Genetic Diversity of Pectobacterium spp. on Potato in Serbia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Symptomatic Potato Plants and Tubers
2.2. Bacterial Isolation
2.3. Biochemical and Physiological Properties
2.4. DNA Extraction and PCR Detection
2.5. DNA Fingerprinting
2.6. Multilocus Sequence Analysis and Phylogenetic Analysis of Pectobacterium Isolates
2.7. Pathogenicity Assays
2.7.1. Pathogenicity of Pectobacterium Isolates on Potato Tubers
2.7.2. Pathogenicity of Pectobacterium Isolates on Potato Plant Stems
3. Results
3.1. Identification and Diversity of Pectobacterium Species
3.2. PCR Assays
3.3. Genotypic Profiling
3.4. MLSA and Phylogenetic Analysis
3.5. Biochemical and Physiological Properties
3.6. Pathogenicity of Pectobacterium Isolates on Tubers and Stems
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Strain | Year of Isolation | Isolation Source | Potato Cultivar | GenBank Accession Number | ||||
---|---|---|---|---|---|---|---|---|
16S | gyrA | recA | rpoA | rpoS | ||||
MMNC1 | 2019 | Potato plant | Lady Claire | MT240621 | - | - | - | - |
MMKC19 | 2019 | Potato plant | Lady Claire | MT240620 | MZ440812 | MZ440831 | MZ440821 | MZ440826 |
MMFC19 | 2019 | Potato plant | Lady Claire | MT240619 | MZ440813 | MZ440832 | MZ440822 | MZ440827 |
MMSGC1 | 2019 | Potato plant | Lady Claire | MT240618 | MZ440814 | MZ440833 | MZ440823 | MZ440828 |
MMSLC1 | 2019 | Potato plant | Lady Claire | MT240617 | - | - | - | - |
MMMC28 | 2019 | Potato plant | Lady Claire | MT240616 | MZ440815 | MZ440834 | MZ440824 | MZ440829 |
MMMC25 | 2019 | Potato plant | Lady Claire | MT240615 | - | - | - | - |
MMMK25 | 2019 | Potato tuber | Lady Claire | MT240614 | - | - | - | - |
MMDC11 | 2019 | Potato plant | Flamenco | MZ427888 | MZ440816 | MZ440835 | MZ440825 | MZ440830 |
MMDK13 | 2019 | Potato plant | Flamenco | MZ427897 | - | - | - | - |
MMZKMVR 1 | 2019 | Potato tuber | VR 808 | MZ048661 | MZ161814 | - | MZ161815 | - |
MMZCVR 2 | 2019 | Potato plant | VR 808 | MZ048662 | MZ161817 | MZ161818 | MZ161820 | MZ161821 |
MMZKVR3 | 2019 | Potato tuber | VR 808 | MZ157274 | - | - | - | - |
MMGKLC2 | 2020 | Potato tuber | Lady Claire | MZ427909 | - | - | - | - |
MMKC1 | 2018 | Potato plant | Lady Claire | OM665393 | - | - | - | - |
MMFK1 | 2018 | Potato tuber | Lady Claire | OM665392 | - | - | - | |
MMFC1 | 2018 | Potato plant | Lady Claire | OM665394 | - | - | - | - |
MMOK1 | 2018 | Potato tuber | Lady Claire | OM665395 | - | - | - | |
MMOC1 | 2018 | Potato plant | Lady Claire | OM665386 | - | - | - |
References
- De Boer, S.H. Characterization of pectolytic erwinias as highly sophisticated pathogens of plants. Eur. J. Plant Pathol. 2003, 109, 893–899. [Google Scholar] [CrossRef]
- Charkowski, A.O. The changing face of bacterial soft-rot diseases. Ann. Rev. Phytopathol. 2018, 56, 269–288. [Google Scholar] [CrossRef] [PubMed]
- Gijsegem, F.V.; Toth, I.K.; Wolf, J.M. Soft rot Pectobacteriaceae: A brief overview. In Plant Diseases Caused by Dickeya and Pectobacterium Species; Gijsegem, F.V., Toth, I.K., Wolf, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–11. [Google Scholar] [CrossRef]
- Toth, I.K.; Barny, M.A.; Brurberg, M.B.; Condemine, G.; Czajkowski, R.; Elphinstone, J.G.; Helias, V.; Johnson, S.B.; Moleleki, L.N.; Pirhonen, M.; et al. Pectobacterium and Dickeya: Environment to disease development. In Plant Diseases Caused by Dickeya and Pectobacterium Species; Gijsegem, F.V., Toth, I.K., Wolf, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 39–84. [Google Scholar] [CrossRef]
