Maize Apoplastic Fluid Bacteria Alter Feeding Characteristics of Herbivore (Spodoptera frugiperda) in Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Characterization of Apoplastic Fluid Endophytes from Maize (COH6)
2.2. Plant Growth Promoting Potential of Apoplastic Fluid Endophytes
2.2.1. Estimation of Mineral Solubilisation Efficiency
2.2.2. Indole Acetic Acid (IAA)
2.2.3. Gibberllic Acid (GA)
2.3. Analysis of Bioprotective Properties of Maize Apoplast Endophytes
2.3.1. Siderophore Production
2.3.2. Ammonia Production
2.3.3. Hydrogen Cyanide (HCN) Production
2.3.4. Lipase Activity
2.3.5. Protease Activity
2.3.6. Pectinase
2.3.7. Chitinase
2.4. Molecular Identification of Potent Apoplastic Fluid Bacterial Endophytes
2.5. Effect of Bacillus amyloliquefaciens on the Leaf Feeding Capacity of S. frugiperda Larvae
2.5.1. Insect, Crop, and Endophyte Used for the Study
2.5.2. No-Choice and Choice Bioassay
2.5.3. Larval Dip Bioassay
2.6. Effect of B. amyloliquefaciens and Alcaligenes sp. Treated Maize (COH6) on S. frugiperda Growth
Detached Leaf Bioassay
2.7. Changes in Phenolics Content and Dry Matter Production of Endophytes (B. amyloliquefaciens and Alcaligenes sp.) Inoculated Maize during S. frugiperda Infestation
2.7.1. Experimental Design
2.7.2. Phenolics Content
2.7.3. Plant Biomass Production
2.8. Statistical Analysis
3. Results
3.1. Isolation of Endophytes from Leaf and Root Apoplastic Fluid of Maize (COH6)
3.2. Growth Promoting Characteristics of Isolated Maize Apoplastic Fluid Bacterial Endophytes
3.3. Screening Bacterial Endophytes for Their Bioprotective Potential
3.4. Molecular Identification of Potent Bacterial Endophytes
3.5. Evaluation of Bioprotective Potentiality of B. amyloliquefaciens against S. frugiperda in Maize
3.5.1. No-Choice Bioassay
3.5.2. Choice Bioassay
3.5.3. Larval Dip Bioassay
3.6. Effect of Alcaligenes sp. and B. amyloliquefaciens Inoculated Maize as Feed on the Growth of S. frugiperda
3.6.1. Detached Leaf Bioassay
3.6.2. Phenolics Content of Maize Leaves
3.6.3. Biomass Content of Maize
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molina-Romero, D.; Juarez-Sanchez, S.; Venegas, B.; Ortiz-Gonzalez, C.S.; Baez, A.; Morales-Garcia, Y.E.; Muñoz-Rojas, J.A. Bacterial consortium interacts with different varieties of maize, promotes the plant growth, and reduces the application of chemical fertilizer under field conditions. Front. Sustain. Food Syst. 2021, 4, 293. [Google Scholar] [CrossRef]
- Wang, R.; Jiang, C.; Guo, X.; Chen, D.; You, C.; Zhang, Y.; Wang, M.; Li, Q. Potential distribution of Spodoptera frugiperda (JE Smith) in China and the major factors influencing distribution. Glob. Ecol. Conserv. 2020, 21, e00865. [Google Scholar] [CrossRef]
- Marag, P.S.; Suman, A. Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.). Microbiol. Res. 2018, 214, 101–113. [Google Scholar] [CrossRef]
