Prevalence and Characterization of Shiga Toxin Producing Escherichia coli Isolated from Animal Feed in Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection and Isolation of E. coli
2.2. Characterisation of Isolated E. coli Strains
2.3. Identification and Characterization of Shiga Toxin-Producing E. coli Genes
3. Results
3.1. Isolation and Characterisation of Isolated E. coli Strains
3.2. Serotypes and Seropathotypes of Isolated STEC Strains
3.3. Virulence Profile of Positive STEC Strains (No = 27)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Friedrich, A.W.; Bielaszewska, M.; Zhang, W.L.; Pulz, M.; Kuczius, T.; Ammon, A.; Karch, H. Escherichia coli Harboring Shiga Toxin 2 Gene Variants: Frequency and Association with Clinical Symptoms. J. Infect. Dis. 2002, 185, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Beutin, L.; Krause, G.; Zimmermann, S.; Kaulfuss, S.; Gleier, K. Characterization of Shiga Toxin-Producing Escherichia coli Strains Isolated from Human Patients in Germany over a 3-Year Period. J. Clin. Microbiol. 2004, 42, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
- Persson, S.; Olsen, K.E.P.; Ethelberg, S.; Scheutz, F. Subtyping Method for Escherichia coli Shiga Toxin (Verocytotoxin) 2 Variants and Correlations to Clinical Manifestations. J. Clin. Microbiol. 2007, 45, 2020–2024. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, R.R.; Henderson, I.R. The Evolution of the Escherichia coli Phylogeny. Infect. Genet. Evol. 2012, 12, 214–226. [Google Scholar] [CrossRef]
- Byrne, L.; Vanstone, G.L.; Perry, N.T.; Launders, N.; Adak, G.K.; Godbole, G.; Grant, K.A.; Smith, R.; Jenkins, C. Epidemiology and Microbiology of Shiga Toxin-Producing Escherichia coli Other than Serogroup O157 in England, 2009-2013. J. Med. Microbiol. 2014, 63 Pt 9, 1181–1188. [Google Scholar] [CrossRef]
- Morabito, S.; Dell’Omo, G.; Agrimi, U.; Schmidt, H.; Karch, H.; Cheasty, T.; Caprioli, A. Detection and Characterization of Shiga Toxin-Producing Escherichia coli in Feral Pigeons. Vet. Microbiol. 2001, 82, 275–283. [Google Scholar] [CrossRef]
- Scheutz, F. Taxonomy Meets Public Health: The Case of Shiga Toxin-Producing Escherichia coli. In Enterohemorrhagic Escherichia coli and Other Shiga Toxin-Producing E. coli; ASM Press: Washington, DC, USA, 2015; pp. 15–36. [Google Scholar] [CrossRef]
- Escherich, T. The Intestinal Bacteria of the Neonate and Breast-Fed Infant. 1884. Rev. Infect. Dis. 1988, 10, 1220–1225. [Google Scholar] [CrossRef]
- Shiga, K. Ueber Den Disenteriebacillus (Bacillus dysenteriae). Zentralblat fuer Bakteriol. Parasitenkd. und Infekt. Erste Abteilung 1898, 24, 913–918. [Google Scholar]
- Kauffmann, F. ZUR SEROLOGIE DER DYSENTERIE-GRUPPE. Acta Pathol. Microbiol. Scand. 1943, 20, 53–78. [Google Scholar] [CrossRef]
- Orskov, I.; Orskov, F.; Jann, B.; Jann, K. Serology, Chemistry, and Genetics of O and K Antigens of Escherichia coli. Bacteriol. Rev. 1977, 41, 667. [Google Scholar] [CrossRef]