- Davidsson, P.R.; Kariola, T.; Neima, O.; Palva, T.E. Pathogenicity of and plant immunity to soft rot Pectobacteria. Front. Plant Sci. 2013, 4, 191. [Google Scholar] [CrossRef] [PubMed]
- Reverchon, S.; Muskhelisvili, G.; Nasser, W. Virulence program of a bacterial plant pathogen: The Dickeya model. Host-Microbe Interact Prog. Mol. Biol. Transl. Sci. 2016, 142, 51–92. [Google Scholar] [CrossRef]
- Toth, I.K.; Pritchard, L.; Birch, P.R. Comparative genomics reveals what makes an enterobacterial plant pathogen. Annu. Rev. Phytopathol. 2006, 44, 305–336. [Google Scholar] [CrossRef] [PubMed]
- Charkowski, A.; Blanco, C.; Condemine, G.; Expert, D.; Franza, T.; Hayes, C.; Hugouvieux-Cotte-Pattat, N.; Solanilla, E.L.; Low, D.; Moleleki, L.; et al. The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity. Annu. Rev. Phytopathol. 2012, 50, 425–449. [Google Scholar] [CrossRef]
- Li, L.; Yuan, L.; Shi, Y.; Xie, X.; Chai, A.; Wang, Q.; Li, B. Comparative genomic analysis of Pectobacterium carotovorum subsp. brasiliense SX309 provides novel insights into its genetic and phenotypic features. BMC Genom. 2019, 20, 486. Available online: https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-5831-x (accessed on 23 May 2022). [CrossRef]
- Degefu, Y. Dickeya and Pectobacterium Species: Consistent Threats to Potato Production in Europe. 2014. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiQu-eC8JX6AhXQ5KQKHfK4DbwQFnoECAUQAQ&url=https%3A%2F%2Fportal.mtt.fi%2Fportal%2Fpage%2Fportal%2Fkasper%2Fpelto%2Fperuna%2FPotatonow%2Ftutkimus%2FYeshitila_PotatoNow_Article.pdf&usg=AOvVaw16kKDYc1fF8_NF3D393o3t (accessed on 1 June 2022).
- Wolf, J.M.; Acuña, I.; Boer, S.H.D.; Brurberg, M.B.; Cahill, G.; Charkowski, A.O.; Coutinho, T.; Davey, T.; Dees, M.W.; Degefu, Y.; et al. Diseases caused by Pectobacterium and Dickeya species around the world. In Plant Diseases Caused by Dickeya and Pectobacterium Species; Springer: Cham, Switzerland, 2021; pp. 215–261. [Google Scholar] [CrossRef]
- Harrison, M.D.; Nielsen, J.M. Compendium of Potato Diseases; Hooker, W.J., Ed.; American Phytopathological Society: St. Paul, MN, USA, 1986; pp. 27–28. [Google Scholar]
- Pérombelon, M.C.; Kelman, A. Blackleg and other potato diseases caused by soft rot Erwinias: Proposal for revision of terminology. Plant Dis. 1987, 71, 283–285. [Google Scholar]
- Haverkort, A.J.; Verhagen, A. Climate change and its repercussions for the potato supply chain. Potato Res. 2008, 51, 223–237. [Google Scholar] [CrossRef]
- Hauben, L.; Moore, E.R.B.; Vauterin, L.; Steenackers, M.; Mergaert, J.; Verdonck, L.; Swings, J. Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst. Appl. Microbiol. 1998, 21, 384–397. [Google Scholar] [CrossRef]
- Gardan, L.; Cécile, G.; Christen, R.; Samson, R. Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int. J. Syst. Evol. Microbiol. 2003, 53, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Samson, R.; Legendre, J.B.; Christen, R.; Fischer-Le Saux, M.; Achouak, W.; Gardan, L. Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov as Dickeya chrysanthemi comb. nov and Dickeya paradisiaca comb. nov and delineation of four novel species, Dickeya dadantii sp nov., Dickeya dianthicola sp nov., Dickeya dieffenbachiae sp nov and Dickeya zeae sp nov. Int. J.Syst. Evol. Microbiol. 2005, 55, 1415–1427. [Google Scholar] [CrossRef]
- Portier, P.; Pédron, J.; Taghouti, G.; Fischer-Le Saux, M.; Caullireau, E.; Bertrand, C.; Laurent, A.; Chawki, K.; Oulgazi, S.; Moumni, M. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int. J. Syst. Evol. Microbiol. 2019, 69, 3207–3216. [Google Scholar] [CrossRef] [PubMed]
