Selection of Non-Saccharomyces Wine Yeasts for the Production of Leavened Doughs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. Biotyping and Identification of Yeast Strains
- RAPD-PCR profile
- Species-level identification
2.3. Screening of the Decarboxylase Activity of Amino Acids
2.4. Screening for the Leavening Capability in Model Wheat Doughs
2.5. Leavening Kinetics in Model Wheat Doughs
2.6. Measurement of Volatile Organic Compounds in Model Wheat Doughs
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maicas, S. The Role of Yeasts in Fermentation Processes. Microorganisms 2020, 8, 1142. [Google Scholar] [CrossRef] [PubMed]
- Tamang, J.P.; Fleet, G.H. Yeasts Diversity in Fermented Foods and Beverages. In Yeast Biotechnology: Diversity and Applications; Satyanarayana, T., Kunze, G., Eds.; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Belleggia, L.; Ferrocino, I.; Reale, A.; Boscaino, F.; Di Renzo, T.; Corvaglia, M.R.; Cocolin, L.; Milanović, V.; Cardinali, F.; Garofalo, C.; et al. Portuguese cacholeira blood sausage: A first taste of its microbiota and volatile organic compounds. Food Res. Int. 2020, 136, 109567. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, C.; Ferrocino, I.; Reale, A.; Sabbatini, R.; Milanović, V.; Alkić-Subašić, M.; Boscaino, F.; Aquilanti, L.; Pasquini, M.; Trombetta, M.F.; et al. Study of kefir drinks produced by backslopping method using kefir grains from Bosnia and Herzegovina: Microbial dynamics and volatilome profile. Food Res. Int. 2020, 137, 109369. [Google Scholar] [CrossRef]
- Ashaolu, T.J.; Reale, A. A Holistic Review on Euro-Asian Lactic Acid Bacteria Fermented Cereals and Vegetables. Microorganisms 2020, 8, 1176. [Google Scholar] [CrossRef]
- Ferraz, R.; Flores, S.H.; Frazzon, J.; Thys, R.C.S. The Effect of co-Fermentation on Sourdough Breadmaking using Different Viable Cell Concentrations of Lactobacillus plantarum and Saccharomyces cerevisiae as Starter Cultures. J. Culin. Sci. Technol. 2021, 19, 1–17. [Google Scholar] [CrossRef]
- Reale, A.; Di Renzo, T.; Succi, M.; Tremonte, P.; Coppola, R.; Sorrentino, E. Microbiological and Fermentative Properties of Baker’s Yeast Starter Used in Breadmaking. J. Food Sci. 2013, 78, M1224–M1231. [Google Scholar] [CrossRef] [PubMed]
- Basso, R.F.; Alcarde, A.R.; Portugal, C.B. Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Res. Int. 2016, 86, 112–120. [Google Scholar] [CrossRef]
- Steensels, J.; Verstrepen, K.J. Taming wild yeast: Potential of conventional and nonconventional yeasts in industrial fermentations. Annu. Rev. Microbiol. 2014, 68, 61–80. [Google Scholar] [CrossRef]
