Shiga Toxin-Producing Escherichia coli (STEC) Associated with Calf Mortality in Uruguay
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Detection and Identification of Virulence Genes in E. coli
3.2. Occurrence and Diversity of Virulence Genes in Intestinal and Extraintestinal Isolates
3.3. Molecular Characterization of EPEC, STEC and NTEC
3.3.1. Stx1 Typing
3.3.2. Phylogenetic Group Assignment
3.3.3. Serogroup Determination
3.4. Antibiotic Susceptibility Profile
Presence of PMQR Genes in STEC and EPEC Isolates
3.5. Clonal Relationship of STEC/EPEC/NTEC Related to Calves’ Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Peek, S.F.; Mcguirk, S.M.; Sweeney, R.W.; Cummings, K.J. Infectious Diseases of the Gastrointestinal Tract. In Rebhun’s Diseases of Dairy Cattle, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 249–356. [Google Scholar] [CrossRef]
- Robins-Browne, R.M.; Holt, K.E.; Ingle, D.J.; Hocking, D.M.; Yang, J.; Tauschek, M. Are Escherichia coli pathotypes still relevant in the era of whole-genome sequencing? Front. Cell. Infect. Microbiol. 2016, 6, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. The population genetics of commensal Escherichia coli. Nat. Rev. Genet. 2010, 8, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Scheutz, F. Taxonomy Meets Public Health: The Case of Shiga Toxin-Producing Escherichia coli. Microbiol. Spectr. 2014, 2, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mainil, J.; Daube, G. Verotoxigenic Escherichia coli from animals, humans and foods: Who’s who? J. Appl. Microbiol. 2005, 98, 1332–1344. [Google Scholar] [CrossRef] [PubMed]
- Pruimboom-Brees, I.M.; Morgan, T.W.; Ackermann, M.R.; Nystrom, E.D.; Samuel, J.E.; Cornick, N.A.; Moon, H.W. Cattle lack vascular receptors for Escherichia coli O157:H7 Shiga toxins. Proc. Natl. Acad. Sci. USA 2000, 97, 10325–10329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahl, J.W.; Morris, C.R.; Rasko, D.A. Comparative genomics of pathogenic Escherichia coli. In Escherichia coli: Pathotypes and Principles of Pathogenesis, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 21–43. [Google Scholar] [CrossRef]
- Akiyama, Y.; Futai, H.; Saito, E.; Ogita, K.; Sakae, H.; Fukunaga, M.; Tsuji, H.; Chikahira, M.; Iguchi, A. Shiga toxin subtypes and virulence genes in Escherichia coli isolated from cattle. Jpn. J. Infect. Dis. 2017, 70, 181–185. [Google Scholar] [CrossRef] [Green Version]
- Menge, C. The Role of Escherichia coli Shiga Toxins in STEC Colonization of Cattle. Toxins 2020, 12, 607. [Google Scholar] [CrossRef]
- Sapountzis, P.; Segura, A.; Desvaux, M.; Forano, E. An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli. Microorganisms 2020, 8, 877. [Google Scholar] [CrossRef] [PubMed]
- Persad, A.K.; LeJeune, J.T. Animal Reservoirs of Shiga Toxin-Producing Escherichia coli. Microbiol. Spectr. 2014, 2, EHEC-0027-2014. [Google Scholar] [CrossRef]
- Croxen, M.; Finlay, B.B. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Genet. 2009, 8, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Tutenel, A.V.; Pierard, D.; Uradzinski, J.; Jozwik, E.; Pastuszczak, M.; Van Hende, J.; Uyttendaele, M.; Debevere, J.; Cheasty, T.; Van Hoof, J.; et al. Isolation and characterization of enterohaemorrhagic Escherichia coli O157:1H7 from cattle in Belgium and Poland. Epidemiol. Infect. 2002, 129, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Bettelheim, K.A.; Goldwater, P.N. Serotypes of Non-O157 Shigatoxigenic Escherichia coli (STEC). Adv. Microbiol. 2014, 4, 377–389. [Google Scholar] [CrossRef] [Green Version]
- One Health. WOAH—World Organisation for Animal Health. Available online: https://www.woah.org/en/what-we-do/global-initiatives/one-health/ (accessed on 13 March 2023).
