Diabetes and SARS-CoV-2 Infection: The Potential Role of Antidiabetic Therapy in the Evolution of COVID-19
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cariou, B.; Hadjadj, S.; Wargny, M.; Pichelin, M.; Al-Salameh, A.; Allix, I.; Amadou, C.; Arnault, G.; Baudoux, F.; Bauduceau, B.; et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: The CORONADO study. Diabetologia 2020, 63, 1500–1515. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, X.; Jiang, F.; Zhang, X.; Hu, N.; Bimu, C.; Feng, J.; Yan, S.; Guan, Y.; Xu, D.; et al. Clinical characteristics and risk factors for mortality of COVID-19 patients with diabetes in Wuhan, China: A two-center, retrospective study. Diabetes Care 2020, 43, 1382–1391. [Google Scholar] [CrossRef]
- Singh, A.K.; Gilles, C.; Singh, R.; Singh, A.; Chudasama, Y.; Coles, B.; Seidu, S.; Zaccardi, F.; Davies, M.J.; Khunti, K.; et al. Prevalence of comorbidities and their association with mortality in patients with COVID-19: A systematic review and meta-analysis. Diabetes Obes. Metab. 2020, 22, 1915–1924. [Google Scholar] [CrossRef]
- Singh, A.K.; Gupta, R.; Ghosh, A.; Misra, A. Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab. Syndr. 2020, 14, 303–310. [Google Scholar] [CrossRef]
- CDC COVID-19 Response Team. Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019—United States, February 12–March 28 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 382–386. [Google Scholar] [CrossRef]
- Di Castelnuovo, A.; Bonaccio, M.; Costanzo, S.; Gialluisi, A.; Antinori, A.; Berselli, N.; Blandi, L.; Bruno, R.; Cauda, R.; Guaraldi, G.; et al. Common cardiovascular risk factors and in-hospital mortality in 3,894 patients with COVID-19: Survival analysis and machine learning-based findings from the multicentre Italian CORIST Study. Nutr. Metab. Cardiovasc Dis. 2020, 30, 1899–1913. [Google Scholar] [CrossRef]
- Mancusi, C.; Grassi, G.; Borghi, C.; Ferri, C.; Muiesan, M.L.; Volpe, M.; Laccarino, G.; SARS-RAS Investigator Group. Clinical Characteristics and Outcomes of Patients with COVID-19 Infection: The Results of the SARS-RAS Study of the Italian Society of Hypertension. High Blood Press Cardiovasc Prev. 2021, 28, 5–11. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, R. At-admission hyperglycemia is consistently associated with poor prognosis and early intervention can improve outcomes in patients with COVID-19. Diabetes Metab. Syndr. 2020, 14, 1641–1644. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, R. Hyperglycemia without diabetes and new-onset diabetes are both associated with poorer outcomes in COVID-19. Diabetes Res. Clin. Pract. 2020, 167, 108382. [Google Scholar] [CrossRef]
- Bode, B.; Garrett, V.; Messler, J.; McFarland, R.; Crowe, J.; Booth, R.; Klonoff, D.C. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. J. Diabetes Sci. Technol. 2020, 14, 813–821. [Google Scholar] [CrossRef]