- Oukala, N.; Aissat, K.; Pastor, V. Bacterial Endophytes: The Hidden Actor in Plant Immune Responses against Biotic Stress. Plants. 2021, 10, 1012. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, N.; Mazhar, R.; Yasmin, H.; Khan, W.; Iqbal, S.; Enshasy, H.E.; Dailin, D.J. Rhizobacteria isolated from saline soil induce systemic tolerance in wheat (Triticum aestivum L.) against salinity stress. Agronomy 2020, 10, 989. [Google Scholar] [CrossRef]
- Sasirekha, B.; Srividya, S. Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agric. Nat. Resour. 2016, 50, 250–256. [Google Scholar] [CrossRef]
- Hassan, S.E. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J. Adv. Res. 2017, 8, 687–695. [Google Scholar] [CrossRef]
- Confortin, T.C.; Spannemberg, S.S.; Todero, I.; Luft, L.; Brun, T.; Alves, E.A.; Kuhn, R.C.; Mazutti, M.A. Microbial enzymes as control agents of diseases and pests in organic agriculture. In New and Future Developments in Microbial Biotechnology and Bioengineering, 1st ed.; Gupta, V.K., Pandey, A., Eds.; Elsevier: Cambridge, MA, USA, 2019; pp. 321–332. [Google Scholar]
- Qian, X.; Li, X.; Li, H.; Zhang, D. Floral fungal-bacterial community structure and co-occurrence patterns in four sympatric island plant species. Fungal Biol. 2021, 125, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Soares, M.A.; Torres, M.S.; Bergen, M.; White, J.F., Jr. Endophytic bacterium, Bacillus amyloliquefaciens, enhances ornamental hosta resistance to diseases and insect pests. J. Plant. Interact. 2015, 10, 224–229. [Google Scholar] [CrossRef]
- Hu, W.; Samac, D.A.; Liu, X.; Chen, S. Microbial communities in the cysts of soybean cyst nematode affected by tillage and biocide in a suppressive soil. Appl. Soil. Ecol. 2017, 119, 396–406. [Google Scholar] [CrossRef]
- Lee, G.H.; Ryu, C.M. Spraying of leaf-colonizing Bacillus amyloliquefaciens protects pepper from Cucumber mosaic virus. Plant. Dis. 2016, 100, 2099–2105. [Google Scholar] [CrossRef] [PubMed]
- Romero, F.M.; Rossi, F.R.; Garriz, A.; Carrasco, P.; Ruiz, O.A. A bacterial endophyte from apoplast fluids protects canola plants from different phytopathogens via antibiosis and induction of host resistance. Phytopathology 2019, 109, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, G.; Shah, R.; Patel, P.; Saraf, M. Role of endophytes in agricultural crops under drought stress: Current and future prospects. JAMA 2017, 3, 174–178. [Google Scholar]
- Nivitha, G.; Bowya, T.; Kalaiselvi, T.; Sivakumar, U. Screening of rice apoplast associated endophytic bacterial isolates for moisture stress tolerance and plant growth promoting traits. Madras Agric. J. 2019, 106, 502–507. [Google Scholar] [CrossRef]