- Poirel, L.; Madec, J.-Y.; Lupo, A.; Schink, A.-K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. In Antimicrobial Resistance in Bacteria from Livestock and Companion Animals; American Society of Microbiology: Washington, DC, USA, 2018; pp. 289–316. [Google Scholar] [CrossRef] [Green Version]
- Mainil, J. Escherichia coli virulence factors. Vet. Immunol. Immunopathol. 2013, 152, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 142–201. [Google Scholar] [CrossRef] [Green Version]
- Van Bost, S.; Bâbe, M.-H.; Jacquemin, E.; Mainil, J. Characteristics of necrotoxigenic Escherichia coli isolated from septicemic and diarrheic calves between 1958 and 1970. Vet. Microbiol. 2001, 82, 311–320. [Google Scholar] [CrossRef] [Green Version]
- DIEA. Oficina de Estadísticas Agropecuarias. In Anuario Estadistico Agropecuario 2020; Ministerio de Ganadería, Agricultura y Pesca (MGAP): Tbilisi, Georgia, 2020; p. 255. [Google Scholar]
- Schild, C. Estimación de la Tasa de Mortalidad Anual de Terneros y Caracterización de los Sistemas de Crianza en Establecimientos Lecheros de Uruguay; Udelar. FV: Montevideo, Uruguay, 2017; Available online: https://www.colibri.udelar.edu.uy/jspui/handle/20.500.12008/23979 (accessed on 20 May 2020).
- Umpiérrez, A.; Acquistapace, S.; Fernández, S.; Oliver, M.; Acuña, P.; Reolón, E.; Zunino, P. Prevalence of Escherichia coli adhesion-related genes in neonatal calf diarrhea in Uruguay. J. Infect. Dev. Ctries. 2016, 10, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Umpiérrez, A.; Bado, I.; Oliver, M.; Acquistapace, S.; Etcheverría, A.; Padola, N.L.; Vignoli, R.; Zunino, P. Zoonotic Potential and Antibiotic Resistance of Escherichia coli in Neonatal Calves in Uruguay. Microbes Environ. 2017, 32, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Umpiérrez, A.; Ernst, D.; Cardozo, A.; Torres, A.; Fernández, M.; Fraga, M.; Vignoli, R.; Bado, I.; Vidal, R.; Zunino, P. Non-O157 Shiga toxin-producing Escherichia coli with potential harmful profiles to humans are isolated from the faeces of calves in Uruguay. Austral J. Vet. Sci. 2022, 54, 45–53. [Google Scholar] [CrossRef]
- Umpiérrez, A.; Ernst, D.; Fernández, M.; Oliver, M.; Casaux, M.L.; Caffarena, R.D.; Schild, C.; Giannitti, F.; Fraga, M.; Zunino, P. Virulence genes of Escherichia coli in diarrheic and healthy calves. Rev. Argent. De Microbiol. 2021, 53, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Louge, E. Circulación y Caracterización Molecular de Rotavirus y Escherichia coli Asociados a Diarrea Neonatal y Septicemia en Terneros; Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires: Buenos Aires, Argentina, 2016. [Google Scholar]
- Paddock, Z.; Shi, X.; Bai, J.; Nagaraja, T. Applicability of a multiplex PCR to detect O26, O45, O103, O111, O121, O145, and O157 serogroups of Escherichia coli in cattle feces1. Vet. Microbiol. 2012, 156, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Scheutz, F.; Teel, L.D.; Beutin, L.; Piérard, D.; Buvens, G.; Karch, H.; Mellmann, A.; Caprioli, A.; Tozzoli, R.; Morabito, S.; et al. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J. Clin. Microbiol. 2012, 50, 2951–2963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, J.B. Performance Standards for Antimicrobial Susceptibility Testing, 24th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014. [Google Scholar]