- Niekerk, G.; Merwe, M.; Engelbrecht, A.-M. Diabetes and susceptibility to infections: Implication for COVID-19. Immunology 2021, 164, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Hancock, M.L.; Meyer, R.C.; Mistry, M.; Khetani, R.S.; Wagschal, A.; Shin, T.; Ho Sui, S.J.; Näär, A.M.; Flanagan, J.G. Insulin receptor as-sociates with promoters genome-wide and regulates gene ex-pression. Cell 2019, 177, 722–736.e22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radtke, F.; MacDonald, H.R.; Tacchini-Cottier, F. Regulation of innate and adaptive immunity by Notch. Nat. Rev. Immunol. 2013, 13, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Walrand, S.; Guillet, C.; Boirie, Y.; Vasson, M.P. Insulin differentially regulates monocyte and polymorphonuclear neutrophil functions in healthy young and elderly humans. J. Clin. Endocrinol. Metab. 2006, 91, 2738–2748. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.H.; Raybuck, A.L.; Blagih, J.; Kemboi, E.; Haase, V.H.; Jones, R.G.; Boothby, M.R. Hypoxia-inducible factors in CD4+ T cells promote metabolism, switch cytokine secretion, and T cell help in humoral immunity. Proc. Natl. Acad. Sci. USA 2019, 116, 8975–8984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinchera, B.; Scotto, R.; Buonomo, A.R.; Zappulo, E.; Stagnaro, F.; Gallicchio, A.; Viceconte, G.; Sardanelli, A.; Mercinelli, S.; Villari, R.; et al. Diabetes and COVID-19: The potential role of mTOR. Diabetes Res. Clin. Pract. 2022, 186, 109813. [Google Scholar] [CrossRef]
- Viollet, B.; Guigas, B.; Sanz Garcia, N.; Leclerc, J.; Foretz, M.; Andreelli, F. Cellular and molecular mechanisms of metformin: An overview. Clin. Sci. 2012, 122, 253–270. [Google Scholar] [CrossRef] [Green Version]
- Pinchera, B.; Spirito, L.; Buonomo, A.R.; Foggia, M.; Carrano, R.; Salemi, F.; Schettino, E.; Papa, F.; La Rocca, R.; Crocetto, F.; et al. mTOR Inhibitor Use Is Associated With a Favorable Outcome of COVID-19 in Patients of Kidney Transplant: Results of a Retrospective Study. Front. Med. 2022, 9, 852973. [Google Scholar] [CrossRef]
- Inoki, K.; Zhu, T.; Guan, K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003, 115, 577–590. [Google Scholar] [CrossRef] [Green Version]
- Musi, N.; Hirshman, M.F.; Nygren, J.; Svanfeldt, M.; Bavenholm, P.; Rooyackers, O.; Zhou, G.; Williamson, J.M.; Ljunqvist, O.; Efendic, S.; et al. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 2002, 51, 2074–2081. [Google Scholar] [CrossRef]
- Isoda, K.; Young, J.L.; Zirlik, A.; MacFarlane, L.A.; Tsuboi, N.; Gerdes, N.; Schönbeck, U.; Libby, P. Metformin inhibits proinflammatory responses and nuclear factor-kappaB in human vascular wall cells. Arter. Thromb. Vasc. Biol. 2006, 26, 611–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hariyanto, T.I.; Kurniawan, A. Metformin use is associated with reduced mortality rate from coronavirus disease 2019 (COVID-19) infection. Obes. Med. 2020, 19, 100290. [Google Scholar] [CrossRef] [PubMed]
- Xi, X.; Zou, C.; Ye, Z.; Huang, Y.; Chen, T.; Honglin, H.u. Pioglitazone protects tubular cells against hypoxia/reoxygenation injury through enhancing autophagy via AMPK-mTOR signaling pathway. Eur. J. Pharmacol. 2019, 863, 172695. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, J.; Xiaoxing, Y.u. Dipeptidyl peptidase-4 inhibitor MK-626 restores insulin secretion through enhancing autophagy in high fat diet-induced mice. Biochem. Biophys. Res. Commun. 2016, 470, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.J. Metformin and COVID-19: From cellular mechanisms to reduced mortality. Diabetes Metab. 2020, 46, 423–426. [Google Scholar] [CrossRef]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkerneyer, A.; Kline, S.; et al. Remdesivir for the treatment of COVID-19—final report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