- Orskov, F.; Orskov, I. Escherichia coli Serotyping and Disease in Man and Animals. Can. J. Microbiol. 1992, 38, 699–744. [Google Scholar] [CrossRef] [PubMed]
- Caprioli, A.; Scavia, G.; Morabito, S. Public Health Microbiology of Shiga Toxin-Producing Escherichia coli. Microbiol. Spectr. 2014, 2, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Naseer, U.; Løbersli, I.; Hindrum, M.; Bruvik, T.; Brandal, L.T. Virulence Factors of Shiga Toxin-Producing Escherichia coli and the Risk of Developing Haemolytic Uraemic Syndrome in Norway, 1992-2013. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1613–1620. [Google Scholar] [CrossRef]
- Erjavec, M.S. The Universe of Escherichia coli [Working Title]; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Blattner, F.R.; Plunkett, G.; Bloch, C.A.; Perna, N.T.; Burland, V.; Riley, M.; Collado-Vides, J.; Glasner, J.D.; Rode, C.K.; Mayhew, G.F.; et al. The Complete Genome Sequence of Escherichia coli K-12. Science 1997, 277, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.; Hensel, M. Pathogenicity Islands in Bacterial Pathogenesis. Clin. Microbiol. Rev. 2004, 17, 14–56. [Google Scholar] [CrossRef]
- Touchon, M.; Hoede, C.; Tenaillon, O.; Barbe, V.; Baeriswyl, S.; Bidet, P.; Bingen, E.; Bonacorsi, S.; Bouchier, C.; Bouvet, O.; et al. Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths. PLoS Genet. 2009, 5, e1000344. [Google Scholar] [CrossRef]
- Gilmore, M.S.; Ferretti, J.J. The Thin Line between Gut Commensal and Pathogen. Science 2003, 299, 1999–2002. [Google Scholar] [CrossRef]
- Chapman, T.A.; Wu, X.Y.; Barchia, I.; Bettelheim, K.A.; Driesen, S.; Trott, D.; Wilson, M.; Chin, J.J.C. Comparison of Virulence Gene Profiles of Escherichia coli Strains Isolated from Healthy and Diarrheic Swine. Appl. Environ. Microbiol. 2006, 72, 4782–4795. [Google Scholar] [CrossRef] [Green Version]
- Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 142–201. [Google Scholar] [CrossRef]
- Bélanger, L.; Garenaux, A.; Harel, J.; Boulianne, M.; Nadeau, E.; Dozois, C.M. Escherichia colifrom Animal Reservoirs as a Potential Source of Human Extraintestinal Pathogenic E. coli. FEMS Immunol. Med. Microbiol. 2011, 62, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rivas, L.; Mellor, G.E.; Gobius, K.; Fegan, N. Detection and Typing Strategies for Pathogenic Escherichia coli; Springer Briefs in Food, Health, and Nutrition; Springer: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Ramos, S.; Silva, V.; de Lurdes Enes Dapkevicius, M.; Caniça, M.; Tejedor-Junco, M.T.; Igrejas, G.; Poeta, P. Escherichia coli as Commensal and Pathogenic Bacteria among Food-Producing Animals: Health Implications of Extended Spectrum β-Lactamase (ESBL) Production. Animals 2020, 10, 2239. [Google Scholar] [CrossRef] [PubMed]
- ECDC. Shiga Toxin-Producing Escherichia coli (STEC) Infection—Annual Epidemiological Report for 2019. Available online: https://www.ecdc.europa.eu/en/publications-data/shiga-toxin-producing-escherichia-coli-stec-infection-annual-epidemiological (accessed on 28 July 2022).
