Strategies for the Biodegradation of Polyfluorinated Compounds
Abstract
:1. Introduction
2. Definitions of PFAS and PFCs
3. Broad Principles for the Biodegradation of PFCs
4. Direct Enzymatic C–F Bond Cleavage Has Limitations
5. Concept of Metabolic Activation in Biodegradation
6. Metabolic Activation of Trifluoromethyl Arenes for Indirect C–F Bond Cleavage
7. Metabolic Activation of Chlorofluorocarbons for Indirect C–F Bond Cleavage
8. Metabolic Activation of Fluoroolefins for Indirect C–F Bond Cleavage
9. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnabas, S.J.; Böhme, T.; Boyer, S.K.; Irmer, M.; Ruttkies, C.; Wetherbee, I.; Kondić, T.; Schymanski, E.L.; Weber, L. Extraction of chemical structures from literature and patent documents using open access chemistry toolkits: A case study with PFAS. Digit. Discov. 2022, 1, 490–501. [Google Scholar] [CrossRef]
- Evich, M.G.; Davis, M.J.B.; McCord, J.P.; Acrey, B.; Awkerman, J.A.; Knappe, D.R.U.; Lindstrom, A.B.; Speth, T.F.; Tebes-Stevens, C.; Strynar, M.J.; et al. Per- and polyfluoroalkyl substances in the environment. Science 2022, 375, eabg9065. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Tokunaga, E.; Kobayashi, O.; Hirai, K.; Shibata, N. Current contributions of organofluorine compounds to the agrochemical industry. Iscience 2020, 23, 101467. [Google Scholar] [CrossRef]
- Alexandrino, D.A.; Almeida, C.M.R.; Mucha, A.P.; Carvalho, M.F. Revisiting pesticide pollution: The case of fluorinated pesticides. Environ. Pollut. 2022, 292, 118315. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Sumii, Y.; Shibata, N. Contribution of organofluorine compounds to pharmaceuticals. ACS Omega 2020, 5, 10633–10640. [Google Scholar] [CrossRef]
- Liu, J.; Avendaño, S.M. Microbial degradation of polyfluoroalkyl chemicals in the environment: A review. Environ. Int. 2013, 61, 98–114. [Google Scholar] [CrossRef]
- Ochoa-Herrera, V.; Field, J.A.; Luna-Valesco, A.; Sierra-Alvarez, R. Microbial toxicity and biodegradability of perfluorooctane sulfonate (PFOS) and shorter chain perfluoroalkyl and perfluoroalkyl substances (PFASs). Environ. Sci. Process Impacts 2016, 18, 1236–1246. [Google Scholar] [CrossRef]
- Zhang, W.; Pang, S.; Lin, Z.; Mishra, S.; Bhatt, P.; Chen, S. Biotransformation of perfluoroalkyl acid precursors from various environmental systems: Advances and perspectives. Environ. Pollut. 2021, 272, 115908. [Google Scholar] [CrossRef]
- Zhang, Z.; Sarkar, D.; Biswas, J.K.; Datta, R. Biodegradation of per- and polyfluoroalkyl substances (PFAS): A review. Bioresour Technol. 2022, 344, 126223. [Google Scholar] [CrossRef]
- Weber, E.J.; Tebes-Steves, C.; Washington, J.W.; Gladstone, R. Development of a PFAS reaction library: Identifying plausible transformation pathways in environmental and biological systems. Environ. Sci. Process Impacts 2022, 25, 689–753. [Google Scholar] [CrossRef]
- Carvalho, M.F.; Alves, C.C.; Ferreira, M.I.; De Marco, P.; Castro, P.M. Isolation and initial characterization of a bacterial consortium able to mineralize fluorobenzene. Appl. Environ. Microbiol. 2022, 68, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, Z.I.; Baskunov, B.P.; Boerrsma, M.G.; Vervoot, J.; Golovlev, E.L.; van Berkel, W.J.; Govleva, L.A.; Riietjens, I.M. Identification of fluoropyrogallols as new intermediates in biotransformation of monofluorophenols in Rhodococcus opacus 1cp. Appl. Environ. Microbiol. 2000, 66, 2148–2153. [Google Scholar] [CrossRef] [PubMed]
