Changes in the Spore Proteome of Bacillus cereus in Response to Introduction of Plasmids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain and Culture Conditions
2.2. Sample Preparation and LC-MS/MS Analysis
2.3. Data Analysis
3. Results
3.1. The Influence of Molecular Cloning on the Spore Proteome
Strains | Relevant Genotype | Source |
---|---|---|
B. cereus WT | B. cereus ATCC 14,579 wild type | lab stock |
B. cereus cotE | B. cereus ∆cotE deletion mutant Spr | [21] |
B. cereus M001 | B. cereus carrying pHT315 Eryr | [12] |
B. cereus M003 | B. cereus carrying pHT315-PgerR-gerRB-sGFP2 Eryr | |
B. cereus M005 | B. cereus carrying pHT315-PaphA3′-sGFP2 Eryr | |
B. cereus M006 | B. cereus carrying pHT315-PgerR-gerR-sGFP2 Eryr | |
B. cereus M007 | B. cereus carrying pHT315-PgerD-gerD-mScarlet Eryr | |
B. cereus F09 (M008) | B. cereus carrying pHT315-PgerR-gerRB-sGFP2I | [11] |
-PgerD-gerD-mScarlet Eryr | ||
B. cereus F06 (M009) | B. cereus carrying pHT315-PgerR-gerR-sGFP2 | |
-PgerD-gerD-mScarlet Eryr |
3.2. Examining Relative Levels of Spore Proteins in the Different Strains
3.3. Plasmid-Induced Physiological Changes Are Apparent in the Spore Proteome
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abee, T.; Groot, M.N.; Tempelaars, M.; Zwietering, M.; Moezelaar, R.; van der Voort, M. Germination and outgrowth of spores of Bacillus cereus group members: Diversity and role of germinant receptors. Food Microbiol. 2011, 28, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Lablaine, A.; Serrano, M.; Bressuire-Isoard, C.; Chamot, S.; Bornard, I.; Carlin, F.; Henriques, A.O.; Broussolle, V. The morphogenetic protein CotE positions exosporium proteins CotY and ExsY during sporulation of Bacillus cereus. MSphere 2021, 6, e00007–e00021. [Google Scholar] [CrossRef] [PubMed]
- Christie, G.; Setlow, P. Bacillus spore germination: Knowns, unknowns and what we need to learn. Cell. Signal. 2020, 74, 109729. [Google Scholar] [CrossRef] [PubMed]
- Callahan, C.; Fox, K.; Fox, A. The small acid soluble proteins (SASP α and SASP β) of Bacillus weihenstephanensis and Bacillus mycoides group 2 are the most distinct among the Bacillus cereus group. Mol. Cell. Probes 2009, 23, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Bassi, D.; Cappa, F.; Cocconcelli, P.S. Water and Cations Flux during Sporulation and Germination; Caister Academic Press: Norfolk, UK, 2012. [Google Scholar]
- Cowan, A.E.; Olivastro, E.M.; Koppel, D.E.; Loshon, C.A.; Setlow, B.; Setlow, P. Lipids in the inner membrane of dormant spores of Bacillus species are largely immobile. Proc. Natl. Acad. Sci. USA 2004, 101, 7733–7738. [Google Scholar] [CrossRef] [Green Version]
- Foster, S.J.; Popham, D.L. Structure and synthesis of cell wall, spore cortex, teichoic acids, S-layers, and capsules. In Bacillus Subtilis Its Closest Relatives: From Genes to Cells; Sonenshein, A.L., Hoch, J.A., Losick, R., Eds.; ASM press: Washington, DC, USA, 2002; pp. 21–41. [Google Scholar]
- Stewart, K.-A.V.; Setlow, P. Numbers of individual nutrient germinant receptors and other germination proteins in spores of Bacillus Subtilis. J. Bacteriol. 2013, 195, 3575–3582. [Google Scholar] [CrossRef] [Green Version]
- Hornstra, L.M.; de Vries, Y.P.; Wells-Bennik, M.H.; de Vos, W.M.; Abee, T. Characterization of germination receptors of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 2006, 72, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Pelczar, P.L.; Setlow, P. Localization of the germination protein GerD to the inner membrane in Bacillus subtilis spores. J Bacteriol. 2008, 190, 5635–5641. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Breedijk, R.M.; Hink, M.A.; Bults, L.; Vischer, N.O.; Setlow, P.; Brul, S. Dynamics of germinosome formation and FRET-Based analysis of interactions between GerD and germinant receptor subunits in Bacillus cereus spores. Int. J. Mol. Sci. 2021, 22, 11230. [Google Scholar] [CrossRef]
- Wang, Y.; de Boer, R.; Vischer, N.; van Haastrecht, P.; Setlow, P.; Brul, S. Visualization of germination proteins in putative Bacillus cereus germinosomes. Int. J. Mol. Sci. 2020, 21, 5198. [Google Scholar] [CrossRef]
- Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 1998, 67, 509–544. [Google Scholar] [CrossRef] [PubMed]
- Millar, A.H.; Carrie, C.; Pogson, B.; Whelan, J. Exploring the function-location nexus: Using multiple lines of evidence in defining the subcellular location of plant proteins. Plant Cell 2009, 21, 1625–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, I.; Murphy, A. Validating the location of fluorescent protein fusions in the endomembrane system. Plant Cell 2009, 21, 1632–1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, F.; Queiroz, J.A.; Domingues, F.C. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnol. Adv. 2012, 30, 691–708. [Google Scholar] [CrossRef]
- Bardwell, L. The mutagenic and carcinogenic effects of gene transfer. Mutagenesis 1989, 4, 245–253. [Google Scholar] [CrossRef]
- Stepanenko, A.A.; Heng, H.H. Transient and stable vector transfection: Pitfalls, off-target effects, artifacts. Mutat. Res. Rev. Mutat. Res. 2017, 773, 91–103. [Google Scholar] [CrossRef]
- Cheng, C.; Lee, W. Protein solubility and differential proteomic profiling of recombinant Escherichia coli overexpressing double-tagged fusion proteins. Microb. Cell Factories 2010, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Ow, D.S.-W.; Nissom, P.M.; Philp, R.; Oh, S.K.W.; Yap, M.G.S. Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5α during batch fermentation. Enzym. Microb. Technol. 2006, 39, 391–398. [Google Scholar] [CrossRef]
- Bressuire-Isoard, C.; Bornard, I.; Henriques, A.O.; Carlin, F.; Broussolle, V. Sporulation temperature reveals a requirement for CotE in the assembly of both the coat and exosporium layers of Bacillus cereus spores. Appl. Environ. Microbiol. 2016, 82, 232–243. [Google Scholar] [CrossRef] [Green Version]
- Stelder, S.K.; Benito de Moya, C.; Hoefsloot, H.C.; de Koning, L.J.; Brul, S.; de Koster, C.G. Stoichiometry, absolute abundance, and localization of proteins in the Bacillus cereus spore coat insoluble fraction determined using a QconCAT approach. J. Proteome Res. 2017, 17, 903–917. [Google Scholar] [CrossRef] [Green Version]
- Swarge, B.N.; Roseboom, W.; Zheng, L.; Abhyankar, W.R.; Brul, S.; de Koster, C.G.; de Koning, L.J. “One-Pot” sample processing method for proteome-wide analysis of microbial cells and spores. Proteom. Clin. Appl. 2018, 12, 1700169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Swarge, B.N.; Dekker, H.L.; Roseboom, W.; Brul, S.; Kramer, G. The membrane proteome of spores and vegetative cells of the food-borne pathogen Bacillus cereus. Int. J. Mol. Sci. 2021, 22, 12475. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote) omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behravan, J.; Behravan, J.; Chirakkal, H.; Masson, A.; Moir, A. Mutations in the gerP locus of Bacillus subtilis and Bacillus cereus affect access of germinants to their targets in spores. J. Bacteriol. 2000, 182, 1987–1994. [Google Scholar] [CrossRef] [Green Version]
- Setlow, P.; Wang, S.; Li, Y.Q. Germination of spores of the orders Bacillales and Clostridiales. Annu. Rev. Microbiol. 2017, 71, 459–477. [Google Scholar] [CrossRef]
- Wang, S.T.; Setlow, B.; Conlon, E.M.; Lyon, J.L.; Imamura, D.; Sato, T.; Setlow, P.; Losick, R.; Eichenberger, P. The forespore line of gene expression in Bacillus subtilis. J. Mol. Biol. 2006, 358, 16–37. [Google Scholar] [CrossRef]
- Ramirez-Peralta, A.; Stewart, K.A.V.; Thomas, S.K.; Setlow, B.; Chen, Z.; Li, Y.Q.; Setlow, P. Effects of the SpoVT regulatory protein on the germination and germination protein levels of spores of Bacillus subtilis. J. Bacteriol. 2012, 194, 3417–3425. [Google Scholar] [CrossRef] [Green Version]
- Setlow, P. Spores of Bacillus subtilis: Their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 2006, 101, 514–525. [Google Scholar] [CrossRef]