- Aslankoohi, E.; Herrera-Malaver, B.; Rezaei, M.N.; Steensels, J.; Courtin, C.M.; Verstrepen, K.J. Non-conventional yeast strains increase the aroma complexity of bread. PLoS ONE 2016, 11, e165126. [Google Scholar] [CrossRef] [Green Version]
- Zhou, N.; Schifferdecker, A.J.; Gamero, A.; Compagno, C.; Boekhout, T.; Piškur, J.; Knecht, W. Kazachstania gamospora and Wickerhamomyces subpelliculosus: Two alternative baker’s yeasts in the modern bakery. Int. J. Food Microbiol. 2017, 250, 45–58. [Google Scholar] [CrossRef]
- De Vuyst, L.; Harth, H.; Van Kerrebroeck, S.; Leroy, F. Yeast diversity of sourdoughs and associated metabolic properties and functionalities. Int. J. Food Microbiol. 2016, 239, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Semumu, T.; Gamero, A. Non-Conventional Yeasts as Alternatives in Modern Baking for Improved Performance and Aroma Enhancement. Fermentation 2021, 7, 102. [Google Scholar] [CrossRef]
- Almeida, M.J.; Pais, C. Leavening ability and freeze tolerance of yeasts isolated from traditional corn and rye bread doughs. Appl. Environ. Microbiol. 1996, 62, 4401–4404. [Google Scholar] [CrossRef]
- Hernandez-Lopez, M.J.; Prieto, J.A.; Randez-Gil, F. Osmotolerance and leavening ability in sweet and frozen sweet dough. Comparative analysis between Torulaspora delbrueckii and Saccharomyces cerevisiae baker’s yeast strains. Antonie Van Leeuwenhoek 2003, 84, 125–134. [Google Scholar] [CrossRef]
- Musatti, A.; Mapelli, C.; Foschino, R.; Picozzi, C.; Rollini., M. Unconventional bacterial association for dough leavening. Int. J. Food Microbiol. 2016, 237, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Andrighetto, A.; Psomas, E.; Tzanetakis, N.; Suzzi, G.; Lombardi, A. Randomly amplified polymorphic DNA (RAPD) PCR for the identification of yeasts isolated from dairy products. Lett. Appl. Microbiol. 2000, 30, 5–9. [Google Scholar] [CrossRef]
- Capece, A.; Fiore, C.; Maraz, A.; Romano, P. Molecular and technological approaches to evaluate strain biodiversity in Hanseniaspora uvarum of wine origin. J. Appl. Microbiol. 2005, 98, 136–144. [Google Scholar] [CrossRef]
- Bujdosό, G.; Egli, C.M.; Henick-Kling, T. Inter- and intra-specific differentiation of natural wine strains of Hanseniaspora (Kloeckera) by physiological and molecular methods. Food Technol. Biotechnol. 2001, 39, 19–28. [Google Scholar]
- Querol, A.; Barrio, E.; Ramon, D. A comparative study of different methods of yeast strains characterization. Syst. Appl. Microbiol. 1992, 15, 439–446. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory: New York, NY, USA, 1989. [Google Scholar]
- Kurtzman, C.P.; & Robnett, C.J. Identification and phylogeny of Ascomycetous yeast from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuweneek 1998, 73, 331–371. [Google Scholar] [CrossRef]