- Ribot, E.M.; Fair, M.; Gautom, R.K.; Cameron, D.; Hunter, S.; Swaminathan, B.; Barrett, T.J.; Yang, J.; Zhang, Z.; Zhou, X.; et al. Standardization of Pulsed-Field Gel Electrophoresis Protocols for the Subtyping of Escherichia coli O157:H7, Salmonella, and Shigellafor PulseNet. Foodborne Pathog. Dis. 2006, 3, 59–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ejrnaes, K.; Sandvang, D.; Lundgren, B.; Ferry, S.; Holm, S.; Monsen, T.; Lundholm, R.; Frimodt-Moller, N. Pulsed-field gel electrophoresis typing of Escherichia coli strains from samples collected before and after pivmecillinam or placebo treatment of uncomplicated community-acquired urinary tract infection in women. J. Clin. Microbiol. 2006, 44, 1776–1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerda, J.; Vera, C.; Rada, G. Odds ratio: Aspectos teóricos y prácticos. Rev. Médica De Chile 2013, 141, 1329–1335. [Google Scholar] [CrossRef] [Green Version]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Kolenda, R.; Burdukiewicz, M.; Eschierack, P. A systematic review and meta-analysis of the epidemiology of pathogenic Escherichia coli of calves and the role of calves as reservoirs for human pathogenic E. coli. Front. Cell. Infect. Microbiol. 2015, 5, 23. [Google Scholar] [CrossRef]
- Badouei, M.A.; Salehi, T.Z.; Khorasgani, M.R.; Tadjbakhsh, H.; Brujeni, G.N. Occurrence and characterisation of enterohaemorrhagic Escherichia coli isolates from diarrhoeic calves. Comp. Clin. Pathol. 2010, 19, 295–300. [Google Scholar] [CrossRef]
- Hoey, D.E.; Currie, C.; Else, R.W.; Nutikka, A.; Lingwood, C.A.; Gally, D.; Smith, D.G.E. Expression of receptors for verotoxin 1 from Escherichia coli O157 on bovine intestinal epithelium. J. Med. Microbiol. 2002, 51, 143–149. [Google Scholar] [CrossRef]
- Kieckens, E.; Rybarczyk, J.; Li, R.W.; Vanrompay, D.; Cox, E. Potential immunosuppressive effects of Escherichia coli O157:H7 experimental infection on the bovine host. BMC Genom. 2016, 17, 1049. [Google Scholar] [CrossRef] [Green Version]
- Dean-Nystrom, E.A.; Bosworth, B.T.; Moon, H.W.; O’brien, A.D. Escherichia coli O157:H7 requires Intimin for enteropathogenicity in calves. Infect. Immun. 1998, 66, 4560–4563. [Google Scholar] [CrossRef]
- Denamur, E.; Clermont, O.; Bonacorsi, S.; Gordon, D. The population genetics of pathogenic Escherichia coli. Nat. Rev. Genet. 2020, 19, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Varela, G.; Chinen, I.; Gadea, P.; Miliwebsky, E.; Mota, M.I.; González, S.; González, G.; Gugliada, M.J.; Carbonari, C.C.; Algorta, G.; et al. Detección y caracterización de Escherichia coli productor de toxina Shiga a partir de casos clínicos y de alimentos en Uruguay. Rev. Argent. Microbiol. 2008, 40, 93–100. [Google Scholar]
- Galarce, N.; Sánchez, F.; Fuenzalida, V.; Ramos, R.; Escobar, B.; Lapierre, L.; Paredes-Osses, E.; Arriagada, G.; Alegría-Morán, R.; Lincopán, N.; et al. Phenotypic and Genotypic Antimicrobial Resistance in Non-O157 Shiga Toxin-Producing Escherichia coli Isolated from Cattle and Swine in Chile. Front. Vet. Sci. 2020, 7, 367. [Google Scholar] [CrossRef]
