Antiparasitic Activity of Hippeastrum Species and Synergistic Interaction between Montanine and Benznidazole against Trypanosoma cruzi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Alkaloid Extraction and Isolation
2.3. GC-MS and UHPLC-MS/MS Analysis
2.4. AChE and BuChE Inhibitory Activities
2.5. Trypanosoma cruzi
2.5.1. Culture
2.5.2. Growth Inhibition Assay
2.5.3. Viability Assay
2.5.4. Combination Assay (Synergism)
Drug Treatment
Analysis of Drug Interactions
2.6. Statistical Analysis
3. Results
3.1. GC-MS and UHPLC-MS/MS Analyses
3.2. Cholinesterase Inhibitory Activities
3.3. Anti-T. cruzi Activity
3.3.1. Growth Inhibition
Activity of Argentinean Hippeastrum spp. BAREs
Antiproliferative T. cruzi Activity of H. aglaiae and H. hybrid BAREs
Anti-T. cruzi Activity of H. hybrid BARE Fractions
Antiproliferative Activity of Montanine
3.3.2. Viability Assay
3.3.3. Synergistic Combinations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Neglected Tropical Diseases. Available online: http://www.who.int/neglected_diseases/diseases/en/ (accessed on 25 July 2022).
- Vermelho, A.B.; Cardoso, V.; Mansoldo, F.R.P.; Supuran, C.T.; Cedrola, S.M.L.; Rodrigues, I.A.; Rodrigues, G.C. Chagas Disease: Drug Development and Parasite Targets. In Antiprotozoal Drug Development and Delivery; Vermelho, A.B., Supuran, C.T., Eds.; Springer: Cham, Germany, 2022; Volume 39. [Google Scholar] [CrossRef]
- Molina, I.; Gómez, I.; Prat, J.; Salvador, F.; Treviño, B.; Sulleiro, E.; Serre, N.; Pou, D.; Roure, S.; Cabezos, J.; et al. Randomized trial of posaconazole and benznidazole for chronic Chagas’ disease. N. Engl. J. Med. 2014, 370, 1899–1908. [Google Scholar] [CrossRef] [PubMed]
- Souza, J.L.; Lima, F.D.C.; Cruz, J.V.; dos Reis Almeida, T.; da Silva, C.B.B. In silic study of alkaloids derived from Catharanthus roseus in the active site of Trypanosoma cruzi by molecular docking. Res. Soc. Dev. 2022, 11, e23711528114. [Google Scholar] [CrossRef]
- Bermudez, J.; Davies, C.; Simonazzi, A.; Real, J.P.; Palma, S. Current drug therapy and pharmaceutical challenges for Chagas disease. Acta Trop. 2016, 156, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Field, M.C.; Horn, D.; Fairlamb, A.H.; Ferguson, M.A.J.; Gray, D.W.; Read, K.D.; de Rycker, M.; Torrie, L.S.; Wyatt, P.G.; Wyllie, S.; et al. Anti-trypanosomatid drug discovery: An ongoing challenge and a continuing need. Nat. Rev. Microbiol. 2017, 15, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, V.; Dias, N.; Paiva, T.; Hagström-Bex, L.; Nitz, N.; Pratesi, R.; Hecht, M. Current trends in the pharmacological management of Chagas disease. Int. J. Parasitol. Drugs Drug Resist. 2020, 12, 7–17. [Google Scholar] [CrossRef]
- Sbaraglini, M.L.; Bellera, C.L.; Braghini, J.Q.; Areco, Y.; Miranda, C.; Carrillo, C.; Kelly, J.; Buchholz, B.; Gelpi, R.; Talevi, A.; et al. Combined therapy with Benznidazole and repurposed drugs Clofazimine and Benidipine for chronic Chagas disease. Eur. J. Med. Chem. 2019, 184, 111778. [Google Scholar] [CrossRef]
- Browne, B.; Kupeli, N.; Moore, K.J.; Sampson, E.L.; Davies, N. Defining end of life in dementia: A systematic review. Palliat. Med. 2021, 35, 1733–1746. [Google Scholar] [CrossRef]