- Rashad, Y.M.; Abbas, M.A.; Soliman, H.M.; Abdel-Fattah, G.G.; Abdel-Fattah, G.M. Synergy between endophytic Bacillus amyloliquefaciens GGA and arbuscular mycorrhizal fungi induces plant defense responses against white rot of garlic and improves host plant growth. Phytopathol. Mediterranea 2020, 59, 169–186. [Google Scholar] [CrossRef]
- Maksimovic, J.J.; Zivanovic, B.D.; Maksimovic, V.M.; Mojovic, M.D.; Nikolic, M.T.; Vucinic, Z.B. Filter strip as a method of choice for apoplastic fluid extraction from maize roots. Plant. Sci. 2014, 223, 49–58. [Google Scholar] [CrossRef]
- Chakdar, H.; Dastager, S.G.; Khire, J.M.; Rane, D.; Dharne, M.S. Characterization of mineral phosphate solubilizing and plant growth promoting bacteria from termite soil of arid region. 3 Biotech. 2018, 8, 1. [Google Scholar] [CrossRef]
- Patel, T.; Saraf, M. Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. J. Plant. Interact. 2017, 12, 480–487. [Google Scholar] [CrossRef]
- Ahmad, M.; Wang, X.; Hilger, T.H.; Luqman, M.; Nazli, F.; Hussain, A.; Zahir, Z.A.; Latif, M.; Saeed, Q.; Malik, H.A.; et al. Evaluating biochar-microbe synergies for improved growth, yield of maize, and post-harvest soil characteristics in a semi-arid climate. Agronomy 2020, 10, 1055. [Google Scholar] [CrossRef]
- Kuramshina, Z.M.; Khairullin, R.M.; Smirnova, Y.V. Responsiveness of Triticum aestivum L. Cultivars to Inoculation with Cells of Endophytic Bacillus subtilis Strains. Russ. Agric. Sci. 2020, 46, 1–5. [Google Scholar]
- Devi, R.; Thakur, R. Screening and identification of bacteria for plant growth promoting traits from termite mound soil. J. Pharmacogn Phytochem. 2018, 7, 1681–1686. [Google Scholar]
- Mobarak-Qamsari, E.; Kasra-Kermanshahi, R.; Moosavi-Nejad, Z. Isolation and identification of a novel, lipase-producing bacterium, Pseudomnas aeruginosa KM110. Iran. J. Microbiol. 2011, 3, 92. [Google Scholar]
- Alnahdi, H.S. Isolation and screening of extracellular proteases produced by new isolated Bacillus sp. J. App. Pharm. Sci. 2012, 1, 71. [Google Scholar] [CrossRef]
- Oumer, O.J.; Abate, D. Screening and molecular identification of pectinase producing microbes from coffee pulp. BioMed Res. Int. 2018, 20, 18. [Google Scholar] [CrossRef]
- Salas-Ovilla, R.; Galvez-Lopez, D.; Vázquez-Ovando, A.; Salvador-Figueroa, M.; Rosas-Quijano, R. Isolation and identification of marine strains of Stenotrophomona maltophilia with high chitinolytic activity. PeerJ 2019, 7, e6102. [Google Scholar] [CrossRef]