- Pédron, J.; Bertrand, C.; Taghouti, G.; Portier, P.; Barny, M.-A. Pectobacterium aquaticum sp. nov., isolated from waterways. Int. J. Syst. Evol. Microbiol. 2019, 69, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Nabhan, S.; De Boer, S.H.; Maiss, E.; Wydra, K. Pectobacterium aroidearum sp. nov., a soft rot pathogen with preference for monocotyledonous plants. Int. J. Syst. Evol. Microbiol. 2013, 63, 2520–2525. [Google Scholar] [CrossRef]
- Alcorn, S.M.; Orum, T.V.; Steigerwalt, A.G.; Foster, J.L.; Fogelman, J.C.; Brenner, D.J. Taxonomy and pathogenicity of Erwinia cacticida sp. nov. Int. J. Syst. Bacteriol. 1991, 41, 197–212. [Google Scholar] [CrossRef]
- Koh, Y.; Kim, G.; Lee, Y.; Sohn, S.; Koh, H.; Kwon, S.; Heu, S.; Jung, J. Pectobacterium carotovorum subsp. actinidiae subsp. nov., a new bacterial pathogen causing canker-like symptoms in yellow kiwifruit, Actinidia chinensis. N. Z. J. Crop. Hortic. Sci. 2012, 40, 269–279. [Google Scholar] [CrossRef]
- Gallois, A.; Samson, R.; Ageron, E.; Grimont, P. Erwinia carotovora subsp. odorifera subsp. nov., associated with odorous soft rot of chicory (Cichorium intybus L.). Int. J. Syst. Bacteriol. 1992, 42, 582–588. [Google Scholar] [CrossRef]
- Oulghazi, S.; Cigna, J.; Lau, Y.Y.; Moumni, M.; Chan, K.G.; Faure, D. Transfer of the waterfall source isolate Pectobacterium carotovorum M022 to Pectobacterium fontis sp. nov., a deep-branching species within the genus Pectobacterium. Int. J. Syst. Evol. Microbiol. 2019, 69, 470–475. [Google Scholar] [CrossRef]
- Khayi, S.; Cigna, J.; Chong, T.; Quêtu-Laurent, A.; Chan, K.; Helias, V.; Faure, D. Transfer of the potato plant isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5379–5383. [Google Scholar] [CrossRef]
- Pasanen, M.; Waleron, M.; Schott, T.; Cleenwerck, I.; Misztak, A.; Waleron, K.; Pritchard, L.; Bakr, R.; Degefu, Y.; van der Wolf, J.; et al. Pectobacterium parvum sp. nov., having a salmonella SPI-1-like Type III secretion system and low virulence. Int. J. Syst. Evol. Microbiol. 2020, 70, 2440–2448. [Google Scholar] [CrossRef] [PubMed]
- Dees, M.W.; Lysøe, E.; Rossmann, S.; Perminow, J.; Brurberg, M.B. Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum). Int. J. Syst. Evol. Microbiol. 2017, 67, 5222–5229. [Google Scholar] [CrossRef] [PubMed]
- Waleron, M.; Misztak, A.; Waleron, M.; Jonca, J.; Furmaniak, M.; Waleron, K. Pectobacterium polonicum sp. nov. isolated from vegetable fields. Int. J. Syst. Evol. Microbiol. 2019, 69, 1751–1759. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, S.; Riaz, K.; Oulghazi, S.; Cigna, J.; Sahi, S.T.; Khan, S.H.; Faure, D. Pectobacterium punjabense sp. nov., isolated from blackleg symptoms of potato plants in Pakistan. Int. J. Syst. Evol. Microbiol. 2018, 68, 3551–3556. [Google Scholar] [CrossRef]
- Waleron, M.; Misztak, A.; Waleron, M.; Franczuk, M.; Wielgomas, B.; Waleron, K. Transfer of Pectobacterium carotovorum subsp. carotovorum strains isolated from potatoes grown at high altitudes to Pectobacterium peruviense sp. nov. Syst. Appl. Microbiol. 2018, 41, 85–93. [Google Scholar] [CrossRef]
- Waleron, M.; Misztak, A.; Waleron, M.; Franczuk, M.; Jońca, J.; Wielgomas, B.; Mikiciński, A.; Popović, T.; Waleron, K. Pectobacterium zantedeschiae sp. nov. a new species of a soft rot pathogen isolated from Calla lily (Zantedeschia spp.). Syst. Appl. Microbiol. 2019, 42, 275–283. [Google Scholar] [CrossRef]
- Oulghazi, S.; Sarfraz, S.; Zaczek-Moczydłowska, M.A.; Khayi, S.; Ed-Dra, A.; Lekbach, Y.; Campbell, K.; Novungayo Moleleki, L.; O’hanlon, R.; Faure, D. Pectobacterium brasiliense: Genomics, host range and disease management. Microorganisms 2021, 9, 106. [Google Scholar] [CrossRef]