- Huang, L.K.; Chao, S.P.; Hu, C.J. Clinical trials of new drugs for Alzheimer disease. J. Biomed. Sci. 2020, 27, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Al Shammari, L.; Hulcová, D.; Maříková, J.; Kučera, T.; Šafratová, M.; Nováková, L.; Schmidt, M.; Pulkrabkova, L.; Janousek, J.; Soukup, O.; et al. Amaryllidaceae alkaloids from Hippeastrum x hybridum CV. Ferrari, and preparation of vittatine derivatives as potential ligands for Alzheimer’s disease. S. Afr. J. Bot. 2020, 136, 137–146. [Google Scholar] [CrossRef]
- Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem. 2016, 8, 531–541. [Google Scholar] [CrossRef]
- Stratton, C.F.; Newman, D.J.; Tan, D.S. Cheminformatics comparison of approved drugs from natural product versus synthetic origins. Bioorganic Med. Chem. Lett. 2015, 25, 4802–4807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastida, J.; Lavilla, R.; Viladomat, F. Chemical and biological aspects of Narcissus Alkaloids. In The Alkaloids: Chemistry and Physiology; Cordell, G.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 63, pp. 87–179. [Google Scholar]
- Martínez, G.J.; Barboza, G.E. Natural pharmacopoeia used in traditional Toba medicine for the treatment of parasitosis and skin disorders (Central Chaco, Argentina). J. Ethnopharmacol. 2010, 132, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, J.E.; Pigni, N.B.; Andujar, S.A.; Roitman, G.; Suvire, F.D.; Enriz, R.D.; Tapia, A.; Bastida, J.; Feresin, G.E. Alkaloids from Hippeastrum argentinum and their cholinesterase-inhibitory activities: An in vitro and in silico study. J. Nat. Prod. 2016, 79, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.F.S.; de Andrade, J.P.; Bevilaqua, L.R.; de Souza, M.M.; Izquierdo, I.; Henriques, A.T.; Zuanazzi, J.Â.S. Anxiolytic-, antidepressant- and anticonvulsant-like effects of the alkaloid montanine isolated from Hippeastrum vittatum. Pharmacol. Biochem. Behav. 2006, 85, 148–154. [Google Scholar] [CrossRef]
- da Silva, A.F.S.; de Andrade, J.P.; Machado, K.R.B.; Rocha, A.B.; Apel, M.A.; Sobral, M.E.G.; Henriques, A.T.; Zuanazzi, J.A.S. Screening for cytotoxic activity of extracts and isolated alkaloids from bulbs of Hippeastrum vittatum. Phytomedicine 2008, 15, 882–885. [Google Scholar] [CrossRef]
- Gasca, C.A.; Moreira, N.C.; de Almeida, F.C.; Gomes, J.V.D.; Castillo, W.O.; Fagg, C.W.; Magalhãesa, P.O.; Fonseca-Bazzoa, Y.; Sakamoto-Hojo, E.; de Medeiros, Y.K.; et al. Acetylcholinesterase inhibitory activity, anti-inflammatory, and neuroprotective potential of Hippeastrum psittacinum (Ker Gawl.) herb (Amaryllidaceae). Food Chem. Toxicol. 2020, 145, 111703. [Google Scholar] [CrossRef]
- Santana, O.; Reina, M.; Anaya, A.L.; Hernández, F.; Izquierdo, M.E.; González-Coloma, A. 3-O-Acetyl-narcissidine, a bioactive alkaloid from Hippeastrum puniceum Lam. (Amaryllidaceae). Z. Naturforsch. C Biosci. 2008, 63, 639–643. [Google Scholar] [CrossRef]
- Sultana, J.; Sutlana, N.; Siddique, M.N.A.; Islam, A.K.M.A.; Hossain, M.M.; Hossain, T. In vitro bulb production in Hippeastrum (Hippeastrum hybridum). J. Cent. Eur. Agric. 2010, 11, 469–474. [Google Scholar]