- Karmali, M.A.; Mascarenhas, M.; Shen, S.; Ziebell, K.; Johnson, S.; Reid-Smith, R.; Isaac-Renton, J.; Clark, C.; Rahn, K.; Kaper, J.B. Association of Genomic O Island 122 of Escherichia coli EDL 933 with Verocytotoxin-Producing Escherichia coli Seropathotypes That Are Linked to Epidemic and/or Serious Disease. J. Clin. Microbiol. 2003, 41, 4930–4940. [Google Scholar] [CrossRef] [PubMed]
- Tozzoli, R.; Grande, L.; Michelacci, V.; Ranieri, P.; Maugliani, A.; Caprioli, A.; Morabito, S. Shiga Toxin-Converting Phages and the Emergence of New Pathogenic Escherichia coli: A World in Motion. Front. Cell. Infect. Microbiol. 2014, 4, 80. [Google Scholar] [CrossRef]
- Stanford, K.; Reuter, T.; Bach, S.J.; Chui, L.; Ma, A.; Conrad, C.C.; Tostes, R.; McAllister, T.A. Effect of Severe Weather Events on the Shedding of Shiga Toxigenic Escherichia coli in Slaughter Cattle and Phenotype of Serogroup O157 Isolates. FEMS Microbiol. Ecol. 2017, 93, fix098. [Google Scholar] [CrossRef]
- Lindstedt, B.A.; Finton, M.D.; Porcellato, D.; Brandal, L.T. High Frequency of Hybrid Escherichia coli Strains with Combined Intestinal Pathogenic Escherichia coli (IPEC) and Extraintestinal Pathogenic Escherichia coli (ExPEC) Virulence Factors Isolated from Human Faecal Samples. BMC Infect. Dis. 2018, 18, 544. [Google Scholar] [CrossRef] [PubMed]
- Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent Advances in Understanding Enteric Pathogenic Escherichia coli. Clin. Microbiol. Rev. 2013, 26, 822–880. [Google Scholar] [CrossRef]
- Melton-Celsa, A.R. Shiga Toxin (Stx) Classification, Structure, and Function. Microbiol. Spectr. 2014, 2, 2–4. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Bai, X.; Zhang, J.; Sun, H.; Fu, S.; Fan, R.; He, X.; Scheutz, F.; Matussek, A.; Xiong, Y. Escherichia coli Strains Producing a Novel Shiga Toxin 2 Subtype Circulate in China. Int. J. Med. Microbiol. 2020, 310, 151377. [Google Scholar] [CrossRef]
- Johnson, K.E.; Thorpe, C.M.; Sears, C.L. The Emerging Clinical Importance of Non-O157 Shiga Toxin-Producing Escherichia coli. Clin. Infect. Dis. 2006, 43, 1587–1595. [Google Scholar] [CrossRef]
- Mellies, J.L.; Barron, A.M.S.; Carmona, A.M. Enteropathogenic and Enterohemorrhagic Escherichia coli Virulence Gene Regulation. Infect. Immun. 2007, 75, 4199. [Google Scholar] [CrossRef] [PubMed]
- Spears, K.J.; Roe, A.J.; Gally, D.L. A Comparison of Enteropathogenic and Enterohaemorrhagic Escherichia coli Pathogenesis. FEMS Microbiol. Lett. 2006, 255, 187–202. [Google Scholar] [CrossRef] [PubMed]
- Etcheverría, A.I.; Padola, N.L. Shiga Toxin-Producing Escherichia coli: Factors Involved in Virulence and Cattle Colonization. Virulence 2013, 4, 366–372. [Google Scholar] [CrossRef]
- Jerse, A.E.; Yu, J.; Tall, B.D.; Kaper, J.B. A Genetic Locus of Enteropathogenic Escherichia coli Necessary for the Production of Attaching and Effacing Lesions on Tissue Culture Cells (Bacterial Adhesion/Bacterial Pathogenesis/Diarrhea). Proc. Natl. Acad. Sci. USA 1990, 87, 7839–7843. [Google Scholar] [CrossRef] [PubMed]