- Vargas, C.; Song, B.; Camps, M.; Häggblom, M.M. Anaerobic degradation of fluorinated aromatic compounds. Appl. Microbiol. Biotechnol. 2000, 53, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.M.; Abplanalp, M.J.; Bergantini, A.; Frigge, R.; Zhu, C.; Sun, B.J.; Hsiao, C.T.; Chang, A.H.; Meinert, C.; Kaiser, R.I. Origin of alkylphosphonic acids in the interstellar medium. Sci. Adv. 2019, 5, eaaw4307. [Google Scholar] [CrossRef]
- Wackett, L.P.; Robinson, S.L. The ever-expanding limits of enzyme catalysis and biodegradation: Polyaromatic, polychlorinated, polyfluorinated, and polymeric compounds. Biochem. J. 2020, 477, 2875–2891. [Google Scholar] [CrossRef]
- Harper, D.B.; O’Hagan, D.; Murphy, C.D. Fluorinated natural products: Occurrence and biosynthesis. Nat. Prod. Organohalogen Compd. 2003, 141–169. [Google Scholar] [CrossRef]
- Walker, M.C.; Chang, M.C. Natural and engineered biosynthesis of fluorinated natural products. Chem. Soc. Rev. 2014, 43, 6527–6536. [Google Scholar] [CrossRef]
- Gribble, G.W. A recent survey of naturally occurring organohalogen compounds. Environ. Chem. 2015, 12, 396–405. [Google Scholar] [CrossRef]
- Rosner, D.; Markowitz, G. Persistent pollutants: A brief history of the discovery of the widespread toxicity of chlorinated hydrocarbons. Environ. Res. 2013, 120, 126–133. [Google Scholar] [CrossRef]
- Wang, Z.; Buser, A.M.; Cousins, I.T.; Demattio, S.; Drost, W.; Johansson, O.; Ohno, K.; Patlewicz, G.; Richard, A.M.; Walker, G.W.; et al. A new OECD definition for per-and polyfluoroalkyl substances. Environ. Sci. Technol. 2021, 55, 15575–15578. [Google Scholar] [CrossRef]
- Freire, M.G.; Gomes, L.; Santos, L.M.; Marrucho, I.M.; Coutinho, J.A. Water solubility in linear fluoroalkanes used in blood substitute formulations. J. Phys. Chem. B 2006, 110, 22923–22929. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessem, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef] [PubMed]
- CDC, Per- and Polyfluorinated Substances (PFAS) Factsheet. Available online: https://www.cdc.gov/biomonitoring/PFAS_FactSheet.html (accessed on 6 July 2022).
- Wallington, T.J.; Andersen, M.S.; Nielsen, O.J. The case for a more precise definition of regulated PFAS. Env. Sci. Proc. Impacts 2021, 23, 1834–1838. [Google Scholar] [CrossRef] [PubMed]
- Hammel, E.; Webster, T.F.; Gurney, R.; Heiger-Bernays, W. Implications of PFAS definitions using fluorinated pharmaceuticals. Iscience 2022, 25, 104020. [Google Scholar] [CrossRef]
- Pud, A.A.; Shapoval, G.S.; Kukhar, V.P.; Mikulina, O.E.; Gervits, L.L. Electrochemical reduction of some saturated and unsaturated perfluorocarbons. Electrochim. Acta 1995, 40, 1157–1164. [Google Scholar] [CrossRef]
- Combellas, C.; Kanoufi, F.; Thiebault, A. Reduction of polyfluorinated compounds. J. Phys. Chem. B 2003, 39, 10894–10905. [Google Scholar] [CrossRef]
- Houmam, A. Electron transfer initiated reactions: Bond formation and bond dissociation. Chem. Rev. 2008, 108, 2180–2237. [Google Scholar] [CrossRef]
