Staphylococcus aureus Causes the Arrest of Neutrophils in the Bloodstream in a Septicemia Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Human Neutrophils
2.2. Cell Culture
2.3. S. aureus Culturing
2.4. The Force and Work of Adhesion Determination
2.5. Adhesion Molecules’ Expression Estimated by Using Flow Cytometry
2.6. Transendothelial Migration of Neutrophils
2.7. Statistics
3. Results and Discussion
3.1. Conditioning Effect of S. aureus 2879 M on the Endothelial Cell Expression Profile
3.2. New System for the Study of Adhesive Contacts between EA.Hy926 Cells and Neutrophils of Healthy Donors Using FS Spectroscopy and Study of the Force and Work of Adhesion
3.3. Conditioning Effect of Non-Opsonized S. aureus 2879 M on the Endothelial Cell Expression Profile and on the Adhesion Contacts between Neutrophils and Endothelial Cells
3.4. Conditioning Effect of Opsonized S. aureus 2879 M on the Endothelial Cell Expression Profile and on the Adhesion Contacts between Neutrophils and Endothelial Cells
3.5. Study of the Viability of Neutrophils after Transendothelial Migration in the Model of Experimental Septicopyemia
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef]
- Asgeirsson, H.; Thalme, A.; Weiland, O. Staphylococcus aureus bacteraemia and endocarditis—Epidemiology and outcome: A review. Infect. Dis. 2017, 50, 175–192. [Google Scholar] [CrossRef] [PubMed]
- Kern, W.V.; Rieg, S. Burden of bacterial bloodstream infection—A brief update on epidemiology and significance of multidrug-resistant pathogens. Clinical. Microbiol. Infect. 2020, 26, 151–157. [Google Scholar] [CrossRef]
- Kwiecinski, J.M.; Horswill, A.R. Staphylococcus aureus bloodstream infections: Pathogenesis and regulatory mechanisms. Curr. Opin. Microbiol. 2020, 53, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Thomer, L.; Schneewind, O.; Missiakas, D. Pathogenesis of Staphylococcus aureus bloodstream infections. Annu. Rev. Pathol. Mech. Dis. 2016, 11, 343–364. [Google Scholar] [CrossRef] [Green Version]
- Angus, D.C.; van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 2013, 369, 840–851. [Google Scholar] [CrossRef]
- Pollitt, E.J.G.; Szkuta, P.T.; Burns, N.; Foster, S.J. Staphylococcus aureus infection dynamics. PLoS Pathog. 2018, 14, e1007112. [Google Scholar] [CrossRef] [Green Version]
- Jorch, S.K.; Surewaard, B.G.; Hossain, M.; Peiseler, M.; Deppermann, C.; Deng, J.; Bogoslowski, A.; van der Wal, F.; Omri, A.; Hickey, M.J.; et al. Peritoneal GATA6+ macrophages function as a portal for Staphylococcus aureus dissemination. J. Clin. Investig. 2019, 129, 4643–4656. [Google Scholar] [CrossRef]
- Choi, E.Y.; Santoso, S.; Chavakis, T. Mechanisms of neutrophil transendothelial migration. Front. Biosci. 2009, 14, 1596–1605. [Google Scholar] [CrossRef] [Green Version]
- McEver, R.P. Selectins: Lectins that initiate cell adhesion under flow. Curr. Opin. Cell. Biol. 2002, 14, 581–586. [Google Scholar] [CrossRef]
