brs | 4.35, brs | 4.30, brs |
8-CH3 | 1.37, s | 1.36, s | 1.37, s | 1.36, s |
9 | 5.38, m | 5.24, t (7.2) | 5.50, overlap | 5.41, dd (10.2, 4.2) |
10 α | 2.01, m | 2.08, m | 2.11, m | 2.07, m |
10 β | 1.92, m | 1.79, m | 1.79, m | 1.79, m |
11 α | 1.56, m | 1.27, m | 1.31, m | 1.46, m |
11 β | 1.23, m | 1.12, overlap | 1.23, m | 1.22, m |
12 α | 1.47, m | 1.56, m | 1.53, m | 1.56, m |
12 β | 1.23, m | 1.27, m | 1.44, m | 1.32, m |
13 | 3.78, m | 3.89, dd (12.6, 7.2) | 4.02, m | 3.92, m |
14 | 5.30, dd (15.6, 8.4) | 5.40, dd (10.2, 4.2) | 5.28 m | 5.25, m |
15 | 5.15, dd (15.6, 9.0) | 5.24, t (7.2) | 5.40, m | 5.25, m |
16 α | 1.92, m | 2.00, m | 2.04, m | 2.07, m |
16 β | 1.97, m | |||
16-CH3 | 0.93, d (6.6) | 0.90, overlap | 0.91, d (6.6) | |
17 α | 1.29, m | 1.27, m | 1.31, m | 1.22, m |
17 β | 0.90, overlap | 0.90, overlap | 0.89, overlap | 0.89, overlap |
18 α | 1.47, m | 1.69, m | 1.74, m | 1.70, m |
18 β | 1.29, m | |||
18-CH3 | 0.77, d (6.6) | 0.82, d (7.2) | 0.77, d (6.6) | |
19 | 4.72, m | 4.54, dd (6.6, 4.8) | 4.64, m | 4.54, m |
20 | 1.71, m | 1.79, m | 1.69, m | 1.79, m |
20-CH3 | 0.80, d (6.6) | 0.79, d (6.6) | 0.81, d (7.2) | 0.79, d (6.6) |
21 α | 1.29, m | 1.27, m | 1.23, m | 1.32, m |
21 β | 0.98, m | 0.95, m | 0.84, d (7.2) | 0.95, m |
22 | 1.56, m | 1.56, m | 1.53, m | 1.56, m |
22-CH3 | 0.71, d (6.6) | 0.72, d (6.6) | 0.69, d (6.6) | 0.72, d (6.6) |
23 | 3.42, m | 3.40, m | 3.41, m | 3.40, m |
23-OH | 4.88, brs | 5.05, brs | 5.04, brs | |
24 | 2.62, m | 2.62, m | 2.61, m | 2.62, m |
24-CH3 | 0.85, d (6.6) | 0.85, d (7.2) | 0.84, d (7.2) | 0.85, d (7.2) |
26 α | 2.51, overlap | 2.53, m | 2.49, m | 2.53, m |
26 β | 2.01, m | 2.00, m | 1.97, m | 2.03, m |
27 | 0.90, overlap | 0.90, overlap | 0.89, overlap | 0.89, overlap |
1′ | 4.41, dd (9.6, 1.8) | 4.47, dd (9.6, 1.8) | 4.58, m | 4.54, m |
2′ α | 1.92, m | 1.89, m | 2.04, m | 2.03, m |
2′ β | 1.29, m | 1.27, m | 1.31, m | 1.22, m |
3′ | 4.47, m | 3.40, m | 4.49, m | 4.47, m |
3′-OH | 4.88, brs | |||
3′-CONH2 | 6.44, brs | 6.48, brs | ||
4′ | 2.68, m | 2.68, m | 2.91, m | 2.91, m |
4′-OH | 4.56, brs | |||
5′ | 3.01, m | 3.03, m | 3.19, m | 3.14, m |
5′-CH3 | 1.10, d (6.0) | 1.12, overlap | 1.15, d (6.0) | 1.15, d (6.0) |
Position | δC, Type | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
1 | 171.7, s | 176.0, s | 171.9, s | 176.0, s |
2 | 44.0, t | 47.6, d | 43.6, t | 47.6, d |
2-CH3 | 13.0, q | 13.0, q | ||
3 | 93.5, s | 95.7, s | 93.4, s | 95.7, s |
4 | 34.4, t | 32.7, t | 34.6, t | 32.7, t |
5 | 117.5, d | 117.5, d | 117.5, d | 117.4, d |
6 | 131.7, s | 131.9, s | 131.8, s | 131.9, s |
6-CH3 | 18.8, q | 18.9, q | 18.9, q | 18.9, q |
7 | 79.2, d | 79.0, d | 79.1, d | 79.0, d |
8 | 134.3, s | 133.5, s | 134.0, s | 133.6, s |
8-CH3 | 11.1, q | 10.7, q | 10.8, q | 10.7, q |