- Huwiler, S.G.; Löffler, C.; Anselmann, S.E.; Stärk, H.J.; von Bergen, M.; Flechsler, J.; Rachel, R.; Boll, M. One-megadalton metalloenzyme complex in Geobacter metallireducens involved in benzene ring reduction beyond the biological redox window. Proc. Natl. Acad. Sci. USA 2019, 116, 2259–2264. [Google Scholar] [CrossRef]
- Kim, M.H.; Wang, N.; Chu, K.H. 6:2 Fluorotelomer alcohol (6:2 FTOH) biodegradation by multiple microbial species under different physiological conditions. Appl. Microbiol. Biotechnol. 2014, 98, 1831–1840. [Google Scholar] [CrossRef]
- Shaw, D.M.; Munoz, G.; Bottos, E.M.; Duy, S.V.; Sauvé, S.; Liu, J.; Van Hamme, J.D. Degradation and defluorination of 6: 2 fluorotelomer sulfonamidoalkyl betaine and 6: 2 fluorotelomer sulfonate by Gordonia sp. strain NB4-1Y under sulfur-limiting conditions. Sci.Total Environ. 2019, 647, 690–698. [Google Scholar] [CrossRef]
- Goldman, P. The enzymatic cleavage of the carbon-fluorine bond in fluoroacetate. J. Biol. Chem. 1965, 240, 3434–3438. [Google Scholar] [CrossRef]
- Liu, J.Q.; Kurihara, T.; Ichiyama, S.; Miyagi, M.; Tsunasawa, S.; Kawasaki, H.; Soda, K.; Esaki, N. Reaction mechanism of fluoroacetate dehalogenase from Moraxella sp. B. J. Biol. Chem. 1998, 273, 30897–30902. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, T.; Yamauchi, T.; Ichiyama, S.; Takahata, H.; Esaki, N. Purification, characterization, and gene cloning of a novel fluoroacetate dehalogenase from Burkholderia sp. FA1. J. Mol. Catal. B Enzym. 2003, 23, 347–355. [Google Scholar] [CrossRef]
- Donnelly, C.; Murphy, C.D. Purification and properties of fluoroacetate dehalogenase from Pseudomonas fluorescens DSM 8341. Biotechnol. Lett. 2009, 31, 245–250. [Google Scholar] [CrossRef]
- Davis, C.K.; Webb, R.I.; Sly, L.I.; Denman, S.E.; McSweeney, C.S. Isolation and survey of novel fluoroacetate-degrading bacteria belonging to the phylum Synergistetes. FEMS Microbiol. Ecol. 2012, 80, 671–684. [Google Scholar] [CrossRef]
- Camboim, E.K.; Almeida, A.P.; Tadra-Sfeir, M.Z.; Junior, F.G.; Andrade, P.P.; McSweeney, C.S.; Melo, M.A.; Riet-Correa, F. Isolation and identification of sodium fluoroacetate degrading bacteria from caprine rumen in Brazil. Sci. World J. 2012, 2012, 178254. [Google Scholar] [CrossRef]
- Chan, W.Y.; Wong, M.; Guthrie, J.; Savchenko, A.V.; Yakunin, A.F.; Pai, E.F.; Edwards, E.A. Sequence-and activity-based screening of microbial genomes for novel dehalogenases. Microb. Biotechnol. 2010, 3, 107–120. [Google Scholar] [CrossRef]
- Chan, P.W.; Yakunin, A.F.; Edwards, E.A.; Pai, E.F. Mapping the reaction coordinates of enzymatic defluorination. J. Am. Chem. Soc. 2011, 133, 7461–7468. [Google Scholar] [CrossRef]
- Jitsumori, K.; Omi, R.; Kurihara, T.; Kurata, A.; Mihara, H.; Miyahara, I.; Hirotsu, K.; Esaki, N. X-Ray crystallographic and mutational studies of fluoroacetate dehalogenase from Burkholderia sp. strain FA1. J. Bacteriol. 2009, 191, 2630–2637. [Google Scholar] [CrossRef]
- Kamachi, T.; Nakayama, T.; Shitamichi, O.; Jitsumori, K.; Kurihara, T.; Esaki, N.; Yoshizawa, K. The catalytic mechanism of fluoroacetate dehalogenase: A computational exploration of biological dehalogenation. Chemistry 2009, 15, 7394–7403. [Google Scholar] [CrossRef]
- Miranda-Rojas, S.; Fernández, I.; Kästner, J.; Toro-Labbé, A.; Mendizabal, F. Unraveling the nature of the catalytic power of fluoroacetate dehalogenase. ChemCatChem 2018, 10, 1052–1063. [Google Scholar] [CrossRef]