- Smith, M.L.; Olson, T.S.; Ley, K. CXCR2- and E-selectin-induced neutrophil arrest during inflammation in vivo. J. Exp. Med. 2004, 200, 935–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strindhall, J.; Lindgren, P.E.; Löfgren, S.; Kihlström, E. Variations among clinical isolates of Staphylococcus aureus to induce expression of E-selectin and ICAM-1 in human endothelial cells. FEMS Immunol. Med. Microbiol. 2002, 32, 227–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Guimaraes, A.O.; Peck, M.C.; Mayba, O.; Ruffin, F.; Hong, K.; Carrasco-Triguero, M.; Fowler, V.G.; Maskarinec, S.A.; Rosenberger, C.M. Risk stratification biomarkers for Staphylococcus aureus bacteraemia. Clin. Transl. Immunol. 2020, 9, e1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Yang, C.; Barbieri, J.T. Staphylococcal Superantigen-like protein 11 mediates neutrophil adhesion and motility arrest, a unique bacterial toxin action. Sci. Rep. 2019, 9, 4211. [Google Scholar] [CrossRef]
- Pleskova, S.N.; Gushchina, Y.Y.; Zvonkova, M.B.; Khomutov, A.E. Study of morphology and rigidity of neutrophilic granulocyte membrane in the real time mode by scanning probe microscopy. Bull. Exp. Biol. Med. 2006, 141, 760–762. [Google Scholar] [CrossRef]
- Eibl, R.H.; Moy, V.T. Atomic force microscopy measurements of protein-ligand interactions on living cells. In Protein-Ligand Interactions; Humana Press: Totowa, NJ, USA, 2005; pp. 439–450. [Google Scholar] [CrossRef]
- Li, N.; Yang, H.; Wang, M.; Lü, S.; Zhang, Y.; Long, M. Ligand-specific binding forces of LFA-1 and Mac-1 in neutrophil adhesion and crawling. Mol. Biol. Cell 2018, 29, 408–418. [Google Scholar] [CrossRef]
- Guedes, A.F.; Moreira, C.; Nogueira, J.B.; Santos, N.C.; Carvalho, F.A. Fibrinogen-erythrocyte binding and hemorheology measurements on the assessment of essential arterial hypertension patients. Nanoscale 2019, 11, 2757–2766. [Google Scholar] [CrossRef]
- Pleskova, S.N.; Kryukov, R.N.; Bobyk, S.Z.; Boryakov, A.V.; Brilkina, A.A. The study of intercellular adhesive contacts of neutrophilic granulocytes and lymphocytes by atomic force microscopy. Biophysics 2020, 65, 80–86. [Google Scholar] [CrossRef]
- Aguado, M.T.; Pujol, N.; Rubiol, E.; Tura, M.; Celada, A. Separation of granulocytes from peripheral blood in a single step using discontinuous density gradients of ficoll-urografin. A comparative study with separation by dextran. J. Immunol. Methods 1980, 32, 41–50. [Google Scholar] [CrossRef]
- Starikova, E.A.; Amchislavsky, E.I.; Sokolov, D.I.; Freidlin, I.S.; Polosukhina, E.R.; Baryshnikov, A.Y. Changes in the surface phenotype of endothelial cells under the influence of pro-inflammatory and anti-inflammatory cytokines. Med. Immunol. 2003, 5, 39–48. [Google Scholar]
- Pleskova, S.N.; Gorshkova, E.N.; Kriukov, R.N. Dynamics of formation and morphological features of neutrophil extracellular traps formed under the influence of opsonized Staphylococcus aureus. J. Mol. Recognit. 2018, 31, e2707. [Google Scholar] [CrossRef] [PubMed]
- Pleskova, S.N.; Kriukov, R.N.; Bobyk, S.Z.; Boryakov, A.V.; Gorelkin, P.V.; Erofeev, A.S. Conditioning adhesive contacts between the neutrophils and the endotheliocytes by Staphylococcus aureus. J. Mol. Recognit. 2020, 33, e2846. [Google Scholar] [CrossRef] [PubMed]