- Zuloaga, F.O.; Morrone, O.; Belgrano, M.J. Catálogo de las plantas vasculares del Cono Sur (Argentina, sur de Brasil, Chile, Paraguay, y Uruguay) Ptherydophyta, Gymnospernae, Monocotyledoneae. Syst. Bot. 2009, 34, 610–611. [Google Scholar]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Spina, R.M.; Lozano, E.; Barrera, P.A.; Agüero, M.B.; Tapia, A.; Feresin, G.E.; Sosa, M.Á. Antiproliferative effect and ultrastructural alterations induced by 5-O-methylembelin on Trypanosoma cruzi. Phytomedicine 2018, 46, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Duarte, D.; Vale, N. New trends for antimalarial drugs: Synergism between antineoplastics and antimalarials on breast cancer cells. Biomolecules 2020, 10, 1623. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.C. Drug combination studies and their synergy quantification using the chou-talalay method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roell, K.R.; Reif, D.M.; Motsinger-Reif, A.A. An introduction to terminology and methodology of chemical synergy—Perspectives from across disciplines. Front. Pharmacol. 2017, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- Bessa, C.D.; Andrade, J.P.D.; Oliveira, R.S.D.; Domingos, E.; Santos, H.; Romão, W.; Bastida, J.; Borges, W.S. Identification of alkaloids from Hippeastrum aulicum (Ker Gawl.) Herb. (Amaryllidaceae) using CGC-MS and ambient ionization mass spectrometry (PS-MS and LS-MS). J. Braz. Chem. Soc. 2017, 28, 819–830. [Google Scholar] [CrossRef]
- Soprani, L.C.; Andrade, J.P.D.; Santos, V.D.D.; Alves-Araújo, A.; Bastida, J.; Silva, C.A.G.; Silveira, D.; de Souza, W.; Jamal, C.M. Chemical evaluation and anticholinesterase activity of Hippeastrum puniceum (Lam.) Kuntz bulbs (Amaryllidaceae). Braz. J. Pharm. Sci. 2021, 57, e19154. [Google Scholar] [CrossRef]
- Tallini, L.R.; Osorio, E.H.; Santos, V.D.D.; Borges, W.D.S.; Kaiser, M.; Viladomat, F.; Zuanazzi, J.A.S.; Bastida, J. Hippeastrum reticulatum (Amaryllidaceae): Alkaloid profiling, biological activities and molecular docking. Molecules 2017, 22, 2191. [Google Scholar] [CrossRef] [Green Version]
- Karakoyun, Ç.; Bozkurt, B.; Çoban, G.; Masi, M.; Cimmino, A.; Evidente, A.; Somer, N.U. A comprehensive study on Narcissus tazetta subsp. tazetta L.: Chemo-profiling, isolation, anticholinesterase activity and molecular docking of Amaryllidaceae alkaloids. S. Afr. J. Bot. 2020, 130, 148–154. [Google Scholar] [CrossRef]
- López, S.; Bastida, J.; Viladomat, F.; Codina, C. Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts. Life Sci. 2002, 71, 2521–2529. [Google Scholar] [CrossRef]
- Šafratová, M.; Hošťálková, A.; Hulcová, D.; Breiterová, K.; Hrabcová, V.; Machado, M.; Fontinha, D.; Prudêncio, M.; Kuneš, J.; Chlebek, J.; et al. Alkaloids from Narcissus poeticus cv. Pink Parasol of various structural types and their biological activity. Arch. Pharm. Res. 2018, 41, 208–218. [Google Scholar] [CrossRef]
- Martinez-Peinado, N.; Cortes-Serra, N.; Torras-Claveria, L.; Pinazo, M.J.; Gascon, J.; Bastida, J.; Alonso-Padilla, J. Amaryllidaceae alkaloids with anti-Trypanosoma cruzi activity. Parasit. Vectors 2020, 13, 1–10. [Google Scholar] [CrossRef]
- Labraña, J.; Machocho, A.K.O.; Kricsfalusy, V.; Brun, R.; Codina, C.; Viladomat, F.; Bastida, J. Alkaloids from Narcissus angustifolius subsp. transcarpathicus (Amaryllidaceae). Phytochemistry 2002, 60, 847–852. [Google Scholar] [CrossRef] [PubMed]