- Minas, K.; McEwan, N.R.; Newbold, C.J.; Scott, K.P. Optimization of a high-throughput CTAB-based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure cultures. FEMS Microbial. Lett. 2011, 325, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Pannuti, L.E.; Paula-Moraes, S.V.; Hunt, T.E.; Baldin, E.L.; Dana, L.; Malaquias, J.V. Plant-to-plant movement of Striacosta albicosta (Lepidoptera: Noctuidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize (Zea mays). J. Econ. Entomol. 2016, 109, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Panneerselvam, P.; Kumar, U.; Sahu, S.; Mohapatra, S.D.; Dangar, T.K.; Parameswaran, C.; Jahan, A.; Senapati, A.; Govindharaj, G.P. Larvicidal potential of Skermanella sp. against rice leaf folder (Cnaphalocrosis medinalis) and pink stem borer (Sesamia inferens). J. Invertebr. Pathol. 2018, 157, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Waldbauer, G.P. The consumption and utilization of food by insects. In advances in insect physiology. Acad. Press 1968, 5, 229–288. [Google Scholar]
- Shawer, R.; Donati, I.; Cellini, A.; Spinelli, F.; Mori, N. Insecticidal Activity of Photorhabdus luminescens against Drosophila suzukii. Insects 2018, 9, 148. [Google Scholar] [CrossRef]
- Selvaraj, A.; Thangavel, K.; Uthandi, S. Arbuscular mycorrhizal fungi (Glomus intraradices) and diazotrophic bacterium (Rhizobium BMBS) primed defense in blackgram against herbivorous insect (Spodoptera litura) infestation. Microbiol. Res. 2020, 231, 126355. [Google Scholar] [CrossRef]
- Kesaulya, H.; Zakaria, B.; Syaiful, S.A. Isolation and physiological characterization of PGPR from potato plant rhizosphere in medium land of Buru Island. Procedia Food Sci. 2015, 3, 190–199. [Google Scholar] [CrossRef]
- Kakar, K.U.; Nawaz, Z.; Cui, Z.; Almoneafy, A.A.; Ullah, R.; Shu, Q.Y. Rhizosphere-associated Alcaligenes and Bacillus strains that induce resistance against blast and sheath blight diseases enhance plant growth and improve mineral content in rice. J. Appl. Microbiol. 2018, 124, 779–796. [Google Scholar] [CrossRef]
- Yadav, A.N.; Verma, P.; Kour, D.; Rana, K.L.; Kumar, V.; Singh, B.; Chauahan, V.S.; Sugitha, T.; Saxena, A.K. Dhaliwal HS. Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int. J. Environ. Sci. Nat. Resour. 2017, 3, 1–8. [Google Scholar]
- Sonawane, M.S.; Chaudhary, R.D.; Shouche, Y.S.; Sayyed, R.Z. Insect gut bacteria: A novel source for siderophore production. Proc. Natl. Acad. Sci. India Sect. B. Biol. Sci. 2018, 88, 567–572. [Google Scholar] [CrossRef]
- Syed-Ab- Short, S.M.; Van Tol, S.; MacLeod, H.J.; Dimopoulos, G. Hydrogen cyanide produced by the soil bacterium Chromobacterium sp. Panama contributes to mortality in Anopheles gambiae mosquito larvae. Sci. Rep. 2018, 8, 1–3. [Google Scholar]
- Pal, K.K.; Gardener, B.M. Biological Control of Plant Pathogens. In The Nature and Practices of Biological Control of Plant Pathology, 1st ed.; Cook, R.J., Baker, K.F., Eds.; American Phytopathological Society, Ridge: Washington, DC, USA, 2006; pp. 1–25. [Google Scholar]
- Lopes, F.C.; Martinelli, A.H.; John, E.B.; Ligabue-Braun, R. Microbial Hydrolytic Enzymes: Powerful Weapons Against Insect Pests. In Microbes for Sustainable Insect Pest Management: Hydrolytic Enzyme & Secondary Metabolite, 1st ed.; Aslam Khan, M.D., Ahmed, W., Eds.; Springer Nature: Cham, Switzerland, 2021; Volume 2, pp. 1–31. [Google Scholar]