- Kang, H.; Zheng, M. Influence of the quantum mechanical region size in QM/MM modelling: A case study of fluoroacetate dehalogenase catalyzed CF bond cleavage. Comp. Theor. Chem. 2021, 1204, 113399. [Google Scholar] [CrossRef]
- Alexandrino, D.A.M.; Ribeiro, I.; Pinto, L.M.; Cambra, R.; Oliveira, R.S.; Pereira, F.; Carvalho, M.F. Biodegradation of mono-, di- and trifluoroacetate by microbial cultures with different origins. New Biotechnol. 2018, 43, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Dolbier, W.R. Fluorine chemistry at the millenium. J. Fluor. Chem. 2005, 126, 157–163. [Google Scholar] [CrossRef]
- O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C-F bond. Chem. Soc. Rev. 2008, 37, 308–319. [Google Scholar] [CrossRef]
- Chan, P.W.; Chakrabarti, N.; Ing, C.; Halgas, O.; To, T.K.; Wälti, M.; Petit, A.P.; Tran, C.; Savchenko, A.; Yakunin, A.F.; et al. Defluorination capability of l-2-haloacid dehalogenases in the HAD-like hydrolase superfamily correlates with active site compactness. ChemBioChem 2022, 23, e202100414. [Google Scholar] [CrossRef]
- Sela, I.; Wolf, Y.I.; Koonin, E.V. Theory of prokaryotic genome evolution. Proc. Natl. Acad. Sci. USA 2016, 113, 11399–11407. [Google Scholar] [CrossRef]
- Wackett, L.P. Evolution of enzymes for the metabolism of new chemical inputs into the environment. J. Biol. Chem. 2004, 279, 41259–41262. [Google Scholar] [CrossRef]
- Davidi, D.; Longo, L.M.; Jabłonńska, J.; Milo, R.; Tawfik, D.S. A bird’s-eye view of enzyme evolution: Chemical, physicochemical, and physiological considerations. Chem. Rev. 2018, 118, 8786–8797. [Google Scholar] [CrossRef]
- Copley, S.D. Setting the stage for evolution of a new enzyme. Curr. Opin. Struct. Biol. 2021, 69, 41–49. [Google Scholar] [CrossRef]
- Gibson, D.T.; Parales, R.E. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr. Opin. Biotechnol. 2000, 11, 236–243. [Google Scholar] [CrossRef]
- Dunaway-Mariano, D.; Babbitt, P.C. On the origins and functions of the enzymes of the 4-chlorobenzoate to 4- hydroxybenzoate converting pathway. Biodegradation 1994, 5, 259–276. [Google Scholar] [CrossRef] [PubMed]
- Bunnett, J.F.; Morath, R.J.; Okamoto, T. The ortho:para ratio in activation of aromatic nucleophilic substitution by the carboxylate group. J. Am. Chem. Soc. 1955, 77, 5055–5057. [Google Scholar] [CrossRef]
- Terrier, F. Modern Nucleophilic Aromatic Substitution; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar]
- Kamat, S.S.; Raushel, F.M. The enzymatic conversion of phosphonates to phosphate by bacteria. Curr. Opin. Chem. Biol. 2013, 17, 589–596. [Google Scholar] [CrossRef]
- Yang, K.; Ren, Z.; Raushel, F.M.; Zhang, J. Structures of the carbon-phosphorus lyase complex reveal the binding mode of the nbd-like phnk. Structure 2016, 24, 37–42. [Google Scholar] [CrossRef]
- Hoskin, F.C.G. Some observations concenring the biochemical inertness of methylphosphonic and isopropyl methylphosphonic acids. Can. J. Biochem. Physiol. 1955, 34, 743–746. [Google Scholar] [CrossRef]
- Metcalf, W.W.; Griffin, B.M.; Cicchillo, R.M.; Gao, J.; Janga, S.C.; Cooke, H.A.; Circello, B.T.; Evans, B.S.; Martens-Habbena, W.; Stahl, D.A.; et al. Synthesis of methylphosphonic acid by marine microbes: A source for methane in the aerobic ocean. Science 2012, 337, 1104–1107. [Google Scholar] [CrossRef]