- Arsenijević, M.; Ðurišić, S.; Milošević, D. Erwinia carotovora subsp. atroseptica, potato pathogen in our country. Zaštita bilja 1994, 45, 169–178. [Google Scholar]
- Obradović, A. Patogene i biohemijskofiziološke karakteristike bakterija grupe” Erwinia carotovora” parazita krompira. Zaštita bilja 1996, 50, 9–60. [Google Scholar]
- Ali, H.F.; Junaid, M.; Ahmad, M.; Bibi, A.; Ali, A.; Hussain, S.; Alam, S.; Shah, J.A. Molecular and pathogenic diversity identified among isolates of Erwinia carotovora subspecies atroseptica associated with potato blackleg and soft rot. Pak. J. Bot. 2013, 45, 1073–1078. [Google Scholar]
- Nunes Leite, L.; De Haan, E.G.; Krijger, M.; Kastelein, P.; Van Der Zouwen, P.S.; Van Den Bovenkamp, G.W.; Tebaldi, N.D.; Van Der Wolf, J.M. First report of potato blackleg caused by Pectobacterium carotovorum subsp. brasiliensis in the Netherlands. New Dis. Rep. 2014, 29, 24. [Google Scholar] [CrossRef] [Green Version]
- Van der Wolf, J.M.; De Haan, E.G.; Kastelein, P.; Krijger, M.; De Haas, B.H.; Velvis, H.; Mendes, O.; Kooman-Gersmann, M.; Van Der Zouwen, P.S. Virulence of Pectobacterium carotovorum subsp. brasiliense on potato compared with that of other Pectobacterium and Dickeya species under climatic conditions prevailing in the Netherlands. Plant Pathol. 2017, 66, 571–583. [Google Scholar] [CrossRef]
- Waleron, M.; Waleron, K.; Łojkowska, E. First report of Pectobacterium carotovorum subsp. brasiliense causing soft rot on potato and other vegetables in Poland. Plant Dis. 2015, 99, 1271. [Google Scholar] [CrossRef]
- de Werra, P.; Bussereau, F.; Keiser, A.; Ziegler, D. First report of potato blackleg caused by Pectobacterium carotovorum subsp. brasiliense in Switzerland. Plant Dis. 2015, 99, 551. [Google Scholar] [CrossRef]
- Grahovac, M.; Grahovac, J.; Ignjatov, M.; Vlajkov, V.; Pajčin, I.; Dodić, J.; Loc, M. Effects of cultivation conditions on Bacillus amyloliquefaciens activity against Pectobacterium carotovorum subsp. brasiliense. J. Plant Pathol. 2019, 101, 870. [Google Scholar]
- Loc, M.; Rikanović, T.; Petreš, M.; Ignjatov, M.; Budakov, D.; Bagi, F.; Grahovac, M. Effect of high temperatures on growth and pathogenicity of Pectobacterium carotovorum subsp. brasiliense on potato. In Proceedings of the 8. Congress on Plant Protection: Integrated Plant Protection for Sustainable Crop Production and Forestry, Zlatibor, Serbia, 25–29 November 2019; p. 178. [Google Scholar]
- Marković, S.; Stanković, S.; Jelušić, A.; Iličić, R.; Kosovac, A.; Poštić, D.; Popović, T. Occurrence and Identification of Pectobacterium carotovorum subsp. brasiliensis and Dickeya dianthicola Causing Blackleg in some Potato Fields in Serbia. Plant Dis. 2021, 105, 1080–1090. [Google Scholar] [CrossRef]
- Marković, S.; Milić Komić, S.; Jelušić, A.; Iličić, R.; Bagi, F.; Stanković, S.; Popović, T. First report of Pectobacterium versatile causing blackleg of potato in Serbia. Plant Dis. 2022, 106, 312. [Google Scholar] [CrossRef]
- Loc, M.; Miloševic, D.; Ignjatov, M.; Ivanović, Ž.; Budakov, D.; Grahovac, J.; Vlajkov, V.; Pajčin, I.; Grahovac, M. First report of Pectobacterium punjabense causing potato soft rot and blackleg in Serbia. Plant Dis. 2021, 106, 1513. [Google Scholar] [CrossRef]
- Schaad, N.W.; Jones, J.B.; Chun, W. Initial identification of common genera. In Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd ed.; Schaad, N.W., Jones, J.B., Chun, W., Eds.; APS Press: St. Paul, MN, USA, 2001; pp. 84–120. [Google Scholar]