- Arnold, P.; Scheurer, D.; Dake, A.W.; Hedgpeth, A.; Hutto, A.; Colquitt, C.; Hermayer, K.L. Hospital Guidelines for Diabetes Management and the Joint Commission-American Diabetes Association Inpatient Diabetes Certification. Am. J. Med. Sci. 2016, 351, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Chen, Z.; Liu, L.; Yin, X.; Yang, H.; Tan, X.; Wang, J.; Li, H.; Tian, M.; Lu, Z.; et al. Association of metformin with mortality or ARDS in patients with COVID-19 and type 2 diabetes: A retrospective cohort study. Diabetes Res. Clin. Pract. 2021, 173, 108619. [Google Scholar] [CrossRef]
- Know, C.S.; Hasan, S.S. Mortality risk with preadmission metformin use in patients with COVID-19 and diabetes: A meta-analysis. J. Med. Virol. 2020, 93, 695–697. [Google Scholar]
Total n = 43 (%) | Patients Undergoing Treatment with Metformin n = 19 (%) | Patients Undergoing Treatment with Insulin n = 24 (%) | p-Value | ||
---|---|---|---|---|---|
Age (median, IQR) | 69 (48–92) | 66 (48–87) | 74.5 (55–92) | 0.310 | |
Sex | Male | 32 (74) | 15 (79) | 17 (71) | 0.260 |
Female | 11 (26) | 4 (21) | 7 (29) | ||
Comorbidity | Obesity BMI > 30 Kg/m | 11 (26) | 4 (21) | 7 (29) | 0.320 |
Cardiovascular disease | 22 (51) | 8 (42) | 14 (58) | 0.140 | |
Chronic pulmonary disease | 10 (23) | 3 (16) | 7 (29) | 0.190 | |
Chronic renal disease | 12 (28) | 2 (11) | 10 (42) | 0.120 | |
Solid tumor | 5 (12) | 3 (16) | 2 (8) | 0.290 | |
Hematological malignancy | 3 (7) | 1 (6) | 2 (8) | 0.340 | |
Primary or acquired immunodeficiency | 1 (2) | 1 (6) | 0 | 0.320 | |
Vaccination status | Vaccinated | 36 (84) | 15 (79) | 21 (88) | 0.170 |
Not vaccinated | 7 (16) | 4 (21) | 3 (12) | ||
Laboratory at day of hospital admission | WBC (cell/µL; median, IQR) | 7.120 (1.310–16.920) | 6.520 (2.680–14.310) | 8.750 (1.310–16.920) | |
Lymphocyte count (cell/µL; median, IQR) | 770 (200–1.680) | 880 (270–1.680) | 610 (200–1.510) | ||
PLT (cell/µL; median, IQR) | 256.000 (102.000–470.000) | 224.000 (142.000–470.000) | 316.000 (102.000–440.000) | ||
AST (UI/L; median, IQR) | 38 (13–97) | 42 (13–83) | 37 (16–97) | ||
ALT (UI/L; median, IQR) | 31 (12–102) | 39 (16–62) | 28 (12–102) | ||
GGT (UI/L; median, IQR) | 55 (11–122) | 62 (11–122) | 50 (23–55) | ||
Tot. Bil. (mg/dL; median, IQR) | 0.78 (0.38–1.61) | 0.92 (0.44–1.61) | 0.76 (0.38–1.33) | ||
Creatininemia (g/dL; median, IQR) | 0.96 (0.41–2.95) | 1.1 (0.6–2.06) | 0.9 (0.41–2.95) | ||
CRP (mg/L; median, IQR) | 61 (5–272) | 43 (5–144) | 89 (13–272) | ||
HRCT score (median, IQR) | 9 (7–18) | 8 (7–10) | 13 (7–18) | ||
Symptoms | Fever | 34 (79) | 15 (79) | 19 (79) | |
Cough | 22 (51) | 9 (47) | 13 (54) | ||
Malaise | 27 (63) | 12 (63) | 15 (63) | ||
Shortness of breath | 17 (40) | 6 (32) | 11 (46) | ||
Headache | 11 (26) | 4 (21) | 7 (29) | ||
Arthomialgia | 8 (17) | 2 (11) | 6 (25) | ||
Asthenia | 20 (46) | 9 (47) | 11 (46) | ||
Nausea/diarrhea | 8 (17) | 3 (16) | 5 (21) | ||
Treatment for COVID-19 | Dexamethasone | 43 (100) | 19 (100) | 24 (100) | |
Low molecular weight heparin | 43 (100) | 19 (100) | 24 (100) | ||
Antivirals | 33 (77) | 14 (74) | 19 (79) | ||
Monoclonal antibodies | 20 (46) | 9 (47) | 11 (46) | ||
Immunomodulators | 0 | 0 | 0 |