- Donnenberg, M.S.; Tzipori, S.; Mckee, M.L.; O’brien, A.D.; Alroy, J.; Kapert, J.B. The Role of the Eae Gene of Enterohemorrhagic Escherichia coli in Intimate Attachment In Vitro and in a Porcine Model. J. Clin. Investig. 1993, 92, 1418–1424. [Google Scholar] [CrossRef]
- Vishram, B.; Jenkins, C.; Greig, D.R.; Godbole, G.; Carroll, K.; Balasegaram, S.; Byrne, L. The Emerging Importance of Shiga Toxin-Producing Escherichia coli Other than Serogroup O157 in England. J. Med. Microbiol. 2021, 70, 001375. [Google Scholar] [CrossRef]
- Oswald, E.; Schmidt, H.; Morabito, S.; Karch, H.; Marchès, O.; Caprioli, A. Typing of Intimin Genes in Human and Animal Enterohemorrhagic and Enteropathogenic Escherichia coli: Characterization of a New Intimin Variant. Infect. Immun. 2000, 68, 64–71. [Google Scholar] [CrossRef]
- Vally, H.; Hall, G.; Dyda, A.; Raupach, J.; Knope, K.; Combs, B.; Desmarchelier, P. Epidemiology of Shiga Toxin Producing Escherichia coli in Australia, 2000-2010. BMC Public Health 2012, 12, 63. [Google Scholar] [CrossRef] [Green Version]
- Majowicz, S.E.; Scallan, E.; Jones-Bitton, A.; Sargeant, J.M.; Stapleton, J.; Angulo, F.J.; Yeung, D.H.; Kirk, M.D. Global Incidence of Human Shiga Toxin-Producing Escherichia coli Infections and Deaths: A Systematic Review and Knowledge Synthesis. Foodborne Pathog. Dis. 2014, 11, 447–455. [Google Scholar] [CrossRef]
- Tack, D.M.; Marder, E.P.; Griffin, P.M.; Cieslak, P.R.; Dunn, J.; Hurd, S.; Scallan, E.; Lathrop, S.; Muse, A.; Ryan, P.; et al. Preliminary Incidence and Trends of Infections with Pathogens Transmitted Commonly Through Food—Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2015–2018. MMWR. Morb. Mortal. Wkly. Rep. 2019, 68, 369–373. [Google Scholar] [CrossRef]
- Torti, J.F.; Cuervo, P.; Nardello, A.; Pizarro, M. Epidemiology and Characterization of Shiga Toxin-Producing Escherichia coli of Hemolytic Uremic Syndrome in Argentina. Cureus 2021, 13, e17213. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, e06406. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Pathogenicity Assessment of Shiga Toxin-Producing Escherichia coli (STEC) and the Public Health Risk Posed by Contamination of Food with STEC. EFSA J. 2020, 18, e05967. [Google Scholar] [CrossRef]
- VTEC, E. Laboratory Methods-ISS (EN)-ISS. Available online: https://www.iss.it/web/iss-en/vtec-laboratory-methods (accessed on 28 July 2022).
- Paton, A.W.; Paton, J.C. Detection and Characterization of Shiga Toxigenic Escherichia coli by Using Multiplex PCR Assays for Stx1, Stx2, EaeA, Enterohemorrhagic E. coli HlyA, Rfb(O111), and Rfb(O157). J. Clin. Microbiol. 1998, 36, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Hunter, P.R.; Gaston, M.A. Numerical Index of the Discriminatory Ability of Typing Systems: An Application of Simpson’s Index of Diversity. J. Clin. Microbiol. 1988, 26, 2465–2466. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Brown, E.; Knabel, S.J. Molecular Epidemiology of Foodborne Pathogens. In Genomics of Foodborne Bacterial Pathogens; Springer: Berlin/Heidelberg, Germany, 2011; pp. 403–453. [Google Scholar] [CrossRef]