- Crowley, E.; Bird, P.; Fisher, K.; Goetz, K.; Boyle, M.; Benzinger, M.J., Jr.; Juenger, M.; Agin, J.; Goins, D.; Johnson, R. Evaluation of the VITEK 2 Gram-negative (GN) microbial identification test card: Collaborative study. J. AOAC Int. 2012, 95, 778–785. [Google Scholar] [CrossRef]
- Darrasse, A.; Priou, S.; Kotoujansky, A.; Bertheau, Y. PCR and restriction fragment length polymorphism of a pel gene as a tool to identify Erwinia carotovora in relation to potato diseases. Appl. Environ. Microbiol. 1994, 60, 1437–1443. [Google Scholar] [CrossRef]
- Duarte, V.; De Boer, S.H.; Ward, L.D.; De Oliveira, A.M.R. Characterization of atypical Erwinia carotovora strains causing blackleg of potato in Brazil. J. Appl. Microbiol. 2004, 96, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.W.; Kwon, S.W.; Go, S.J. PCR-based specific and sensitive detection of Pectobacterium carotovorum ssp. carotovorum by primers generated from a URP-PCR fingerprinting-derived polymorphic band. Plant Pathol. 2003, 52, 127–133. [Google Scholar] [CrossRef]
- Mahmoudi, E.; Soleimani, M.; Taghavi, M. Detection of bacterial soft rot of crown imperial caused by Pectobacterium carotovorum ssp. carotovorum using specific PCR primers. Phytopathol. Mediterr. 2007, 46, 168–176. [Google Scholar] [CrossRef]
- Palacio-Bielsa, A.; Cambra, M.; Lopez, M. PCR detection and identification of plant pathogenic bacteria: Updated review of protocols (1989-2007). J. Plant Pathol. 2009, 91, 249–297. [Google Scholar] [CrossRef]
- Fredriksson, N.J.; Hermansson, M.; Wilén, B.M. The choice of PCR primers has great impact on assessments of bacterial community diversity and dynamics in a wastewater treatment plant. PLoS ONE 2013, 8, e76431. [Google Scholar] [CrossRef]
- Moretti, C.; Fakhr, R.; Cortese, C.; De Vos, P.; Cerri, M.; Geagea, L.; Cleenwerck, I.; Buonaurio, R. Pectobacterium aroidearum and Pectobacterium carotovorum subsp. carotovorum as causal agents of potato soft rot in Lebanon. Eur. J. Plant Pathol. 2016, 144, 205–211. [Google Scholar] [CrossRef]
- Versalovic, J.; Koeuth, T.; Lupski, R. Distribution of repetitive DNA sequences in eubacteria and application to finerpriting of bacterial enomes. Nucleic Acids Res. 1991, 19, 6823–6831. [Google Scholar] [CrossRef]
- Versalovic, J.; Schneider, M.; De Bruijn, F.J.; Lupski, J.R. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Biol. 1994, 5, 25–40. [Google Scholar]
- Rademaker, J.L.W.; de Bruijn, F.J. Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer assisted pattern analysis. In DNA Markers: Protocols, Applications and Overviews; Caetano-Anollés, G., Gresshoff, P.M., Eds.; J. Wiley & Sons: Hoboken, NJ, USA, 1997; pp. 151–171. [Google Scholar]
- Pavel, A.B.; Vasile, C.I. PyElph-a software tool for gel images analysis and phylogenetics. BMC Bioinform. 2012, 13, 9. [Google Scholar] [CrossRef]
- Waleron, M.; Waleron, K.; Geider, K.; Lojkowska, E. Application of RFLP analysis of recA, gyrA and rpoS gene fragments for rapid differentiation of Erwinia amylovora from Erwinia strains isolated in Korea and Japan. Eur. J. Plant Pathol. 2008, 121, 161–172. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Lebecka, R. Screening for potato resistance to blackleg and soft rot. Plant Breed. Seed Sci. 2017, 75, 97–104. [Google Scholar] [CrossRef]
- Rossmann, S.; Dees, M.W.; Torp, T.; Le, V.H.; Skogen, M.; Glorvigen, B.; van der Wolf, J.; Brurberg, M.B. Field-scale molecular testing of virulent potato soft rot Pectobacteriaceae in Norway. Eur. J. Plant Pathol. 2020, 156, 501–517. [Google Scholar] [CrossRef]
- The European Cultivated Potato Database. Available online: https://www.europotato.org/varieties/ (accessed on 14 August 2022).