- Tristezza, M.; Vetrano, C.; Bleve, G.; Spano, G.; Capozzi, V.; Logrieco, A.; Mita, G.; Grieco, F. Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food Microbiol. 2013, 36, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Riva, M.; Pagani, M.A.; La Prova, M. Un approccio innovativo per lo studio della lievitazione di impasti da pane: L’analisi d’immagine. Tec. Molit. 2004, 55, 629–650. [Google Scholar]
- Reale, A.; Di Renzo, T.; Zotta, T.; Preziuso, M.; Boscaino, F.; Ianniello, R.; Storti, L.V.; Tremonte, P.; Coppola, R. Effect of respirative cultures of Lactobacillus casei on model sourdough fermentation. Food Sci. Technol. 2016, 73, 622–629. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Lambropoulou, D.; Morrison, C.; Kłodzińska, E.; Namieśnik, J.; Płotka-Wasylka, J. Literature update of analytical methods for biogenic amines determination in food and beverages. Trends Anal. Chem. 2018, 98, 128–142. [Google Scholar] [CrossRef]
- Gardini, F.; Tofalo, R.; Belletti, N.; Iucci, L.; Suzzi, G.; Torriani, S.; Guerzoni, M.E.; Lanciotti, R. Characterization of yeasts involved in the ripening of Pecorino Crotonese cheese. Food Microbiol. 2006, 23, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Mannino, G.; Cirlincione, F.; Gaglio, R.; Franciosi, E.; Francesca, N.; Moschetti, G.; Asteggiano, A.; Medana, C.; Gentile, C.; Settanni, L. Preliminary Investigation of Biogenic Amines in Type I Sourdoughs Produced at Home and Bakery Level. Toxins 2022, 14, 293. [Google Scholar] [CrossRef]
- Kiss, J.; Korbász, M.; Sass-Kiss, A. Study of amine composition of botrytized grape berries. J. Agric. Food Chem. 2006, 54, 8909–8918. [Google Scholar] [CrossRef]
- Qi, W.; Hou, L.H.; Guo, H.L.; Wang, C.L.; Fan, Z.C.; Liu, J.F.; Cao, X.H. Effect of salt-tolerant yeast of Candida versatilis and Zygosaccharomyces rouxii on the production of biogenic amines during soy sauce fermentation. J. Sci. Food Agric. 2014, 94, 1537–1542. [Google Scholar] [CrossRef]
- Caruso, M.; Fiore, C.; Contursi, M.; Salzano, G.; Paparella, A.; Romano, P. Formation of biogenic amines as criteria for the selection of wine yeasts. World J. Microbiol. Biotechnol. 2002, 18, 159–163. [Google Scholar] [CrossRef]
- Smit, A.Y.; du Toit, W.J.; du Toit, M. Biogenic Amines in Wine: Understanding the Headache. S. Afr. J. Enol. Vitic. 2008, 29, 109–127. [Google Scholar] [CrossRef]
- Hagman, A.; Piškur, J. A Study on the Fundamental Mechanism and the Evolutionary Driving Forces behind Aerobic Fermentation in Yeast. PLoS ONE 2015, 10, e0116942. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Song, K.; Li, H.; Ma, R.; Cui, M. Effect of mixed Saccharomyces cerevisiae Y10 and Torulaspora delbrueckii Y22 on dough fermentation for steamed bread making. Int. J. Food Microbiol. 2019, 303, 58–64. [Google Scholar] [CrossRef] [PubMed]