- Treier, A.; Stephan, R.; Stevens, M.J.A.; Cernela, N.; Nüesch-Inderbinen, M. High Occurrence of Shiga Toxin-Producing Escherichia coli in Raw Meat-Based Diets for Companion Animals—A Public Health Issue. Microorganisms 2021, 9, 1556. [Google Scholar] [CrossRef]
- Kobayashi, H.; Pohjanvirta, T.; Pelkonen, S. Prevalence and Characteristics of Intimin-and Shiga Toxin-Producing Escherichia coli from Gulls, Pigeons and Broilers in Finland. J. Vet. Med. Sci 2002, 64, 1071–1073. [Google Scholar] [CrossRef] [Green Version]
- Mäde, D.; Geuthner, A.C.; Imming, R.; Wicke, A. Detection and Isolation of Shiga-Toxin Producing Escherichia coli in Flour in Germany between 2014 and 2017. J. fur Verbraucherschutz und Leb. 2017, 12, 245–253. [Google Scholar] [CrossRef]
- Bai, X.; Wang, H.; Xin, Y.; Wei, R.; Tang, X.; Zhao, A.; Sun, H.; Zhang, W.; Wang, Y.; Xu, Y.; et al. Prevalence and Characteristics of Shiga Toxin-Producing Escherichia coli Isolated from Retail Raw Meats in China. Int. J. Food Microbiol. 2015, 200, 31–38. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). The European Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19, e06971. [Google Scholar] [CrossRef]
- Sanches, L.A.; Gomes, M.d.S.; Teixeira, R.H.F.; Cunha, M.P.V.; de Oliveira, M.G.X.; Vieira, M.A.M.; Gomes, T.A.T.; Knobl, T. Captive Wild Birds as Reservoirs of Enteropathogenic E. coli (EPEC) and Shiga-Toxin Producing E. coli (STEC). Braz. J. Microbiol. 2017, 48, 760–763. [Google Scholar] [CrossRef] [PubMed]
- Pilipčinec, E.; Tkáčiková, L.; Naas, H.T.; Cabadaj, R.; Mikula, I. Isolation of Verotoxigenic Escherichia coli O157 from Poultry. Folia Microbiol. (Praha) 1999, 44, 455–456. [Google Scholar] [CrossRef] [PubMed]
- Kariuki, S.; Gilks, C.C.; Kimari, J.; Muyodi, J.; Getty, B.; Hart, C.A. Carriage of Potentially Pathogenic Escherichia coli in Chickens. Avian Dis. 2002, 46, 721–724. [Google Scholar] [CrossRef]
- Parreira, V.R.; Gyles, C.L. Shiga Toxin Genes in Avian Escherichia coli. Vet. Microbiol. 2002, 87, 341–352. [Google Scholar] [CrossRef]
- Krause, G.; Zimmermann, S.; Beutin, L. Investigation of Domestic Animals and Pets as a Reservoir for Intimin-(Eae) Gene Positive Escherichia coli Types. Vet. Microbiol. 2005, 106, 87–95. [Google Scholar] [CrossRef]
- Farooq, S.; Hussain, I.; Mir, M.A.; Bhat, M.A.; Wani, S.A. Isolation of Atypical Enteropathogenic Escherichia coli and Shiga Toxin 1 and 2f-Producing Escherichia coli from Avian Species in India. Lett. Appl. Microbiol. 2009, 48, 692–697. [Google Scholar] [CrossRef]
- Lee, G.Y.; Jang, H.I.; Hwang, I.G.; Rhee, M.S. Prevalence and Classification of Pathogenic Escherichia coli Isolated from Fresh Beef, Poultry, and Pork in Korea. Int. J. Food Microbiol. 2009, 134, 196–200. [Google Scholar] [CrossRef]