- Mir, A.R.; Kudva, I.T. Antibiotic-resistant Shiga toxin-producing Escherichia coli: An overview of prevalence and intervention strategies. Zoonoses Public Health 2019, 66, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mota, M.I.; Vázquez, S.; Cornejo, C.; D’Alessandro, B.; Braga, V.; Caetano, A.; Betancor, L.; Varela, G. Does Shiga Toxin-Producing Escherichia coli and Listeria monocytogenes Contribute Significantly to the Burden of Antimicrobial Resistance in Uruguay? Front. Vet. Sci. 2020, 7, 583930. [Google Scholar] [CrossRef]
- Mussio, P.; Martínez, I.; Luzardo, S.; Navarro, A.; Leotta, G.; Varela, G. Phenotypic and genotypic characterization of Shiga toxin-producing Escherichia coli strains recovered from bovine carcasses in Uruguay. Front. Microbiol. 2023, 14, 1130170. [Google Scholar] [CrossRef] [PubMed]
- Bado, I. Valor Predictor de la Colonización Digestiva por bacilos Gram Negativos Multirresistentes para el Tratamiento de Infecciones Nosocomiales en una UCI Tribunal: Tesis Doctoral En Ciencias Biomédicas; PRO.IN.BIO; Facultad de Medicina, Universidad de La República: Mexico City, Mexico, 2017. [Google Scholar]
- Coppola, N.; Freire, B.; Umpiérrez, A.; Cordeiro, N.F.; Ávila, P.; Trenchi, G.; Castro, G.; Casaux, M.L.; Fraga, M.; Zunino, P.; et al. Transferable Resistance to Highest Priority Critically Important Antibiotics for Human Health in Escherichia coli Strains Obtained from Livestock Feces in Uruguay. Front. Vet. Sci. 2020, 7, 588919. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, J.M.; Machuca, J.; Cano, M.E.; Calvo, J.; Martinez-Martinez, L.; Pascual, A. Plasmid-mediated quinolone resistance: Two decades on. Drug Resist. Updates 2016, 29, 13–29. [Google Scholar] [CrossRef] [PubMed]
Animal | Establishment | Department | Date | Age |
---|---|---|---|---|
1 | A | Colonia | July-2015 | w/d |
2 | B | Colonia | July-2015 | w/d |
3 | C | Colonia | December-2015 | w/d |
4 | D | Río Negro | May-2016 | 5 days |
5 | E | San José | October-2016 | 15 days |
6 | F | Río Negro | April-2017 | w/d |
7 | G | Colonia | July-2017 | 17 days |
8 | H | Colonia | July-2017 | 2 years |
9 | I | San José | August-2017 | 5–12 days |
10 | I | San José | August-2017 | 5–12 days |
11 | I | San José | August-2017 | 5–12 days |
12 | J | Colonia | August-2017 | 30 days |
13 | J | Colonia | September-2017 | 2 days |
14 | K | Colonia | September-2017 | 9 days |
15 | L | Colonia | October-2017 | 15 days |
16 | M | Colonia | October-2017 | 10 days |
17 | N | Canelones | November-2017 | w/d |
Isolate | Origin | Virulence Profile | Virotype | Phylogroup | Subtype of Stx1 | Serogroup |
---|---|---|---|---|---|---|
3.1 | feces | eae/stx1/ehxA/cnf1/iucD | EHEC/NTEC | A | a and c | n/d |
3.4 | feces | eae/stx1/ehxA | EHEC | A | a and c | n/d |
3.19 | feces | eae/stx1/cnf1/iucD | EHEC/NTEC | A | a and c | n/d |
6.2 | feces | eae/ehxA/iucD | EPEC | E | n/a | n/d |
6.4 | feces | eae/ehxA | EPEC | E | n/a | n/d |
9.5 | intestine | eae/stx1/ehxA/iucD | EHEC | E | a and c | n/d |
