Influences of Four Kinds of Surfactants on Biodegradations of Tar-Rich Coal in the Ordos Basin by Bacillus bicheniformis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coal Pretreatment
2.2. Cultivation of Microorganisms
2.3. Surfactants
2.4. Biodegradation Experiment
2.4.1. Measurement of Biodegradation Degree
- (1)
- The biodegradation activity was assessed by measuring the changes in the A450 values of the supernatant liquid. The A450 was determined using deionized water as a reference.
- (2)
- The biodegradation rate was calculated with Formula (1):
2.4.2. Single-Factor Experiment
2.4.3. Orthogonal Experiment
2.5. Influences of Four Surfactants on Biodegradation Processes
2.5.1. Biodegradation Extent
2.5.2. B. licheniformis
2.5.3. Coal
2.6. Analysis of Biodegradation Products
3. Results and Discussions
3.1. Analysis of Biodegradation Conditions
3.1.1. Analysis of Single-Factor Experiment
3.1.2. Analysis of Orthogonal Experiment
3.2. Analysis of the Influences of Surfactants on Biodegradation
3.2.1. Biodegradation Degree
3.2.2. Changes in B. licheniformis
3.2.3. Hydrophilicity of Coal
3.3. Characterization of Coal Biodegradation Products
3.3.1. GC-MS Analysis of Degradation Liquid Products
3.3.2. FTIR Analysis of the Coal Samples
3.4. Mechanism of Coal Biodegradation under the Action of Triton X-100
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.M.; Shi, Q.M.; Wang, S.Q.; Shen, Y.J.; Sun, Q.; Cai, Y. Resource property and exploitation concepts with green and low-carbon of tar-rich coal as coal-based oil and gas. J. China Coal Soc. 2021, 46, 1365–1377. [Google Scholar]
- Xue, F.F.; Li, D.; Guo, Y.T.; Liu, X.; Zhang, X.P.; Zhou, Q.; Ma, B.Q. Technical progress and the prospect of low-rank coal pyrolysis in China. Energy Technol. 2017, 5, 1897–1907. [Google Scholar] [CrossRef]
- Chen, W.Y.; Xu, R.N. Clean coal technology development in China. Energy Policy 2010, 38, 2123–2130. [Google Scholar] [CrossRef]
- Shi, C.; Liu, X.R.; Wu, H.; Zhao, S.S.; Yang, Z.W. Enhancements of mixed surfactants on Wucaiwan coal biodegradation byNocardia mangyaensis. Energy 2023, 266, 1–15. [Google Scholar] [CrossRef]
- Fakoussa, R.M. Coal as a Substrate for Microorganisms: Investigation with Microbial Conversion of National Coals. Ph.D. Thesis, Friedrich-Wilhelms University, Bonn, Germany, 1981. [Google Scholar]
- Fakoussa, R.M.; Hofrichter, M. Biotechnology and microbiology of coal degradation. Appl. Microbiol. Biotechnol. 1999, 52, 25–40. [Google Scholar] [CrossRef]
- Quigley, D.R.; Wey, J.E.; Breckenridge, C.R.; Stoner, D.L. The influence of pH on biological solubulization of oxidized, low-rank coal. Resources. Conserv. Recycl. 1988, 1, 163–174. [Google Scholar] [CrossRef]
- Fakoussa, R.M. Production of water-soluble coal-substances by partial microbial liquefaction of untreated hard coal. Resour. Conserv. Recycl. 1988, 1, 251–260. [Google Scholar] [CrossRef]
- Bezza, F.A.; Chirwa, E.M.N. Biosurfactant-assisted bioremediation of polycyclic aromatic hydrocarbons (PAHs) in liquid culture system and substrate interactions. Polycycl. Aromat. Compd. 2017, 37, 375–394. [Google Scholar] [CrossRef]
- Li, F.; Zhu, L. Surfactant-modified fatty acid composition of Citrobacter sp. SA01 and its effect on phenanthrene transmembrane transport. Chemosphere 2014, 107, 58–64. [Google Scholar] [CrossRef]
- Yuan, H.; Yang, J.; Chen, W. Production of alkaline materials, surfactants and enzymes by Penicillium decumbens strain P6 in association with lignite degradation/solubilization. Fuel 2006, 85, 1378–1382. [Google Scholar] [CrossRef]
- Yang, M.; Ke, J.; Zhang, Q.; He, X. Effects of mixed surfactant on enhancing high concentration Anthracene and Pyrene removal from contaminated soil. Water Air Soil Pollut. 2019, 230, 1–12. [Google Scholar] [CrossRef]
- Zhao, Z.; Selvam, A.; Wong, J.W.C. Effects of rhamnolipids on cell surface hydrophobicity of PAH degrading bacteria and the biodegradation of phenanthrene. Bioresour. Technol. 2011, 102, 3999–4007. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Yang, Z.; Zhang, R.; Xing, Y.; Gui, X. Enhancement of the surface hydrophobicity of low-rank coal by adsorbing DTAB: An experimental and molecular dynamics simulation study. Fuel 2019, 239, 145–152. [Google Scholar] [CrossRef]
- Kang, H.L.; Liu, X.R.; Zhang, Y.W.; Zhao, S.S.; Yang, Z.W.; Du, Z.P.; Zhou, A.N. Bacteria solubilization of shenmu lignite: Influence of surfactants and characterization of the biosolubilization products. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 43, 1162–1180. [Google Scholar] [CrossRef]