- de Souza, W.; Barrias, E.S. May the epimastigote form of Trypanosoma cruzi be infective? Acta Trop. 2020, 212, 105688. [Google Scholar] [CrossRef]
- Kessler, R.L.; Contreras, V.T.; Marliére, N.P.; Aparecida Guarneri, A.; Villamizar Silva, L.H.; Mazzarotto, G.A.C.A.; Batista, M.; Soccol, V.T.; Krieger, M.A.; Probst, C.M. Recently differentiated epimastigotes from Trypanosoma cruzi are infective to the mammalian host. Mol. Microbiol. 2017, 104, 712–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castañeda, J.S.; Suta-Velásquez, M.; Mateus, J.; Pardo-Rodriguez, D.; Puerta, C.J.; Cuéllar, A.; Robles, J.; Cuervo, C. Preliminary chemical characterization of ethanolic extracts from Colombian plants with promising anti-Trypanosoma cruzi activity. Exp. Parasitol. 2021, 223, 108079. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Peinado, N.; Ortiz, J.E.; Cortes-Serra, N.; Pinazo, M.J.; Gascon, J.; Tapia, A.; Roitman, G.; Bastida, J.; Feresin, G.E.; Alonso-Padilla, J. Anti-Trypanosoma cruzi activity of alkaloids isolated from Habranthus brachyandrus (Amaryllidaceae) from Argentina. Phytomedicine 2022, 101, 154126. [Google Scholar] [CrossRef] [PubMed]
- Puente, V.; Demaria, A.; Frank, F.M.; Batlle, A.; Lombardo, M.E. Anti-parasitic effect of vitamin C alone and in combination with benznidazole against Trypanosoma cruzi. PLoS Negl. Trop. Dis. 2018, 12, e0006764. [Google Scholar] [CrossRef]
- Santos, S.S.; de Araujo, R.V.; Giarolla, J.; El Seoud, O.; Ferreira, E.I. Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: A review. Int. J. Antimicrob. Agents 2020, 55, 105906. [Google Scholar] [CrossRef]
Alkaloids | RI | [M+] | MS | Species |
---|---|---|---|---|
Galanthamine (1) | 21.322 | 287 | 286 (100), 270 (13), 244 (24), 230 (12), 216 (33), 174 (27), 115 (12) | H. hybrid |
Norlycoramine (2) | 22.390 | 275 | 274 (100), 202 (10), 188 (12), 178 (5) | H. aglaiae |
11,12-Dehydroanhydrolycorine (3) | 24.796 | 249 | 248 (100), 191 (10), 190 (24), 189 (6), 164 (3), 163 (7), 123 (6), 95 (14) | H. aulicum H. reticulatum |
Montanine (4) | 24.916 | 301 | 270 (87), 257 (37), 252 (24), 229 (26), 226 (30), 223 (29), 199 (20), 185 (32), 115 (21) | H. aglaiae, H. hybrid H. petiolatum H. puniceum |
Tazettine (5) | 25.313 | 331 | 298 (19), 248 (15), 247 (100), 201 (16), 199 (14), 181 (13), 115 (15), 71 (15), 70 (17) | H. glaucescens |
m/z 264 (NP Narcissidine type) (6) | 25.592 | 265 | 264 (100), 178 (13), 89 (10), 103 (10), 266 (10), 206 (9), 75 (6), 150 (6), 177 (6) | H. reticulatum |
Pancracine (7) | 26.070 | 287 | 286 (23), 270 (19), 243 (25), 223 (27), 214 (24), 199 (32), 185 (42), 128 (21), 115 (24) | H. hybrid |
Hamayne (8) | 26.206 | 287 | 259 (15), 258 (100), 242 (10), 211 (13), 186 (15), 181 (17), 128 (14), 115 (13) | H. aulicum |
Lycorine (9) | 26.759 | 287 | 286 (19), 268 (24), 250 (15), 227 (79), 226 (100), 211 (7), 147 (15) | H. aglaiae, H. aulicum H. hybrid H. petiolatum H. reticulatum |
8-O-Demetylhomolycorine (10) | 27.528 | 301 | 109 (100), 108 (22), 110 (8), 82 (3), 94 (3), 93 (2), 65 (2) | H. aglaiae H. puniceum H. reticulatum |
Hippeastrine (11) | 28.620 | 315 | 96 (40), 125 (100), 315 (<1) | H. hybrid H. puniceum |
2-Hydroxyhomolycorine (12) | 29.223 | 331 | 125 (100), 95 (3), 65 (2), 42 (10) | H. hybrid |