Strain | Sigle | Specie a | Source b | Variety c | Decarboxylase Activity d |
---|---|---|---|---|---|
YFi1 | L1 | Hanseniaspora uvarum | Grape | Fiano | No |
YFa2 | L2 | Saccharomyces cerevisiae | Must | Falanghina | Arg, Leu |
YA3 | L3 | Hanseniaspora uvarum | Must | Aglianico | No |
YG4 | L4 | Hanseniaspora uvarum | Must | Greco | No |
YG5 | L5 | Hanseniaspora uvarum | Must | Greco | No |
YFi6 | L6 | Hanseniaspora uvarum | Must | Fiano | No |
YG7 | L7 | Torulaspora delbruekii | Grape | Greco | Trp |
YG8 | L8 | Hanseniaspora uvarum | Must | Greco | No |
YFi9 | L9 | Hanseniaspora uvarum | Must | Fiano | No |
YA10 | L10 | Hanseniaspora uvarum | Grape | Aglianico | No |
YA11 | L11 | Saccharomyces cerevisiae | Must | Aglianico | No |
YFi12 | L12 | Saccharomyces cerevisiae | Must | Fiano | No |
YG13 | L13 | Hanseniaspora uvarum | Must | Greco | No |
YFa14 | L14 | Hanseniaspora uvarum | Must | Falanghina | No |
YC15 | L15 | Pichia kudriavzevii | Must | Coda di Volpe | Tyr |
YA16 | L16 | Hanseniaspora uvarum | Must | Aglianico | No |
YA17 | L17 | Hanseniaspora uvarum | Must | Aglianico | No |
YC18 | L18 | Hanseniaspora uvarum | Grape | Coda di Volpe | No |
YFi19 | L19 | Hanseniaspora uvarum | Must | Fiano passito | No |
YS20 | L20 | Zygotorulaspora florentina | Grape | Sciascinoso | Arg, Leu, Phe, Tyr |
YFi21 | L21 | Hanseniaspora uvarum | Grape | Fiano | No |
YA22 | L22 | Hanseniaspora uvarum | Must | Aglianico | No |
YFa23 | L23 | Hanseniaspora uvarum | Must | Falanghina | No |
YA24 | L24 | Hanseniaspora uvarum | Must | Aglianico | No |
YFi25 | L25 | Hanseniaspora uvarum | Must | Fiano | No |
YA26 | L26 | Saccharomyces cerevisiae | Must | Aglianico | Arg, Leu, His, Phe, Tyr |
YA27 | L27 | Saccharomyces cerevisiae | Must | Aglianico | His, Trp |
YA28 | L28 | Hanseniaspora uvarum | Must | Aglianico | No |
YA29 | L29 | Hanseniaspora uvarum | Must | Aglianico | No |
YFa30 | L30 | Hanseniaspora uvarum | Grape | Falanghina | No |
YFa31 | L31 | Metschnikowia pulcherrima | Must | Falanghina | No |
YC32 | L32 | Saccharomyces cerevisiae | Must | Coda di Volpe | Leu, Tyr |
Control | LSC | Saccharomyces cerevisiae | Commercial | - | No |
RI | Compounds | Yeast Strains | Odor # | ||||
---|---|---|---|---|---|---|---|
LSC | L12 | L8 | L13 | L28 | |||
Aldehydes | |||||||
719 | acetaldehyde | 5.37 ± 0.02 a | 5.23 ± 0.43 a | 3.02 ± 0.05 b | 3.35 ± 0.22 b | 3.78 ± 0.36 b | fruity |
853 | 2-methylpropanal | 0.23 ± 0.00 a | 0.12 ± 0.01 b | 0.12 ± 0.00 bc | 0.11 ± 0.00 bd | 0.13 ± 0.00 b | banana, sweet |