- Oberleithner, H.; Walte, M.; Kusche-Vihrog, K. Sodium renders endothelial cells sticky for red blood cells. Front. Physiol. 2015, 6, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stepanova, O.I.; L’vova, T.U.; Mirashvili, M.I.; Furaeva, K.N.; Sokolov, D.I.; Selkov, S.A. Altered expression of surface receptors at EA.hy926 endothelial cell line induced with placental secretory factors. Med. Immunol. 2012, 14, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.; Lampeter, E.F.; Kolb, H. A physiological role for circulating adhesion molecules? Immunol. Today 1994, 15, 141. [Google Scholar] [CrossRef]
- Golias, C.; Batistatou, A.; Bablekos, G.; Charalabopoulos, A.; Peschos, D.; Mitsopoulos, P.; Charalabopoulos, K. Physiology and pathophysiology of selectins, integrins, and IgSF cell adhesion molecules focusing on inflammation. A paradigm model on infectious endocarditis. Cell Commun. Adhes. 2011, 18, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Fritz, J.; Katopodis, A.G.; Kolbinger, F.; Anselmetti, D. Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc. Natl. Acad. Sci. USA 1998, 95, 12283–12288. [Google Scholar] [CrossRef] [Green Version]
- Van der Vieren, M.; Crowe, D.T.; Hoekstra, D.; Vazeux, R.; Hoffman, P.A.; Grayson, M.H.; Bochner, B.S.; Gallatin, W.M.; Staunton, D.E. The leukocyte integrin αDβ2 binds VCAM-1: Evidence for a binding interface between I domain and VCAM-1. J. Immunol. 1999, 163, 1984–1990. [Google Scholar]
- Nimrichter, L.; Burdick, M.M.; Aoki, K.; Laroy, W.; Fierro, M.A.; Hudson, S.A.; Von Seggern, C.E.; Cotter, R.J.; Bochner, B.S.; Tiemeyer, M.; et al. E-selectin receptors on human leukocytes. Blood 2008, 112, 3744–3752. [Google Scholar] [CrossRef] [Green Version]
- Banks, J.M.; Herman, C.T.; Bailey, R.C. Bromelain decreases neutrophil interactions with P-selectin, but not E-selectin, in vitro by proteolytic cleavage of P-selectin glycoprotein ligand-1. PLoS ONE. 2013, 8, e78988. [Google Scholar] [CrossRef] [Green Version]
- Cummings, R.D. Structure and function of the selectin ligand PSGL-1. Braz. J. Med. Biol. Res. 1999, 32, 519–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pleskova, S.N.; Bobyk, S.Z.; Kriukov, R.N.; Gorshkova, E.N.; Novikov, D.V.; Vasilchikov, P.I.; Bezrukov, N.A.; Novikov, V.V. S. aureus and E. coli change the force and work of adhesion between P- and E-selectins of endothelial cells and ligands of neutrophil granulocytes. Micron 2021, 150, 103139. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke-Grauls, C.M.; Thijssen, H.M.; Verhoef, J. Opsonization of Staphylococcus aureus protects endothelial cells from damage by phagocytosing polymorphonuclear leukocytes. Infect. Immun. 1987, 55, 1455–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotter, M.J.; Zaiss, A.K.; Muruve, D.A. Neutrophils interact with adenovirus vectors via Fc receptors and complement receptor 1. J. Virol. 2005, 79, 14622–14631. [Google Scholar] [CrossRef] [Green Version]
- Bestebroer, J.; Poppelier, M.J.J.G.; Ulfman, L.H.; Lenting, P.J.; Denis, C.V.; van Kessel, K.P.M.; van Strijp, J.A.G.; de Haas, C.J.C. Staphylococcal superantigen-like 5 binds PSGL-1 and inhibits P-selectin-mediated neutrophil rolling. Blood 2006, 109, 2936–2943. [Google Scholar] [CrossRef]