m/z 294 (NP Narcissidine type) (13) | 29.294 | 295 | 294 (100), 165 (16), 296 (15), 152 (10), 252 (8), 135 (8), 253 (7), 166 (6), 238 (4) | H. reticulatum |
m/z 280 (NP Narcissidine type) (14) | 29.805 | 281 | 280 (100), 282 (10), 152 (5), 253 (4), 252 (3), 238 (3), 151 (3), 266 (2), 103 (2) | H. reticulatum |
7-Hydroxyclivonine (15) | 29.857 | 333 | 178 (3), 97 (5), 96 (64), 84 (5), 83 (100), 82 (32), 44 (3), 42 (8) | H. hybrid |
Species | IC50 (μg/mL) of BAREs | |
---|---|---|
AChE | BuChE | |
H. aglaiae | 16.68 ± 0.98 | 80.66 ± 1.40 |
H. aulicum | 6.33 ± 0.81 | >100 |
H. glaucescens | 9.08 ± 0.82 | >100 |
H. hybrid | 15.42 ± 1.11 | >100 |
H. petiolatum | 5.35 ± 0.75 | 98.07 ± 1.30 |
H. puniceum | 5.07 ± 0.64 | 95.39 ± 1.59 |
H. reticulatum | 3.13 ± 0.53 | 50.05 ± 1.2 |
Galanthamine a | 0.16 ± 0.05 | 5.82 ± 0.34 |
Species | Growth Inhibition (%) | |||||
---|---|---|---|---|---|---|
10 µg/mL | 50 µg/mL | |||||
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | |
H. aglaiae | 100 | 100 | 100 | 100 | 100 | 100 |
H. aulicum | 100 | 100 | 95.89 ± 1.45 | 100 | 100 | 100 |
H. glaucescens | 69.83 ± 2.25 | 100 | 47.3 ± 1.88 | 100 | 100 | 100 |
H. hybrid | 91.38 ± 0.63 | 100 | 100 | 100 | 100 | 100 |
H. petiolatum | 100 | 73.96 ± 1.67 | 35.03 ± 3.38 | 100 | 100 | 100 |
H. puniceum | 95.69 ± 0.42 | 100 | 57.03 ± 2.23 | 100 | 100 | 100 |
H. reticulatum | 100 | 100 | 38.12 ± 4.77 | 100 | 100 | 100 |
Bzn * | 100 | 98.33 ± 0.34 | 95.68 ± 1.48 | 100 | 98.33 ± 0.34 | 95.68 ± 1.48 |
Species | Viability (%) | |
---|---|---|
50 µg/mL | ||
24 h | 48 h | |
H. aglaiae | 92.03 ± 0.95 | 84.78 ± 3.36 |
H. aulicum | 88.61 ± 1.73 | 83.48 ± 1.08 |
H. glaucescens | 88.18 ± 2.38 | 72.88 ± 0.88 |
H. hybrid | 86.59 ± 0.19 | 82.54 ± 1.35 |
H. petiolatum | 88.25 ± 1.97 | 86.12 ± 4.19 |
H. puniceum | 89.02 ± 2.36 | 80.43 ± 2.78 |
H. reticulatum | 87.84 ± 1.77 | 82.65 ± 3.55 |
Bzn * | 99.33 ± 0.02 | 97.06 ± 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piñeiro, M.; Ortiz, J.E.; Spina Zapata, R.M.; Barrera, P.A.; Sosa, M.A.; Roitman, G.; Bastida, J.; Feresin, G.E. Antiparasitic Activity of Hippeastrum Species and Synergistic Interaction between Montanine and Benznidazole against Trypanosoma cruzi. Microorganisms 2023, 11, 144. https://doi.org/10.3390/microorganisms11010144
Piñeiro M, Ortiz JE, Spina Zapata RM, Barrera PA, Sosa MA, Roitman G, Bastida J, Feresin GE. Antiparasitic Activity of Hippeastrum Species and Synergistic Interaction between Montanine and Benznidazole against Trypanosoma cruzi. Microorganisms. 2023; 11(1):144. https://doi.org/10.3390/microorganisms11010144
Chicago/Turabian StylePiñeiro, Mauricio, Javier E. Ortiz, Renata M. Spina Zapata, Patricia A. Barrera, Miguel A. Sosa, Germán Roitman, Jaume Bastida, and Gabriela E. Feresin. 2023. "Antiparasitic Activity of Hippeastrum Species and Synergistic Interaction between Montanine and Benznidazole against Trypanosoma cruzi" Microorganisms 11, no. 1: 144. https://doi.org/10.3390/microorganisms11010144
APA StylePiñeiro, M., Ortiz, J. E., Spina Zapata, R. M., Barrera, P. A., Sosa, M. A., Roitman, G., Bastida, J., & Feresin, G. E. (2023). Antiparasitic Activity of Hippeastrum Species and Synergistic Interaction between Montanine and Benznidazole against Trypanosoma cruzi. Microorganisms, 11(1), 144. https://doi.org/10.3390/microorganisms11010144