9 | 129.3, d | 129.7, d | 129.1, d | 129.0, d |
10 | 26.7, t | 27.2, t | 26.7, t | 27.1, t |
11 | 25.3, t | 25.7, t | 24.7, t | 25.7, t |
12 | 29.0, t | 33.9, t | 32.9, t | 33.8, t |
13 | 81.3, d | 80.0, d | 78.4, d | 80.2, d |
14 | 131.8, d | 129.0, d | 131.1, d | 129.6, d |
15 | 135.7, d | 138.3, d | 137.4, d | 138.5, d |
16 | 37.2, d | 36.4, d | 30.4, t | 36.4, d |
16-CH3 | 21.1, q | 21.6, q | 21.6, q | |
17 | 32.8, t | 40.4, t | 34.3, t | 40.4, t |
18 | 29.0, t | 32.7, d | 33.9, d | 32.7, d |
18-CH3 | 16.5, q | 12.6, q | 16.5, q | |
19 | 78.3, d | 82.2, d | 80.9, d | 82.2, d |
20 | 31.9, d | 31.2, d | 31.5, d | 31.2, d |
20-CH3 | 16.0, q | 16.2, q | 15.5, q | 16.2, q |
21 | 34.6, t | 35.0, t | 36.8, t | 35.0, t |
22 | 31.2, d | 31.3, d | 31.3, d | 31.3, d |
22-CH3 | 11.1, q | 11.0, q | 10.9, q | 10.9, q |
23 | 76.0, d | 76.3, d | 76.3, d | 76.3, d |
24 | 49.0, d | 49.1, d | 48.9, d | 49.1, d |
24-CH3 | 13.4, q | 13.4, q | 13.4, q | 13.4, q |
25 | 214.4, s | 214.4, s | 214.5, s | 214.4, s |
26 | 35.2, t | 35.2, t | 35.3, t | 35.2, t |
27 | 7.4, q | 7.4, q | 7.4, q | 7.4, q |
1′ | 98.7, d | 97.5, d | 96.7, d | 97.0, d |
2′ | 40.0, t | 40.0, t | 37.5, t | 37.5, t |
3′ | 70.5, d | 70.5, d | 72.6, d | 72.7, d |
3′-CONH2 | 156.4, s | 156.4, s | ||
4′ | 76.9, d | 76.9, d | 73.5, d | 73.5, d |
5′ | 71.5, d | 71.5, d | 71.7, d | 71.7, d |
5′-CH3 | 18.1, q | 18.1, q | 18.0, q | 18.0, q |
Compound | Mycelial Growth Inhibition EC50, µg/mL (±SD) | Conidial Germination Inhibition EC50, µg/mL (±SD) |
---|---|---|
venturicidin G, 1 | 1.78 ± 0.09 | 24.95 ± 1.63 |
venturicidin H, 2 | 1.43 ± 0.02 | 5.55 ± 0.12 |
venturicidin I, 3 | 0.35 ± 0.03 | 1.14 ± 0.03 |
venturicidin J, 4 | 1.40 ± 0.09 | 4.49 ± 0.28 |
venturicidin A, 5 | 0.11 ± 0.00 | 0.27 ± 0.02 |
venturicidin B, 6 | 0.15 ± 0.01 | 0.39 ± 0.01 |
Carbendazim b | 0.30 ± 0.01 | 3.99 ± 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, D.; Bi, Y.; Yu, Z. Macrolides from Streptomyces sp. SN5452 and Their Antifungal Activity against Pyricularia oryzae. Microorganisms 2022, 10, 1612. https://doi.org/10.3390/microorganisms10081612
Wang Y, Yang D, Bi Y, Yu Z. Macrolides from Streptomyces sp. SN5452 and Their Antifungal Activity against Pyricularia oryzae. Microorganisms. 2022; 10(8):1612. https://doi.org/10.3390/microorganisms10081612
Chicago/Turabian StyleWang, Yinan, Di Yang, Yuhui Bi, and Zhiguo Yu. 2022. "Macrolides from Streptomyces sp. SN5452 and Their Antifungal Activity against Pyricularia oryzae" Microorganisms 10, no. 8: 1612. https://doi.org/10.3390/microorganisms10081612
APA StyleWang, Y., Yang, D., Bi, Y., & Yu, Z. (2022). Macrolides from Streptomyces sp. SN5452 and Their Antifungal Activity against Pyricularia oryzae. Microorganisms, 10(8), 1612. https://doi.org/10.3390/microorganisms10081612