- Alonso, M.Z.; Padola, N.L.; Parma, A.E.; Lucchesi, P.M.A. Enteropathogenic Escherichia coli Contamination at Different Stages of the Chicken Slaughtering Process. Poult. Sci. 2011, 90, 2638–2641. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Q.; Jing, H.; Pang, B.; Yang, J.; Zhao, G.; Li, H. Isolation of Escherichia coli O157:H7 from Dung Beetles Catharsius Molossus. Microbiol. Immunol. 2003, 47, 45–49. [Google Scholar] [CrossRef]
- Kauffman, M.D.; LeJeune, J. European Starlings (Sturnus Vulgaris) Challenged with Escherichia coli O157 Can Carry and Transmit the Human Pathogen to Cattle. Lett. Appl. Microbiol. 2011, 53, 596–601. [Google Scholar] [CrossRef]
- Persad, A.K.; LeJeune, J.T. Animal Reservoirs of Shiga Toxin-Producing Escherichia coli. Microbiol. Spectr. 2014, 2, 211–230. [Google Scholar] [CrossRef] [PubMed]
- Mughini-Gras, L.; van Pelt, W.; van der Voort, M.; Heck, M.; Friesema, I.; Franz, E. Attribution of human infections with Shiga toxin-producing Escherichia coli (STEC) to livestock sources and identification of source-specific risk factors, The Netherlands (2010–2014). Zoonoses Public Health 2017, 65, e8–e22. [Google Scholar] [CrossRef] [PubMed]
- Karch, H.; Meyer, T.; Russmann, H.; Heesemann, J. Frequent Loss of Shiga-like Toxin Genes in Clinical Isolates of Escherichia coli upon Subcultivation. Infect. Immun. 1992, 60, 3464–3467. [Google Scholar] [CrossRef]
- Joris, M.A.; Verstraete, K.; de Reu, K.; de Zutter, L. Loss of Vtx Genes after the First Subcultivation Step of Verocytotoxigenic Escherichia coli O157 and Non-O157 during Isolation from Naturally Contaminated Fecal Samples. Toxins 2011, 3, 672. [Google Scholar] [CrossRef] [PubMed]
- Trabulsi, L.R.; Keller, R.; Tardelli Gomes, T.A. Typical and Atypical Enteropathogenic Escherichia coli. Emerg. Infect. Dis. 2002, 8, 508–513. [Google Scholar] [CrossRef]
- Hernandes, R.T.; Elias, W.P.; Vieira, M.A.M.; Gomes, T.A.T. An Overview of Atypical Enteropathogenic Escherichia coli. FEMS Microbiol. Lett. 2009, 297, 137–149. [Google Scholar] [CrossRef]
- Kaper, J.B.; O’Brien, A.D. Overview and Historical Perspectives. Microbiol. Spectr. 2014, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Adorján, A.; Makrai, L.; Mag, T.; Jánosi, S.; Könyves, L.; Tóth, I. High Frequency of Multidrug-Resistant (MDR) Atypical Enteropathogenic Escherichia coli (AEPEC) in Broilers in Hungary. Front. Vet. Sci. 2020, 7, 511. [Google Scholar] [CrossRef]
Target Gene | Primer Sequence | Amplicon Size (bp) |
---|---|---|
eaeA | eaeAF (GACCCGGCACAAGCATAAGC) eaeAR (CCACCTGCAGCAACAAGAGG) | 384 |
stx1 | stx1F (ATAAATCGCCATTCGTTGACTAC) stx1R (AGAACGCCCACTGAGATCATC) | 180 |
stx2 | stx2F (GGCACTGTCTGAAACTGCTCC) stx2R (TCGCCAGTTATCTGACATTCTG) | 255 |
stx2f | stx2fF (AGATTGGGCGTCATTCACTGGTTG) stx2fR (TACTTTAATGGCCGCCCTGTCTCC) | 428 |
Target Gene | Primer Sequence (5′–3′) | Amplicon Size (bp) |
---|---|---|
stx1 | ||
stx1a-F1 stx1a-R2 | CCTTTCCAGGTACAACAGCGGTT GGAAACTCATCAGATGCCATTCTGG | 478 |