- Hugouvieux-Cotte-Pattat, N.; Condemine, G.; Shevchik, V.E. Bacterial pectate lyases, structural and functional diversity. Environ. Microbiol. Rep. 2014, 6, 427–440. [Google Scholar] [CrossRef]
- Motyka, A.; Zoledowska, S.; Sledz, W.; Lojkowska, E. Molecular methods as tools to control plant diseases caused by Dickeya and Pectobacterium spp: A minireview. New Biotechnol. 2017, 39, 181–189. [Google Scholar] [CrossRef]
- Vlahović, B.; Puškarić, A.; Červenski, J. Characteristics of vegetable production in the Republic of Serbia. Ratar. Povrt. 2010, 47, 461–466. [Google Scholar]
- Novkovic, N.; Mutavdzic, B.; Janosevic, M.; Miljanovic, G. Potato production characteristics-comperative analysis in European Union countries and Serbia. In Proceedings of the Book of Proceedings: Fifth International Scientific Agricultural Symposium “Agrosym 2014”, Jahorina, Bosnia and Herzegovina, 23–26 October 2014; pp. 1062–1067. [Google Scholar]
- Naas, H.; Sebaihia, M.; Orfei, B.; Rezzonico, F.; Buonaurio, R.; Moretti, C. Pectobacterium carotovorum subsp. brasiliense and Pectobacterium carotovorum subsp. carotovorum as causal agents of potato soft rot in Algeria. Eur. J. Plant Pathol. 2018, 151, 1027–1034. [Google Scholar] [CrossRef]
- Choi, O.; Kim, J. Pectobacterium carotovorum subsp. brasiliense causing soft rot on paprika in Korea. J. Phytopath. 2013, 161, 125–127. [Google Scholar] [CrossRef]
- Li, X.; Yuan, K.; Cullis, J.; Lévesque, C.A.; Chen, W.; Lewis, C.T.; De Boer, S.H. Draft genome sequences for Canadian isolates of Pectobacterium carotovorum subsp. brasiliense with weak virulence on potato. Genome Announc. 2015, 3, e00240-15. [Google Scholar] [CrossRef]
- Tesoriero, L. Review Bacterial Blackleg Disease and R&D Gaps with a Focus on the Potato Industry; Final Report; Hort Innovations: Sydney, Australia, 2018. [Google Scholar]
- Panda, P.; Fiers, M.A.W.J.; Armstrong, K.; Pitman, A.R. First report of blackleg and soft rot of potato caused by Pectobacterium carotovorum subsp. brasiliensis in New Zealand. New Dis. Rep. 2012, 26, 15. [Google Scholar] [CrossRef]
- Onkendi, E.M.; Moleleki, L.N. Characterization of Pectobacterium carotovorum subsp. carotovorum and brasiliense from diseased potatoes in Kenya. Eur. J. Plant Pathol. 2014, 139, 557–566. [Google Scholar] [CrossRef]
- Cigna, J.; Laurent, A.; Waleron, M.; Waleron, K.; Dewaegeneire, P.; van der Wolf, J.; Andrivon, D.; Faure, D.; Hélias, V. European Population of Pectobacterium punjabense: Genomic Diversity, Tuber Maceration Capacity and a Detection Tool for This Rarely Occurring Potato Pathogen. Microorganisms 2021, 9, 781. [Google Scholar] [CrossRef] [PubMed]
- Czajkowski, R.; Pérombelon, M.C.M.; Jafra, S.; Lojkowska, E.; Potrykus, M.; van der Wolf, J.M.; Sledz, W. Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: A review. Ann. Appl. Biol. 2015, 166, 18–38. [Google Scholar] [CrossRef] [PubMed]
- Van der Wolf, J.M.; Cahill, G.; Van Gijsegem, F.; Hélias, V.; Humphris, S.; Li, X.S.; Lojkowska, E.; Pritchard, L. Isolation, Detection and Characterization of Pectobacterium and Dickeya Species. In Plant Diseases Caused by Dickeya and Pectobacterium Species, 1st ed.; Van Gijsegem, F., van der Wolf, J.M., Toth, I.K., Eds.; Springer: Cham, Switzerland, 2021; pp. 149–173. [Google Scholar] [CrossRef]
- Clarridge III, J.E. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 2004, 17, 840–862. [Google Scholar] [CrossRef] [PubMed]
- Spröer, C.; Mendrock, U.; Swiderski, J.; Lang, E.; Stackebrandt, E. The phylogenetic position of Serratia, Buttiauxella and some other genera of the family Enterobactericeae. Int. J. Syst. Evol. Microbiol. 1999, 49, 1433–1438. [Google Scholar] [CrossRef]