Patient state | Descriptor | Score | Patients Undergoing Treatment with Metformin n = 19 (%) | Patients Undergoing Treatment with Insulin n = 24 (%) |
---|---|---|---|---|
Uninfected | No clinical or virological evidence of infection | 0 | ||
Ambulatory | No limitation of activities | 1 | ||
Limitation of activities | 2 | |||
Hospitalized mild–moderate disease | Hospitalized, no oxygen therapy | 3 | ||
Oxygen by mask or nasal prongs | 4 | 14 | 7 | |
Hospitalized severe disease | Non-invasive ventilation or high-flow oxygen | 5 | 3 | 10 |
Intubation or mechanical ventilation | 6 | 2 | 4 | |
Ventilation + additional organ support: pressors, renal replacement therapy, ECMO | 7 | |||
Dead | Death | 8 | 0 | 3 |
19 | 24 |
Total n = 43 (%) | Patients Undergoing Treatment with Metformin n = 19 (%) | Patients Undergoing Treatment with Insulin n = 24 (%) | p-Value | ||
---|---|---|---|---|---|
Laboratory at day of hospital admission | |||||
CRP (mg/L; median, IQR) | 61 (5–272) | 43 (5–144) | 89 (13–272) | 0.039 | |
HRCT score (median, IQR) | 9 (7–18) | 8 (7–10) | 13 (7–18) | 0.064 | |
Days between onset of symptoms and hospitalization (median, IQR) | 5 (3–11) | 7 (4–11) | 4 (3–9) | 0.110 | |
Hospitalization length in days (median, IQR) | 22 (8–60) | 19 (8–48) | 25 (11–60) | 0.089 | |
Outcome at discharge | Clinical healing | 40 (93) | 19 (100) | 21 (87) | 0.170 |
Death | 3 (7) | 0 (0) | 3 (13) | 0.072 |
OR | 95% CI | p-Value | |
---|---|---|---|
Age | 1.2 | 0.8–1.5 | 0.100 |
Male sex | 1.3 | 0.7–1.8 | 0.120 |
Comorbidity | |||
Obesity BMI > 30 Kg/m2 | 1.5 | 0.9–1.6 | 0.95 |
Cardiovascular disease | 1.3 | 0.9–1.5 | 0.120 |
Diabetes mellitus | 1.6 | 0.7–1.8 | 0.72 |
Hypertension | 1.1 | 0.8–1.3 | 0.150 |
Dyslipidemia | 1.2 | 0.8–1.5 | 0.138 |
Laboratory at time of enrollement | |||
CPR > 5 mg/dL | 1.4 | 0.9–1.6 | 0.086 |
Vaccination status | |||
Not vaccinated § | 1.4 | 0.9–15 | 0.097 |
Treatment with metformin | 0.7 | 0.5–0.9 | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinchera, B.; Schiano Moriello, N.; Buonomo, A.R.; Di Filippo, I.; Tanzillo, A.; Buzzo, G.; Villari, R.; Gentile, I.; Federico II COVID Team. Diabetes and SARS-CoV-2 Infection: The Potential Role of Antidiabetic Therapy in the Evolution of COVID-19. Microorganisms 2023, 11, 145. https://doi.org/10.3390/microorganisms11010145
Pinchera B, Schiano Moriello N, Buonomo AR, Di Filippo I, Tanzillo A, Buzzo G, Villari R, Gentile I, Federico II COVID Team. Diabetes and SARS-CoV-2 Infection: The Potential Role of Antidiabetic Therapy in the Evolution of COVID-19. Microorganisms. 2023; 11(1):145. https://doi.org/10.3390/microorganisms11010145
Chicago/Turabian StylePinchera, Biagio, Nicola Schiano Moriello, Antonio Riccardo Buonomo, Isabella Di Filippo, Anastasia Tanzillo, Giorgio Buzzo, Riccardo Villari, Ivan Gentile, and Federico II COVID Team. 2023. "Diabetes and SARS-CoV-2 Infection: The Potential Role of Antidiabetic Therapy in the Evolution of COVID-19" Microorganisms 11, no. 1: 145. https://doi.org/10.3390/microorganisms11010145
APA StylePinchera, B., Schiano Moriello, N., Buonomo, A. R., Di Filippo, I., Tanzillo, A., Buzzo, G., Villari, R., Gentile, I., & Federico II COVID Team. (2023). Diabetes and SARS-CoV-2 Infection: The Potential Role of Antidiabetic Therapy in the Evolution of COVID-19. Microorganisms, 11(1), 145. https://doi.org/10.3390/microorganisms11010145