stx1c-F1 stx1c-R1 | CCTTTCCTGGTACAACTGCGGTT CAAGTGTTGTACGAAATCCCCTCTGA | 252 |
stx1d-F1 stx1d-R2 | CAGTTAATGCGATTGCTAAGGAGTTTACC CTCTTCCTCTGGTTCTAACCCCATGATA | 203 |
stx2 | ||
stx2a-F2 stx2a-R3 stx2a-R2 | GCGATACTGRGBACTGTGGCC CCGKCAACCTTCACTGTAAATGTG GGCCACCTTCACTGTGAATGTG | 349 347 |
stx2b-F1 stx2b-R1 | AAATATGAAGAAGATATTTGTAGCGGC CAGCAAATCCTGAACCTGACG | 251 |
stx2c-F1 stx2c-R2 | GAAAGTCACAGTTTTTATATACAACGGGTA CCGGCCACYTTTACTGTGAATGTA | 177 |
stx2d-F1 stx2d-R1 stx2d-R2 | AAARTCACAGTCTTTATATACAACGGGTG TTYCCGGCCACTTTTACTGTG GCCTGATGCACAGGTACTGGAC | 179 280 |
stx2e-F1 stx2e-R2 | CGGAGTATCGGGGAGAGGC CTTCCTGACACCTTCACAGTAAAGGT | 411 |
stx2f-F1 stx2f-R1 | TGGGCGTCATTCACTGGTTG TAATGGCCGCCCTGTCTCC | 424 |
stx2g-F1 stx2g-R1 | CACCGGGTAGTTATATTTCTGTGGATATC GATGGCAATTCAGAATAACCGCT | 573 |
Isolate | Serotype | STEC Target Genes | ||
---|---|---|---|---|
eaeA | stx1 | stx2 | ||
1 | O26 | + | - | +(stx2a) |
2 | O145 | + | +(stx1c) | +(stx2a) |
3 | O121 | + | - | +(stx2a) |
4 | O111 | + | +(stx1a) | - |
5 | O103 | + | +(stx1a) | - |
6 | O111 | + | +(stx1a) | - |
7 | O157:H7 | + | - | +(stx2a, stx2c) |
8 | O26 | + | - | +(stx2a) |
9 | OK Pool 1 | + | - | +(stx2a) |
10 | O121 | + | - | +(stx2a) |
11 | O26 | + | - | +(stx2a) |
12 | O103 | + | +(stx1a) | - |
13 | OK Pool 1 | + | - | +(stx2a) |
14 | O103 | + | +(stx1a) | - |
15 | O157:H7 | + | - | +(stx2a, stx2c) |
16 | OK Pool 1 | + | - | +(stx2a) |
17 | O121 | + | - | +(stx2a) |
18 | O103 | + | +(stx1a) | - |
19 | OK Pool 1 | + | - | +(stx2a, stx2c) |
20 | O121 | + | - | +(stx2a) |
21 | O26 | + | +(stx1a) | +(stx2a) |
22 | O121 | + | - | +(stx2a) |
23 | OK Pool 1 | + | - | +(stx2c) |
24 | O103 | + | +(stx1a) | - |
25 | OK Pool 1 | + | - | +(stx2a, stx2c) |
26 | O111 | + | +(stx1a) | - |
27 | OK Pool 1 | + | +(stx1a) | +(stx2a) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokolovic, M.; Šimpraga, B.; Amšel-Zelenika, T.; Berendika, M.; Krstulović, F. Prevalence and Characterization of Shiga Toxin Producing Escherichia coli Isolated from Animal Feed in Croatia. Microorganisms 2022, 10, 1839. https://doi.org/10.3390/microorganisms10091839
Sokolovic M, Šimpraga B, Amšel-Zelenika T, Berendika M, Krstulović F. Prevalence and Characterization of Shiga Toxin Producing Escherichia coli Isolated from Animal Feed in Croatia. Microorganisms. 2022; 10(9):1839. https://doi.org/10.3390/microorganisms10091839
Chicago/Turabian StyleSokolovic, Marijana, Borka Šimpraga, Tajana Amšel-Zelenika, Marija Berendika, and Fani Krstulović. 2022. "Prevalence and Characterization of Shiga Toxin Producing Escherichia coli Isolated from Animal Feed in Croatia" Microorganisms 10, no. 9: 1839. https://doi.org/10.3390/microorganisms10091839
APA StyleSokolovic, M., Šimpraga, B., Amšel-Zelenika, T., Berendika, M., & Krstulović, F. (2022). Prevalence and Characterization of Shiga Toxin Producing Escherichia coli Isolated from Animal Feed in Croatia. Microorganisms, 10(9), 1839. https://doi.org/10.3390/microorganisms10091839