- Tindall, B.J.; Rosselló-Móra, R.; Busse, H.-J.; Ludwig, W.; Kämpfer, P. Notes on the characterization of prokaryotes strains for taxonomic purposes. Int. J. Syst. Evol. Microbiol. 2010, 60, 249–266. [Google Scholar] [CrossRef]
- Kwon, S.W.; Go, S.J.; Kang, H.W.; Ryu, J.C.; Jo, J.K. Phylogenetic analysis of Erwinia species based on 16S rRNA gene sequences. Int. J. Syst. Evol. Microbiol. 1997, 47, 1061–1067. [Google Scholar] [CrossRef]
- Staley, T.J. The bacterial species dilemma and the genomic-phylogenetic species concept. Phil. Trans. R. Soc. 2006, 361, 1899–1909. [Google Scholar] [CrossRef]
- Glaeser, S.P.; Kämpfer, P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst. Appl. Microbiol. 2015, 38, 237–245. [Google Scholar] [CrossRef]
- Ishii, S.; Sadowsky, M.J. Applications of the rep-PCR DNA fingerprinting technique to study microbial diversity, ecology and evolution. Environ. Microbiol. 2009, 11, 733–740. [Google Scholar] [CrossRef]
- Nabhan, S.; De Boer, S.H.; Maiss, E.; Wydra, K. Taxonomic relatedness between Pectobacterium carotovorum subsp. carotovorum, Pectobacterium carotovorum subsp. odoriferum and Pectobacterium carotovorum subsp. brasiliense subsp. nov. J. Appl. Microbiol. 2012, 113, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Moleleki, L.N.; Onkendi, E.M.; Mongae, A.; Kubheka, G.C. Characterisation of Pectobacterium wasabiae causing blackleg and soft rot diseases in South Africa. Eur. J. Plant Pathol. 2013, 135, 279–288. [Google Scholar] [CrossRef]
- Zlatković, N.; Prokić, A.; Gašić, K.; Kuzmanović, N.; Ivanović, M.; Obradović, A. First report of Pectobacterium carotovorum subsp. brasiliense causing soft rot on squash and watermelon in Serbia. Plant Dis. 2019, 103, 2667. [Google Scholar] [CrossRef]
- Gašić, K.; Gavrilović, V.; Dolovac, N.; Trkulja, N.; Živković, S.; Ristić, D.; Obradović, A. Pectobacterium carotovorum subsp. carotovorum-the causal agent of broccoli soft rot in Serbia. Pestic. Fitomed. 2014, 29, 249–255. [Google Scholar] [CrossRef]
- Baghaee-Ravari, S.; Rahimian, H.; Shams-Bakhsh, M.; Lopez-Solanilla, E.; Antúnez-Lamas, M.; Rodríguez-Palenzuela, P. Characterization of Pectobacterium species from Iran using biochemical and molecular methods. Eur. J. Plant Pathol. 2011, 129, 413–425. [Google Scholar] [CrossRef]
- Muslim, S.N.; Mahammed, A.N.; Musafer, H.K.; AL_Kadmy, I.M.; Shafiq, S.A.; Muslim, S.N. Detection of the optimal conditions for tannase productivity and activity by Erwinia carotovora. J. Med. Biol. Eng. 2015, 4, 198–205. [Google Scholar] [CrossRef]
Primer Pair | Initial Denaturation | Cycles | Denaturation | Annealing | Extension | Final Extension |
---|---|---|---|---|---|---|
Y1/Y2 | 94 °C, 10 min | 25 | 94 °C, 60 s | 67 °C, 60 s | 72 °C, 30 s | 72 °C, 10 min |
Br1F/L1R | 94 °C, 2 min | 25 | 94 °C, 45 s | 62 °C, 45 s | 72 °C, 90 s | 72 °C, 10 min |
EXPCCF/EXPCCR | 94 °C, 4 min | 30 | 94 °C, 1 min | 60 °C, 1 min | 72 °C, 2 min | 72 °C, 7 min |
27F/1492R | 94 °C, 5 min | 30 | 94 °C, 30 s | 53 °C, 1 min | 72 °C, 30 s | 72 °C, 7 min |
Strain | Origin | Isolation Source | Reference |
---|---|---|---|
P. carotovorum DAPP-PG 751 | Akkar, Lebanon | Potato (Solanum tuberosum) | - |
P. carotovorum DAPP-PG 752 | Jeb Jenin (West Bekaa), Lebanon | Potato (Solanum tuberosum) | [53] |
P. carotovorum LMG 2408 | Denmark | Calla Lily (Zantedeschia aethiopica) | [53] |
P. brasiliense LMG 21370 | Rio Grande do Sul State, Brazil | Potato (Solanum tuberosum) | [19,49] |
Strain | Origin | Isolation Source | GenBank Acc. No. |
---|---|---|---|
P. brasiliense strain SX309 | China | Cucumis sativus | CP020350.1 |
P. punjabense strain SS95 | Pakistan | Solanum tuberosum | CP038498.1 |