10.2 | intestine | eae/stx1/ehxA/iucD | EHEC | E | a and c | n/d |
10.4 | lung | eae/stx1/ehxA/iucD | EHEC | B1 | a and c | n/d |
10.6 | MLN * | eae/stx1/ehxA/iucD | EHEC | E | a and c | n/d |
11.2 | feces | eae/stx1/ehxA/iucD | EHEC | E | a and c | n/d |
12.1 | feces | f17A/f17GII/cnf1/cnf2/cdtIII/iucD | NTEC | B1 | n/a | n/d |
15.1 | feces | eae/stx1/ehxA/iucD | EHEC | B1 | a and c | O111 |
15.3 | feces | eae/stx1/ehxA/iucD/afa8E | EHEC | C | a and c | O111 |
15.11 | brain | eae/stx1/ehxA/iucD | EHEC | B1 | a and c | O111 |
15.13 | brain | eae/stx1/ehxA/iucD/afa8E | EHEC | C | a and c | O111 |
15.15 | brain | eae/stx1/iucD/afa8E | EHEC | C | a and c | O111 |
15.31 | liver | eae/stx1/ehxA/iucD | EHEC | B1 | a and c | O111 |
15.40 | lung | eae/stx1/ehxA/iucD | EHEC | B1 | n/d | O111 |
15.42 | lung | stx1/ehxA/iucD | STEC LEE− | B1 | a and c | O111 |
16.9 | feces | eae/stx1/ehxA | EHEC | B1 | a and c | O111 |
Isolate | Origin | Virotype | Resistance Profile | qnr |
---|---|---|---|---|
3.1 | feces | EHEC/NTEC | AMP/CN/STR | n/a |
3.4 | feces | EHEC | AMP/CN/TOB/STR | n/a |
3.19 | feces | EHEC/NTEC | AMP/CN/STR | n/a |
6.2 | feces | EPEC | AMP/NAL/ENR/CIP/STR/STX | qnrB19 |
6.4 | feces | EPEC | AMP/NAL/ENR/CIP/STR/STX | qnrB |
9.5 | intestine | EHEC | AMP/NAL/ENR/CIP/STR | qnrB19 |
10.2 | intestine | EHEC | AMP/AMC/CXM/NAL/ENR/CIP/STR | qnrB19 |
10.4 | lung | EHEC | AMP/NAL/ENR/CIP | n/d |
10.6 | MLN * | EHEC | AMP/CXM/NAL/ENR/CIP/STR | qnrB |
11.2 | feces | EHEC | AMP/AMC/CXM/NAL/ENR/CIP/STR | n/d |
12.1 | feces | NTEC | AMP/NAL/ENR/CIP/STR | qnrB |
15.1 | feces | EHEC | AMP/NAL/CIP/STR | n/d |
15.3 | feces | EHEC | AMP/AMC/NAL/ENR/CIP/CN/TOB/STR/STX | qnrB |
15.11 | brain | EHEC | AMP/NAL/CIP/STR | qnrB |
15.13 | brain | EHEC | AMP/NAL/ENR/CIP/CN/TOB/STR | qnrB |
15.15 | brain | EHEC | AMP/NAL/ENR/CIP/CN/TOB/STR | n/d |
15.31 | liver | EHEC | AMP/NAL/CIP/STR | n/d |
15.40 | lung | EHEC | AMP/NAL/CIP/STR | qnrB |
15.42 | lung | STEC LEE− | AMP/NAL/ENR/CIP/STR/STX | n/d |
16.9 | feces | EHEC | AMP/NAL/ENR/CIP/STR/STX | qnrB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, M.; Casaux, M.L.; Fraga, M.; Vignoli, R.; Bado, I.; Zunino, P.; Umpiérrez, A. Shiga Toxin-Producing Escherichia coli (STEC) Associated with Calf Mortality in Uruguay. Microorganisms 2023, 11, 1704. https://doi.org/10.3390/microorganisms11071704
Fernández M, Casaux ML, Fraga M, Vignoli R, Bado I, Zunino P, Umpiérrez A. Shiga Toxin-Producing Escherichia coli (STEC) Associated with Calf Mortality in Uruguay. Microorganisms. 2023; 11(7):1704. https://doi.org/10.3390/microorganisms11071704
Chicago/Turabian StyleFernández, Magalí, María Laura Casaux, Martín Fraga, Rafael Vignoli, Inés Bado, Pablo Zunino, and Ana Umpiérrez. 2023. "Shiga Toxin-Producing Escherichia coli (STEC) Associated with Calf Mortality in Uruguay" Microorganisms 11, no. 7: 1704. https://doi.org/10.3390/microorganisms11071704
APA StyleFernández, M., Casaux, M. L., Fraga, M., Vignoli, R., Bado, I., Zunino, P., & Umpiérrez, A. (2023). Shiga Toxin-Producing Escherichia coli (STEC) Associated with Calf Mortality in Uruguay. Microorganisms, 11(7), 1704. https://doi.org/10.3390/microorganisms11071704