976 | 3-methylbutanal | 0.25 ± 0.01 a | 0.40 ± 0.02 b | 0.13 ± 0.00 c | 0.04 ± 0.00 d | 0.04 ± 0.00 d | aldehydic |
tot | 5.84 ± 0.04 a | 5.75 ± 0.47 a | 3.26 ± 0.06 b | 3.50 ± 0.22 b | 3.95 ± 0.36 b | ||
Ketones | |||||||
890 | 2-propanone | nd | 0.30 ± 0.02 a | nd | nd | 0.12 ± 0.01 b | ethereal, apple |
963 | 2,3-butanedione | 1.04 ± 0.01 a | nd | nd | nd | nd | butter, fatty |
1124 | 4-methyl-2-hexanone | 0.20 ± 0.01 a | 0.23 ± 0.02 b | 0.44 ± 0.04 c | 0.57 ± 0.06 d | 0.45 ± 0.01 c | fruity |
1140 | 4-methyl-3-penten-2-one | 0.35 ± 0.02 a | 0.30 ± 0.02 b | 0.49 ± 0.05 c | 0.40 ± 0.02 d | 0.42 ± 0.03 c | vegetable |
1310 | acetoin | 14.52 ± 0.38 a | 5.15 ± 0.32 b | 0.74 ± 0.03 c | 0.31 ± 0.03 d | 0.48 ± 0.04 e | sweet, butter |
1490 | 2-octanone | 2.14 ± 0.21 a | 1.92 ± 0.18 a | 2.29 ± 0.22 a | 2.37 ± 0.15 a | 2.00 ± 0.12 a | earthy, grass |
tot | 18.25 ± 0.16 a | 7.60 ± 0.43 b | 3.95 ± 0.18 c | 3.66 ± 0.22 c | 3.36 ± 0.18 c | ||
Esters and acetates | |||||||
1134 | ethyl valerate | 0.40 ± 0.04 a | 0.07 ± 0.00 b | 0.40 ± 0.03 a | 0.13 ± 0.01 c | 0.36 ± 0.03 a | sweet, fruity |
905 | ethyl acetate | 16.02 ± 1.08 a | 25.79 ± 1.60 b | 18.92 ± 1.40 c | 6.11 ± 0.46 d | 22.65 ± 2.01 b | fruity, sweet |
1000 | isobutyl acetate | 0.54 ± 0.03 a | 0.47 ± 0.02 b | 0.20 ± 0.02 c | 0.14 ± 0.01 d | 0.24 ± 0.01 e | sweet, fruity |
1015 | ethyl butanoate | 0.55 ± 0.03 a | 0.39 ± 0.02 b | 0.15 ± 0.01 c | 0.18 ± 0.02 c | 0.16 ± 0.01 c | sweet, fruity |
1057 | ethyl 2-methylbutyrate | nd | nd | 0.42 ± 0.02 a | nd | nd | sweet, fruity |
1118 | 4-methyl-2-pentyl acetate | 0.67 ± 0.01 a | 0.76 ± 0.01 b | 0.92 ± 0.04 c | 1.07 ± 0.11 c | 0.90 ± 0.02 c | sweet, fruity |
1130 | isoamyl acetate | 1.60 ± 0.16 a | 2.93 ± 0.04 b | 2.56 ± 0.25 c | 1.64 ± 0.11 a | 1.76 ± 0.14 a | sweet, fruity |
1260 | ethyl hexanoate | 2.08 ± 0.02 a | 2.10 ± 0.17 a | 0.70 ± 0.05 b | 0.55 ± 0.02 c | 0.48 ± 0.00 d | sweet, fruity |
1298 | hexyl acetate | 0.12 ± 0.01 a | 0.14 ± 0.1 a | 0.14 ± 0.01 a | 0.07 ± 0.01 b | 0.07 ± 0.00 b | sweet, fruity |
1337 | ethyl heptanoate | 0.20 ± 0.00 a | 0.26 ± 0.0 b | 0.11 ± 0.01 c | 0.10 ± 0.00 c | 0.06 ± 0.01 d | fruity |
1500 | ethyl octanoate | 1.45 ± 0.10 a | 4.15 ± 0.35 b | 0.22 ± 0.01 c | 0.15 ± 0.01 d | 0.11 ± 0.00 e | fruity, wine |
1611 | ethyl decanoate | 0.35 ± 0.03 a | 0.92 ± 0.05 b | 0.07 ± 0.00 c | 0.07 ± 0.00 c | 0.03 ± 0.00 d | sweet, waxy |
tot | 23.98 ± 0.93 a | 37.97 ± 2.15 b | 24.81 ± 1.52 a | 10.19 ± 0.69 c | 26.82 ± 1.90 d | ||
Alcohols | |||||||
989 | ethanol | 122.75 ± 0.60 a | 113.62 ± 1.83 b | 86.39 ± 1.23 c | 84.61 ± 4.75 c | 79.00 ± 6.86 c | alcohol |
1120 | isobutanol | 7.65 ± 0.21 a | 8.00 ± 0.62 a | 5.58 ± 0.46 b | 4.57 ± 0.41 c | 5.75 ± 0.30 b | ethereal |