P. carotovorum strain ZM1 | Ukraine | - | CP045098.1 |
P. carotovorum strain WPP14 | Wisconsin, USA | Solanum tuberosum | CP051652.1 |
P. carotovorum strain NCPPB 312 | Denmark | Solanum tuberosum | JQHJ01000001.1 |
D. dianthicola NCPPB 453 | UK | Dianthus caryophyllus | NZ_CM001841.1 |
D. dianthicola strain 16LI02 | New York, USA | Solanum tuberosum | CP069602.1 |
SE | |||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
1. Dickeya_dianthicola_ strain_NCPPB_453 | 0.00048 | 0.00493 | 0.00683 | 0.00667 | 0.00689 | 0.00806 | 0.00487 | 0.00491 | 0.00489 | 0.00682 | 0.00784 | 0.00501 | |
2. Dickeya_dianthicola_strain_16LI02 | 0.00152 | 0.00494 | 0.00681 | 0.00665 | 0.00686 | 0.00806 | 0.00488 | 0.00492 | 0.00489 | 0.00680 | 0.00784 | 0.00503 | |
3. Pectobacterium_carotovorum_strain_NCPPB_312 | 0.20698 | 0.20667 | 0.00352 | 0.00331 | 0.00335 | 0.00366 | 0.00271 | 0.00097 | 0.00102 | 0.00183 | 0.00544 | 0.00296 | |
4. Pectobacterium_brasiliense_strain_MMFC19_3b | 0.14617 | 0.14577 | 0.03217 | 0.00213 | 0.00199 | 0.00233 | 0.00222 | 0.00366 | 0.00361 | 0.00360 | 0.00553 | 0.00515 | |
5. Pectobacterium_brasiliense_strain_MMKC19_2b | 0.14866 | 0.14828 | 0.03065 | 0.01152 | 0.00214 | 0.00261 | 0.00166 | 0.00347 | 0.00337 | 0.00352 | 0.00546 | 0.00492 | |
6. Pectobacterium_brasiliense_strain_MMMC28_6b | 0.13981 | 0.13939 | 0.02763 | 0.00842 | 0.01140 | 0.00265 | 0.00199 | 0.00341 | 0.00334 | 0.00340 | 0.00581 | 0.00514 | |
7. Pectobacterium_brasiliense_strain_MMSGC1_4b | 0.15443 | 0.15443 | 0.02716 | 0.01111 | 0.01289 | 0.01246 | 0.00256 | 0.00393 | 0.00389 | 0.00400 | 0.00606 | 0.00591 | |
8. Pectobacterium_brasiliense_strain_SX309 | 0.20355 | 0.20324 | 0.04985 | 0.01221 | 0.00690 | 0.01005 | 0.01258 | 0.00274 | 0.00275 | 0.00336 | 0.00556 | 0.00339 | |
9. Pectobacterium_carotovorum_strain_WPP14 | 0.20747 | 0.20716 | 0.00686 | 0.03298 | 0.03218 | 0.02805 | 0.02867 | 0.05091 | 0.00063 | 0.00067 | 0.00546 | 0.00295 | |
10. Pectobacterium_carotovorum_strain_ZM1 | 0.20704 | 0.20673 | 0.00686 | 0.03298 | 0.03103 | 0.02679 | 0.02867 | 0.05124 | 0.00274 | 0.00125 | 0.00546 | 0.00294 | |
11. Pectobacterium_carotovorum_strain_MMDC11_10 | 0.14800 | 0.14762 | 0.00930 | 0.03084 | 0.03086 | 0.02815 | 0.02862 | 0.02906 | 0.00116 | 0.00426 | 0.00548 | 0.00504 | |
12. Pectobacterium_punjabense_strain_MMZCVR2 | 0.15330 | 0.15330 | 0.06972 | 0.07228 | 0.07085 | 0.07062 | 0.07564 | 0.07259 | 0.06877 | 0.06925 | 0.06828 | 0.00097 | |
13. Pectobacterium_punjabense_strain_SS95 | 0.21137 | 0.21106 | 0.06390 | 0.07368 | 0.07278 | 0.06860 | 0.07949 | 0.08481 | 0.06321 | 0.06333 | 0.06931 | 0.00192 | |
p |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loc, M.; Milošević, D.; Ivanović, Ž.; Ignjatov, M.; Budakov, D.; Grahovac, J.; Grahovac, M. Genetic Diversity of Pectobacterium spp. on Potato in Serbia. Microorganisms 2022, 10, 1840. https://doi.org/10.3390/microorganisms10091840
Loc M, Milošević D, Ivanović Ž, Ignjatov M, Budakov D, Grahovac J, Grahovac M. Genetic Diversity of Pectobacterium spp. on Potato in Serbia. Microorganisms. 2022; 10(9):1840. https://doi.org/10.3390/microorganisms10091840
Chicago/Turabian StyleLoc, Marta, Dragana Milošević, Žarko Ivanović, Maja Ignjatov, Dragana Budakov, Jovana Grahovac, and Mila Grahovac. 2022. "Genetic Diversity of Pectobacterium spp. on Potato in Serbia" Microorganisms 10, no. 9: 1840. https://doi.org/10.3390/microorganisms10091840
APA StyleLoc, M., Milošević, D., Ivanović, Ž., Ignjatov, M., Budakov, D., Grahovac, J., & Grahovac, M. (2022). Genetic Diversity of Pectobacterium spp. on Potato in Serbia. Microorganisms, 10(9), 1840. https://doi.org/10.3390/microorganisms10091840