- Chen, C.M.; Ye, Q.Z.; Zhu, Z.M.; Wanner, B.L.; Walsh, C.T. Molecular biology of carbon-phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B. J. Biol. Chem. 1990, 265, 4461–4471. [Google Scholar] [CrossRef]
- VanBriesen, J.M. Thermodynamic yield predictions for biodegradation through oxygenase activation reactions. Biodegradation 2001, 12, 265–281. [Google Scholar] [CrossRef]
- Coates, J.D.; Chakraborty, R.; McInerney, M.J. Anaerobic benzene biodegradation—A new era. Res. Microbiol. 2002, 153, 621–628. [Google Scholar] [CrossRef]
- Gao, J.; Ellis, L.B.; Wackett, L.P. The University of Minnesota biocatalysis/biodegradation database: Improving public access. Nucleic Acids Res. 2010, 38 (Suppl. 1), D488–D491. [Google Scholar] [CrossRef] [PubMed]
- Fenner, K.; Gao, J.; Kramer, S.; Ellis, L.; Wackett, L.P. Data-driven extraction of relative reasoning rules to limit combinatorial explosion in biodegradation pathway prediction. Bioinformatics 2008, 24, 2079–2085. [Google Scholar] [CrossRef] [PubMed]
- Latino, D.A.; Wicker, J.; Gütlein, M.; Schmid, E.; Kramer, S.; Fenner, K. Eawag-Soil in enviPath: A new resource for exploring regulatory pesticide soil biodegradation pathways and half-life data. Environ. Sci. Proc. Impacts 2017, 19, 449–464. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Ellis, L.B.; Wackett, L.P. The University of Minnesota Pathway Prediction System: Multi-level prediction and visualization. Nucleic Acids Res. 2011, 39, W406–W411. [Google Scholar] [CrossRef] [PubMed]
- Holliger, C.; Wohlfarth, G.; Diekert, G. Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol. Rev. 1998, 22, 383–398. [Google Scholar] [CrossRef]
- Martinez, B.; Tomkins, J.; Wackett, L.P.; Wing, R.; Sadowsky, M.J. Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J. Bacteriol. 2001, 183, 5684–5697. [Google Scholar] [CrossRef]
- Wenthur, C.J.; Bennett, M.R.; Lindsley, C.W. Classics in Chemical Neuroscience: Fluoxetine (Prozac). ACS Chem. Neurosci. 2013, 5, 14–23. [Google Scholar] [CrossRef]
- Martin, J.M.; Bertram, M.G.; Saaristo, M.; Fursdon, J.B.; Hannington, S.L.; Brooks, B.W.; Burket, S.R.; Mole, R.A.; Deal, N.D.; Wong, B.B. 2019. Antidepressants in surface waters: Fluoxetine influences mosquitofish anxiety-related behavior at environmentally relevant levels. Environ. Sci. Technol. 2019, 53, 6035–6043. [Google Scholar] [CrossRef]
- O’Hagan, D. Fluorine in health care: Organofluorine containing blockbuster drugs. J. Fluor. Chem. 2010, 131, 1071–1081. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, A.; Dhawan, G.; Mei, H.; Zhang, W.; Izawa, K.; Soloshonok, V.A.; Han, J. Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity. Chin. Chem. Lett. 2021, 32, 3342–3354. [Google Scholar] [CrossRef]
- Combellas, C.; Kanoufi, F.; Thiébault, A. Reducibility of the carbon-fluorine bond in the trifluoromethyl group. J. Electroanal. Chem. 1996, 407, 195–202. [Google Scholar] [CrossRef]
- Engesser, K.H. Der Einfluss der Trifluormethylgruppe auf die Biologische Abbaubarkeit von Aromaten. Doctoral Dissertation, University of Göttingen, Göttingen, Germany, 1982. [Google Scholar]