- Chandrasekaran, R.; Revathi, K.; Thanigaivel, A.; Kirubakaran, S.A.; Senthil-Nathan, S. Bacillus subtilis chitinase identified by matrix-assisted laser desorption/ionization time-of flight/time of flight mass spectrometry has insecticidal activity against Spodoptera litura Fab. Pestic. Biochem. Phys. 2014, 116, 1–2. [Google Scholar] [CrossRef]
- Gond, S.K.; Bergen, M.S.; Torres, M.S.; White Jr, J.F. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol. Res. 2015, 172, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.A.; Li, H.Y.; Bergen, M.; Da Silva, J.M.; Kowalski, K.P.; White, J.F. Functional role of an endophytic Bacillus amyloliquefaciens in enhancing growth and disease protection of invasive English ivy (Hedera helix L.). Plant Soil 2016, 405, 107–123. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, J.; Lee, C.H.; Woo, S.Y.; Kang, H.; Seo, S.G.; Kim, S.H. Activation of pathogenesis-related genes by the rhizobacterium, Bacillus sp. JS, which induces systemic resistance in tobacco plants. Plant Pathol. J. 2015, 31, 195. [Google Scholar] [CrossRef]
- Kebede, D.; Alemu, T.; Tefera, T. Diversity of bacterial and fungal endophytes in maize and their larvicidal effect against the spotted stem borer Chilo partellus. Biocontrol Sci. Tech. 2020, 30, 1250–1267. [Google Scholar] [CrossRef]
- Kaushik, N.; Kumar, S.; Chowdhary, K. Endophytic fungi: Potential and prospects in plant health management. In Prospectives of Plant Pathology in Genomic Era; Chowdappa, P., Sharma, P., Singh, D., Misra, A.K., Eds.; Today and Tomorrow Printers and Publishers: New Delhi, Inida, 2016; pp. 357–378. [Google Scholar]
- Clement, S.L.; Hu, J.; Stewart, A.V.; Wang, B.; Elberson, L.R. Detrimental and neutral effects of a wild grass-fungal endophyte symbiotum on insect preference and performance. J. Insect. Sci. 2011, 11, 77. [Google Scholar] [CrossRef] [PubMed]
- Crawford, K.M.; Land, J.M.; Rudgers, J.A. Fungal endophytes of native grasses decrease insect herbivore preference and performance. Oecologia 2010, 164, 431–444. [Google Scholar] [CrossRef]
- Srinivasan, R.; Uthamasamy, S. Feeding induced changes in phenolics and pathogenesis-related proteins: Implications in host resistance to Bemisia tabaci Genn. and Helicoverpa armigera Hub. in tomato accessions. Pest. Manag. Hortic. Ecosyst. 2004, 10, 95–106. [Google Scholar]
- Commare, R.R.; Nandakumar, R.; Kandan, A.; Suresh, S.; Bharathi, M.; Raguchander, T.; Samiyappan, R. Pseudomonas fluorescens based bio-formulation for the management of sheath blight disease and leaf folder insect in rice. Crop. Prot. 2002, 21, 671–677. [Google Scholar] [CrossRef]