- Chung, M.C.; Wines, B.D.; Baker, H.; Langley, R.J.; Baker, E.N.; Fraser, J.D. The crystal structure of staphylococcal superantigen-like protein 11 in complex with sialyl Lewis X reveals the mechanism for cell binding and immune inhibition. Mol. Microbiol. 2007, 66, 1342–1355. [Google Scholar] [CrossRef]
- Walenkamp, A.M.E.; Bestebroer, J.; Boer, I.G.J.; Kruizinga, R.; Verheul, H.M.; van Strijp, J.A.G.; de Haas, C.J. Staphylococcal SSL5 binding to human leukemia cells inhibits cell adhesion to endothelial cells and platelets. Anal. Cell. Pathol. 2010, 32, 1–10. [Google Scholar] [CrossRef]
- Somers, W.S.; Tang, J.; Shaw, G.D.; Camphausen, R.T. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLeX and PSGL-1. Cell 2000, 103, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Fevre, C.; Bestebroer, J.; Mebius, M.M.; de Haas, C.J.C.; van Strijp, J.A.G.; Fitzgerald, J.R.; Haas, P.-J.A. Staphylococcus aureus proteins SSL6 and SElX interact with neutrophil receptors as identified using secretome phage display. Cell. Microbiol. 2014, 16, 1646–1665. [Google Scholar] [CrossRef]
- Baker, H.M.; Basu, I.; Chung, M.C.; Caradoc-Davies, T.; Fraser, J.D.; Baker, E.N. Crystal structures of the staphylococcal toxin SSL5 in complex with sialyl Lewis X reveal a conserved binding site that shares common features with viral and bacterial sialic acid binding proteins. J. Mol. Biol. 2007, 374, 1298–1308. [Google Scholar] [CrossRef]
- Chavakis, T.; Hussain, M.; Kanse, S.M.; Peters, G.; Bretzel, R.G.; Flock, J.-I.; Herrmann, M.; Preissner, K.T. Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nat. Med. 2002, 8, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Antic, M.; Radojicic, B. Staphylococcal septicopyemia. Vojn. Pregl. 1960, 17, 827–830. [Google Scholar]
- Pleskova, S.N.; Gorshkova, E.N.; Boryakov, A.V.; Kriukov, R.N. Morphological features of fast and classical NETosis. Cell Tissue Biol. 2020, 14, 28–35. [Google Scholar] [CrossRef]
Environment | Force, pN | Adhesion Work, aJ |
---|---|---|
Vehicle | 35.0 ± 11.7 | 179.6 ± 43.6 |
S. aureus | 24.4 ± 6.1 * | 134.4 ± 37.8 * |
Environment | Force, pN | Adhesion Work, aJ |
---|---|---|
Vehicle | 39.5 ± 7.8 | 316.3 ± 33.5 |
S. aureus | 30.0 ± 6.5 * | 274.1 ± 29.8 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pleskova, S.N.; Bobyk, S.Z.; Kriukov, R.N.; Gorshkova, E.N.; Bezrukov, N.A. Staphylococcus aureus Causes the Arrest of Neutrophils in the Bloodstream in a Septicemia Model. Microorganisms 2022, 10, 1696. https://doi.org/10.3390/microorganisms10091696
Pleskova SN, Bobyk SZ, Kriukov RN, Gorshkova EN, Bezrukov NA. Staphylococcus aureus Causes the Arrest of Neutrophils in the Bloodstream in a Septicemia Model. Microorganisms. 2022; 10(9):1696. https://doi.org/10.3390/microorganisms10091696
Chicago/Turabian StylePleskova, Svetlana N., Sergey Z. Bobyk, Ruslan N. Kriukov, Ekaterina N. Gorshkova, and Nikolay A. Bezrukov. 2022. "Staphylococcus aureus Causes the Arrest of Neutrophils in the Bloodstream in a Septicemia Model" Microorganisms 10, no. 9: 1696. https://doi.org/10.3390/microorganisms10091696
APA StylePleskova, S. N., Bobyk, S. Z., Kriukov, R. N., Gorshkova, E. N., & Bezrukov, N. A. (2022). Staphylococcus aureus Causes the Arrest of Neutrophils in the Bloodstream in a Septicemia Model. Microorganisms, 10(9), 1696. https://doi.org/10.3390/microorganisms10091696