- Engesser, K.H.; Cain, R.B.; Knackmuss, H.J. Bacterial metabolism of side chain fluorinated aromatics: Cometabolism of 3- trifluoromethyl(TFM)-benzoate by Pseudomonas putida (arvilla) mt-2 and Rhodococcus rubropertinctus N657. Arch. Microbiol. 1988, 149, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Kiel, M.; Engesser, K.H. The biodegradation vs. biotransformation of fluorosubstituted aromatics. Appl. Microbiol. Biotechnol. 2015, 99, 7433–7464. [Google Scholar] [CrossRef] [PubMed]
- Bygd, M.D.; Aukema, K.G.; Richman, J.E.; Wackett, L.P. Microwell fluoride screen for chemical, enzymatic, and cellular reactions reveals latent microbial defluorination capacity for -CF3 groups. Appl. Environ. Microbiol. 2022, 88, e00288–22. [Google Scholar] [CrossRef]
- Li, S.; Wackett, L.P. Reductive dehalogenation by cytochrome P450CAM: Substrate binding and catalysis. Biochemistry 1993, 32, 9355–9361. [Google Scholar] [CrossRef]
- Jin, B.; Che, S.; Gao, J.; Yu, Y.; Liu, J.; Men, Y. Anaerobic defluorination of chlorine- substituted per- and polyfluorinated carboxylic acids triggered by microbial dechlorination. ChemRxiv 2022. [Google Scholar] [CrossRef]
- Timperley, C.M.; Waters, M.J.; Greenall, J.A. Fluoroalkene chemistry: Part 3. Reactions of arylthiols with perfluoroisobutene, perfluoropropene and chlorotrifluoroethene. J. Fluor. Chem. 2006, 127, 249–256. [Google Scholar] [CrossRef]
- Zeifman, Y.V.; Ter-Gabrielyan, E.G.; Gambaryan, N.P.; Knunyants, I.L. The chemistry of perfluoroisobutene. Russ. Chem Rev. 1984, 53, 256. [Google Scholar] [CrossRef]
- Gozzo, F.; Camaggi, G. Oxidation reactions of tetrafluoroethylene and their products—I: Auto-oxidation. Tetrahedron 1996, 22, 1765–1770. [Google Scholar] [CrossRef]
- Wallar, B.J.; Lipscomb, J.D. Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem. Rev. 1996, 96, 2625–2658. [Google Scholar] [CrossRef]
- Fox, B.; Borneman, J.G.; Wackett, L.P.; Lipscomb, J.D. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: Mechanistic and environmental implications. Biochemistry 1990, 29, 6419–6427. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Che, S.; Ren, C.; Bosen, J.; Zhenyu, T.; Liu, J.; Men, Y. Microbial defluorination of unsaturated per- and polyfluorinated carboxylic acids under anaerobic and aerobic conditions: A structure specificity study. Environ. Sci. Technol. 2022, 56, 4894–4904. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, Y.; Zhao, Y.; Qu, J. Synthesis of gem-difluoroallylboronates via FeCl2-catalyzed boration/β-fluorine elimination of trifluoromethyl alkenes. Org. Lett. 2017, 19, 946–949. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wackett, L.P. Strategies for the Biodegradation of Polyfluorinated Compounds. Microorganisms 2022, 10, 1664. https://doi.org/10.3390/microorganisms10081664
Wackett LP. Strategies for the Biodegradation of Polyfluorinated Compounds. Microorganisms. 2022; 10(8):1664. https://doi.org/10.3390/microorganisms10081664
Chicago/Turabian StyleWackett, Lawrence P. 2022. "Strategies for the Biodegradation of Polyfluorinated Compounds" Microorganisms 10, no. 8: 1664. https://doi.org/10.3390/microorganisms10081664
APA StyleWackett, L. P. (2022). Strategies for the Biodegradation of Polyfluorinated Compounds. Microorganisms, 10(8), 1664. https://doi.org/10.3390/microorganisms10081664