Isolates | Mineral Solubilisation Index | IAA (µg mL−1) | GA3 (µg mL−1) | ||
---|---|---|---|---|---|
Phosphate | Zinc | Potassium | |||
LAF1 | 2.11 ± 0.03 g | nd | nd | 0.25 ± 0.00 e | 4.25 ± 0.02 ed |
LAF2 | 3.42 ± 0.04 de | 2.42 ± 0.01 e | 4.05 ± 0.02 c | 0.34 ± 0.03 e | 26.43 ± 0.04 ab |
LAF3 | 2.24 ± 0.03 g | nd | nd | 0.14 ± 0.01 e | 1.89 ± 0.00 e |
LAF4 | 2.24 ± 0.05 g | nd | nd | 0.29 ± 0.01 e | 30.19 ± 0.04 a |
LAF5 | 3.215 ± 0.02 e | nd | nd | 2.15 ± 0.03 e | 12.67 ± 0.04d c |
LAF6 | 2.95 ± 0.02 f | nd | nd | 0.09 ± 0.04 e | 7.04 ± 0.01 edc |
LAF7 | 3.55 ± 0.02 d | 2.53 ± 0.02 d | 3.23 ± 0.01 d | 0.11 ± 0.02 e | 29.10 ± 0.02 a |
LAF8 | 4.73 ± 0.01 c | nd | 3.23 ± 0.02 d | 1.19 ± 0.01 e | 19.76 ± 0.03 abc |
LAF9 | 2.90 ± 0.05 f | nd | nd | 1.47 ± 0.02 e | 15.76 ± 0.01 abcd |
RAF1 | 2.95 ± 0.02 f | nd | 5.05 ± 0.28 a | 14.42 ± 0.05 d | 19.22 ± 0.02 abc |
RAF2 | 3.45 ± 0.02 de | 2.60 ± 0.02 c | nd | 40.59 ± 0.21 b | 20.01 ± 0.02 abc |
RAF3 | 5.05 ± 0.02 b | 2.67 ± 0.02 b | 2.24 ± 0.01 g | 1.83 ± 0.12 e | 21.46 ± 0.03 abc |
RAF4 | 3.35 ± 0.08 de | 2.31 ± 0.02 f | 2.44 ± 0.01 f | 27.15 ± 0.03 c | 21.89 ± 0.01 abc |
RAF5 | 10.75 ± 0.14 a | 3.51 ± 0.05 a | 4.95 ± 0.03 b | 58.04 ± 0.07 a | 30.61 ± 0.02 a |
RAF6 | 3.60 ± 0.23 d | 2.66 ± 0.03 b | 2.75 ± 0.03 e | 1.87 ± 0.05 e | 26.25 ± 0.01 ab |
Isolates | Siderophore (%) | HCN (OD Value) | Ammonia (µg mL−1) | Hydrolytic Enzymes | |||
---|---|---|---|---|---|---|---|
Lipase (cm) | Protease (U mL−1) | Pectinase (U mL−1) | Chitinase (U mL−1) | ||||
LAF1 | nd | nd | 0.59 ± 0.02 abc | 0.70 ± 0.01 b | nd | 6.89 ±0.04 a | 0.17± 0.02 d |
LAF2 | 4.74 ± 0.001 g | 0.04 ± 0.02 f | nd | nd | nd | 6.38 ± 0.09 c | nd |
LAF3 | nd | 0.01 ± 0.08 j | 0.12 ± 0.02 c | nd | nd | 3.24 ± 0.06 k | nd |
LAF4 | 10.36 ± 0.01 b | 0.03 ± 0.08 i | 0.12 ± 0.07 abc | nd | 301.05 ± 0.03 b | 6.33 ± 0.03 c | nd |
LAF5 | 1.09 ± 0.04 e | 0.12 ± 0.02 c | 1.68 ± 0.03 a | 0.70 ± 0.06 b | 386.05 ± 0.01 a | 6.65 ± 0.02 b | 3.44 ± 0.07 a |
LAF6 | 4.32 ± 0.01 c | 0.16 ± 0.02 e | 0.66 ± 0.06 abc | 0.61± 0.06 c | 51.05 ± 0.01 d | 4.67 ± 0.014 f | nd |
LAF7 | 2.88 ± 0.02 f | 0.13 ± 0.05 b | 0.40 ± 0.01 bc | 0.81 ± 0.06 a | 241.05 ± 0.05 c | 3.68 ± 0.02 i | 2.05 ± 0.02 b |
LAF8 | 2.33 ± 0.04 d | 0.13 ± 0.05 bc | 0.93 ± 0.03 abc | nd | nd | 5.09 ± 0.02 e | 1.16 ± 0.02 c |
LAF9 | 1.55 ± 0.03 e | 0.04 ± 0.02 g | 0.53 ± 0.01 abc | nd | 211.05 ± 0.02 c | 6.44 ± 0.02 c | nd |
RAF1 | 1.22 ± 0.01 e | nd | 0.81 ± 0.03 abc | nd | nd | 5.95 ± 0.08 d | nd |
RAF2 | 12.29 ± 0.04 a | 0.03 ± 0.02 h | 1.09 ± 0.02 abc | nd | nd | 3.91 ± 0.02 h | nd |
RAF3 | 2.68 ± 0.03 d | 0.11 ± 0.08 d | nd | 0.40 ± 0.08 d | nd | 4.24 ± 0.01 g | nd |
RAF4 | 2.93 ± 0.00 d | nd | 0.90 ± 0.08 abc | 0.70 ± 0.02 b | nd | 4.53 ± 0.09 fg | nd |
RAF5 | 10.07 ± 0.08 b | 0.14 ± 0.02 a | 0.95 ± 0.04 abc | nd | nd | 4.62 ±0.07 fg | nd |