1230 | isoamyl alcohol | 61.60 ± 0.02 a | 58.59 ± 5.08 a | 47.77 ± 1.07 c | 42.08 ± 4.01 d | 43.87 ± 2.58 d | fruity |
1395 | 1-hexanol | 6.47 ± 0.33 a | 5.75 ± 0.51 a | 8.49 ± 0.92 c | 7.20 ± 0.65 c | 7.96 ± 0.58 c | green, fruity |
1410 | 3-octanol | 1.02 ± 0.01 a | 1.94 ± 0.10 b | 2.50 ± 0.19 c | 2.68 ± 0.05 c | 0.93 ± 0.04 d | earthy, mushroom |
1453 | 1-heptanol | 0.91 ± 0.05 a | nd | nd | nd | 0.44 ± 0.02 b | sweet, woody |
1695 | methionol | 0.20 ± 0.01 a | 0.13 ± 0.01 b | 0.13 ± 0.00 b | 0.08 ± 0.00 c | 0.08 ± 0.00 c | sulfurous, onion |
1925 | phenethyl alcohol | 10.19 ± 0.16 a | 10.00 ± 1.06 a | 5.74 ± 0.29 b | 4.27 ± 0.03 c | 2.30 ± 0.10 d | floral, rose |
tot | 210.77 ± 1.0 a | 198.04 ± 1.15 b | 156.60 ± 3.78 c | 145.48 ± 0.25 d | 140.34 ± 4.72 d | ||
Acids | |||||||
1510 | acetic acid | 2.52 ± 0.03 a | 4.67 ± 0.48 b | 2.84 ± 0.09 c | 0.84 ± 0.08 d | 0.43 ± 0.02 e | sharp, vinegar |
Terpenes | |||||||
1008 | alfa pinene | 0.84 ± 0.03 a | 0.39 ± 0.03 b | 0.88 ± 0.07 a | 0.79 ± 0.05 a | 0.56 ± 0.04 c | piney, woody |
1050 | camphene | 0.31 ± 0.01 a | 0.16 ± 0.01 b | 0.23 ± 0.00 c | 0.19 ± 0.02 d | 0.20 ± 0.02 d | woody, herbal |
1112 | beta pinene | 14.94 ± 0.63 a | 14.31 ± 1.12 a | 23.27 ± 0.03 b | 23.16 ± 0.57 b | 23.17 ± 2.36 b | fresh, green |
1126 | sabinene | 0.41 ± 0.00 a | 0.08 ± 0.00 b | 0.16 ± 0.01 c | 0.07 ± 0.01 b | 0.15 ± 0.01 c | woody, citrus |
1133 | delta 3-carene | 0.50 ± 0.02 a | 0.50 ± 0.04 a | 0.81 ± 0.03 b | 0.83 ± 0.01 b | 0.80 ± 0.07 b | citrus, herbal |
1223 | limonene | 0.53 ± 0.02 a | 0.83 ± 0.06 b | 1.70 ± 0.12 c | 1.81 ± 0.00 d | 1.82 ± 0.16 cd | citrus |
tot | 17.54 ± 0.59 a | 16.27 ± 1.23 a | 27.04 ± 0.14 b | 26.84 ± 0.53 b | 26.69 ± 2.66 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zotta, T.; Di Renzo, T.; Sorrentino, A.; Reale, A.; Boscaino, F. Selection of Non-Saccharomyces Wine Yeasts for the Production of Leavened Doughs. Microorganisms 2022, 10, 1849. https://doi.org/10.3390/microorganisms10091849
Zotta T, Di Renzo T, Sorrentino A, Reale A, Boscaino F. Selection of Non-Saccharomyces Wine Yeasts for the Production of Leavened Doughs. Microorganisms. 2022; 10(9):1849. https://doi.org/10.3390/microorganisms10091849
Chicago/Turabian StyleZotta, Teresa, Tiziana Di Renzo, Alida Sorrentino, Anna Reale, and Floriana Boscaino. 2022. "Selection of Non-Saccharomyces Wine Yeasts for the Production of Leavened Doughs" Microorganisms 10, no. 9: 1849. https://doi.org/10.3390/microorganisms10091849
APA StyleZotta, T., Di Renzo, T., Sorrentino, A., Reale, A., & Boscaino, F. (2022). Selection of Non-Saccharomyces Wine Yeasts for the Production of Leavened Doughs. Microorganisms, 10(9), 1849. https://doi.org/10.3390/microorganisms10091849