- Isticato, R.; Lanzilli, M.; Petrillo, C.; Donadio, G.; Baccigalupi, L.; Ricca, E. Bacillus subtilis builds structurally and functionally different spores in response to the temperature of growth. Environ. Microbiol. 2020, 22, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Melly, E.; Genest, P.C.; Gilmore, M.E.; Little, S.; Popham, D.L.; Driks, A.; Setlow, P. Analysis of the properties of spores of Bacillus subtilis prepared at different temperatures. J. Appl. Microbiol. 2002, 92, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Bressuire-Isoard, C.; Broussolle, V.; Carlin, F. Sporulation environment influences spore properties in Bacillus: Evidence and insights on underlying molecular and physiological mechanisms. FEMS Microbiol. Rev. 2018, 42, 614–626. [Google Scholar] [CrossRef] [Green Version]
- Periago, P.M.; van Schaik, W.; Abee, T.; Wouters, J.A. Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 2002, 68, 3486–3495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faille, C.; Tauveron, G.; le Gentil-Lelièvre, C.; Slomianny, C. Occurrence of Bacillus cereus spores with a damaged exosporium: Consequences on the spore adhesion on surfaces of food processing lines. J. Food Prot. 2007, 70, 2346–2353. [Google Scholar] [CrossRef]
- Atrih, A.; Foster, S. Analysis of the role of bacterial endospore cortex structure in resistance properties and demonstration of its conservation amongst species. J. Appl. Microbiol. 2001, 91, 364–372. [Google Scholar] [CrossRef]
- Igarashi, T.; Setlow, P. Interaction between individual protein components of the GerA and GerB nutrient receptors that trigger germination of Bacillus subtilis spores. J. Bacteriol. 2005, 187, 2513–2518. [Google Scholar] [CrossRef] [Green Version]
- Grela, A.; Jamrożek, I.; Hubisz, M.; Iwanicki, A.; Hinc, K.; Kaźmierkiewicz, R.; Obuchowski, M. Positions 299 and 302 of the GerAA subunit are important for function of the GerA spore germination receptor in Bacillus subtilis. PLoS ONE 2018, 13, e0198561. [Google Scholar]
- Cabrera-Martinez, R.-M.; Tovar-Rojo, F.; Vepachedu, V.R.; Setlow, P. Effects of overexpression of nutrient receptors on germination of spores of Bacillus subtilis. J. Bacteriol. 2003, 185, 2457–2464. [Google Scholar] [CrossRef] [Green Version]
- Van der Voort, M.; García, D.; Moezelaar, R.; Abee, T. Germinant receptor diversity and germination responses of four strains of the Bacillus cereus group. Int. J. Food Microbiol. 2010, 139, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Feavers, I.; Foulkes, J.; Setlow, B.; Sun, D.; Nicholson, W.; Setlow, P.; Moir, A. The regulation of transcription of the gerA spore germination operon of Bacillus subtilis. Mol. Microbiol. 1990, 4, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Mason, C.A.; Bailey, J.E. Effects of plasmid presence on growth and enzyme activity of Escherichia coli DH5α. Appl. Microbiol. Biotechnol. 1989, 32, 54–60. [Google Scholar]
- Magge, A.; Setlow, B.; Cowan, A.E.; Setlow, P. Analysis of dye binding by and membrane potential in spores of Bacillus species. J. Appl. Microbiol. 2009, 106, 814–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Swarge, B.N.; Roseboom, W.; Wang, Y.; Dekker, H.L.; Setlow, P.; Brul, S.; Kramer, G. Changes in the Spore Proteome of Bacillus cereus in Response to Introduction of Plasmids. Microorganisms 2022, 10, 1695. https://doi.org/10.3390/microorganisms10091695
Gao X, Swarge BN, Roseboom W, Wang Y, Dekker HL, Setlow P, Brul S, Kramer G. Changes in the Spore Proteome of Bacillus cereus in Response to Introduction of Plasmids. Microorganisms. 2022; 10(9):1695. https://doi.org/10.3390/microorganisms10091695
Chicago/Turabian StyleGao, Xiaowei, Bhagyashree N. Swarge, Winfried Roseboom, Yan Wang, Henk L. Dekker, Peter Setlow, Stanley Brul, and Gertjan Kramer. 2022. "Changes in the Spore Proteome of Bacillus cereus in Response to Introduction of Plasmids" Microorganisms 10, no. 9: 1695. https://doi.org/10.3390/microorganisms10091695
APA StyleGao, X., Swarge, B. N., Roseboom, W., Wang, Y., Dekker, H. L., Setlow, P., Brul, S., & Kramer, G. (2022). Changes in the Spore Proteome of Bacillus cereus in Response to Introduction of Plasmids. Microorganisms, 10(9), 1695. https://doi.org/10.3390/microorganisms10091695