RAF6 | 1.14 ± 0.14 e | 0.13 ± 0.05 b | nd | nd | nd | 4.45 ± 0.02 g | nd |
Treatment | RGR (mg mg−1 day−1) | RCR (mg mg−1 day−1) | ECI (%) | ECD (%) | MC (%) | FDI (%) |
---|---|---|---|---|---|---|
BA− | 1.29 ± 0.16 | 15.63 ± 2.45 | 8.26 ± 1.73 | 21.88 ±1.42 | 78.12 ± 0.56 | 0.00 |
BA+ | 1.00 ± 0.19 | 7.16 ± 3.48 | 13.97 ± 6.35 | 49.29 ± 2.01 | 50.71 ± 0.29 | 42.64 ± 2.64 |
MD | 0.29 | 8.47 | 5.74 | 27.41 | 27.41 | 42.64 |
p (f test) | 0.24 | 3.15 | 6.62 | 4.72 | 3.47 | 7.71 |
T | 18.65 | 216.27 | 36.51 | 145.66 | 25.33 | 587.88 |
p | 0.001 | 0.001 | 0.042 | 0.001 | 0.000 | 0.032 |
Treatment | RGR (mg mg−1 day−1) | RCR (mg mg−1 day−1) | ECI (%) | ECD (%) | MC (%) | FDI (%) |
---|---|---|---|---|---|---|
BA− | 2.10 ± 0.29 | 4.44 ± 0.97 | 47.28 ± 1.37 | 29.76 ± 8.58 | 70.24 ± 8.58 | 0.00 |
BA+ | 1.69 ± 0.38 | 2.72 ± 0.39 | 62.41 ± 6.44 | 46.56 ± 7.54 | 53.44 ± 7.54 | 17.70 ± 6.62 |
MD | 0.41 | 1.72 | 15.13 | 16.80 | 16.80 | 17.70 |
p (f test) | 2.59 | 1.89 | 0.05 | 3.37 | 7.41 | 7.71 |
T | 18.52 | 22.04 | 48.26 | 37.54 | 18.50 | 86.45 |
p | 0.02 | 0.001 | 0.042 | 0.001 | 0.001 | 0.032 |
Treatment | RGR (mg mg−1 day−1) | RCR (mg mg−1 day−1) | ECI (%) | ECD (%) | MC (%) | FDI (%) |
---|---|---|---|---|---|---|
C*SF | 1.27 ± 0.46 b | 9.55 ± 5.63 a | 13.33 ± 6.75 d | 8.16 ± 6.13 a | 91.84 ± 1.37 c | 0.00 d |
AF*SF | 1.63 ± 0.31 a | 6.63 ± 1.36 b | 24.53 ± 1.26 b | 5.95 ± 0.22 c | 94.05 ± 0.22 ab | 45.21 ± 1.10 b |
BA*SF | 0.60 ± 0.15 d | 2.09 ± 0.49 d | 30.00 ± 6.13 a | 3.89 ± 0.17 d | 96.11 ± 0.17 a | 68.00 ± 2.69 a |
AS*BA*SF | 1.00 ± 0.20 c | 5.39 ± 1.08 c | 18.52 ± 0.14 c | 6.54 ± 0.19 b | 93.46 ± 0.19 ab | 32.08 ± 1.60 c |
F | 1.13 | 1.29 | 561.15 | 649.24 | 2.99 | 7.86 |
p | 0.04 | 0.001 | 0.000 | 0.01 | 0.073 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranjith, S.; Kalaiselvi, T.; Muthusami, M.; Sivakumar, U. Maize Apoplastic Fluid Bacteria Alter Feeding Characteristics of Herbivore (Spodoptera frugiperda) in Maize. Microorganisms 2022, 10, 1850. https://doi.org/10.3390/microorganisms10091850
Ranjith S, Kalaiselvi T, Muthusami M, Sivakumar U. Maize Apoplastic Fluid Bacteria Alter Feeding Characteristics of Herbivore (Spodoptera frugiperda) in Maize. Microorganisms. 2022; 10(9):1850. https://doi.org/10.3390/microorganisms10091850
Chicago/Turabian StyleRanjith, Sellappan, Thangavel Kalaiselvi, Muruganagounder Muthusami, and Uthandi Sivakumar. 2022. "Maize Apoplastic Fluid Bacteria Alter Feeding Characteristics of Herbivore (Spodoptera frugiperda) in Maize" Microorganisms 10, no. 9: 1850. https://doi.org/10.3390/microorganisms10091850
APA StyleRanjith, S., Kalaiselvi, T., Muthusami, M., & Sivakumar, U. (2022). Maize Apoplastic Fluid Bacteria Alter Feeding Characteristics of Herbivore (Spodoptera frugiperda) in Maize. Microorganisms, 10(9), 1850. https://doi.org/10.3390/microorganisms10091850