- Shi, C.; Liu, X.R.; Zhao, S.S.; Yang, Z.W. Additions of esterase and rhamnolipid promote the degradation of Inner Mongolia coal by Pseudomonas japonica. Fuel 2023, 318, 1–13. [Google Scholar] [CrossRef]
- Malik, A.Y.; Ali, M.; Jamal, A.; Ali, M.I. Isolation and characterization of coal solubilizing aerobic microorganisms from salt range coal mines. Geomicrobiol. J. 2017, 34, 109–118. [Google Scholar] [CrossRef]
- Selvi, A.V.; Banerjee, R.; Ram, L.C.; Singh, G. Biodepolymerization studies of low rank Indian coals. World J. Microbiol. Biotechnol. 2009, 25, 1713–1720. [Google Scholar] [CrossRef]
- Sobolczyk-Bednarek, J.; Choińska-Pulit, A.; Łaba, W. Biosolubilization of low-rank coal by the newly isolated strain Streptomyces fulvissimus K59. Fuel. 2021, 301, 121082. [Google Scholar] [CrossRef]
- Cohen, M.S.; Gabriele, P.D. Degradation of coal by the fungi Polyporus versicolor and Poria monticola. Appl. Environ. Microbiol. 1982, 44, 23–27. [Google Scholar] [CrossRef]
- Sekhohola, L.M.; Igbinigie, E.E.; Cowan, A.K. Biological degradation and solubilisation of coal. Biodegradation 2013, 24, 305–318. [Google Scholar] [CrossRef]
- Ghani, M.J.; Rajoka, M.I.; Akhtar, K. Investigations in fungal solubilization of coal: Mechanisms and significance. Biotechnol. Bioprocess Eng. 2015, 20, 634–642. [Google Scholar] [CrossRef]
- Su, X.B.; Chen, X.; Xia, D.P.; Cui, Q.Y.; Zhang, H.Q. Study on degradation of different rank coals by white-rot fungus. J. Henan Polytech. Univ. Nat. Sci. 2013, 32, 281–284. [Google Scholar]
- Reddy, P.V.; Karegoudar, T.B.; Nayak, A.S. Enhanced utilization of fluorene by Paenibacillus sp. PRNK-6: Effect of rhamnolipid biosurfactant and synthetic surfactants. Ecotoxicol. Environ. Saf. 2018, 151, 206–211. [Google Scholar] [CrossRef] [PubMed]
- An, C.J.; Huang, G.H.; Wei, J.; Yu, H. Effect of short-chain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil–water environment. Water Res. 2011, 45, 5501–5510. [Google Scholar] [CrossRef]
- Strandberg, G.W.; Lewis, S.N. Factors affecting coal solubilization by the bacterium Streptomyces setonii 75Vi2 and by alkaline buffers. Appl. Biochem. Biotechnol. 1988, 18, 355–361. [Google Scholar] [CrossRef]
- Shi, C.; Liu, X.R.; Zhao, S.S.; Yang, Z.W.; Lu, X.; Tong, M. Sequential degradations of Dananhu lignites by Nocardia mangyaensis and Bacillus licheniformis. Fuel 2022, 318, 1–11. [Google Scholar] [CrossRef]
- Gao, T.G.; Jiang, F.; Yang, J.S.; Li, B.Z.; Yuan, H.L. Biodegradation of leonardite by an alkali-producing bacterial community and characterization of the degraded products. Appl. Microbiol. Biotechnol. 2012, 93, 2581–2590. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Li, Z.; Lv, Z.; Gao, T.; Yang, J.; Qin, Z.; Yuan, H. The biosolubilization of lignite by Bacillus sp. Y7 and characterization of the soluble products. Fuel 2013, 103, 639–645. [Google Scholar] [CrossRef]
- Akimbekov, N.; Digel, I.; Abdieva, G.; Ualieva, P.; Tastambek, K. Lignite biosolubilization and bioconversion by Bacillus sp.: The collation of analytical data. Biofuels 2021, 12, 247–258. [Google Scholar] [CrossRef]
- Du, Z.H.; Li, W. The Catalytic Effect from Alkaline Elements on the Tar-Rich Coal Pyrolysis. Catalysts 2022, 12, 376. [Google Scholar] [CrossRef]
- Rosenberg, M.; Gutnick, D.; Rosenberg, E. Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity. FEMS Microbiol. Lett. 1980, 9, 29–33. [Google Scholar] [CrossRef]
- You, X.Q.; He, M.; Zhang, W.; Wei, H.; He, Q.; Lyu, X.; Li, L. Molecular dynamics simulations and contact angle of surfactant at the coal–water interface. Mol. Simul. 2018, 44, 722–727. [Google Scholar] [CrossRef]
- He, X.; Liu, X.F.; Nie, B.S.; Song, D.Z. FTIR and Raman spectroscopy characterization of functional groups in various rank coals. Fuel 2017, 206, 555–563. [Google Scholar] [CrossRef]
- Che, Y.L.; Wei, X.F.; Zhang, Z.; Zhong, Y.Y.; Zhang, Q.; Liu, F.; Liu, C.S. Toxic effects of surfactants on microorganisms in surface water. China Environ. Sci. 2019, 39, 5301–5311. [Google Scholar]
- Zhang, D.; Zhu, L. Effects of Tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1. Environ. Pollut. 2012, 164, 169–174. [Google Scholar] [CrossRef]
- Van Hamme, J.D.; Singh, A.; Ward, O.P. Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol. Adv. 2006, 24, 604–620. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Chen, B.H. Surfactant-mediated biodegradation of polycyclic aromatic hydrocarbons. Materials 2009, 2, 76–94. [Google Scholar] [CrossRef]
- Li, K.; Khanna, R.; Zhang, J.; Barati, M.; Liu, Z.; Xu, T.; Sahajwalla, V. Comprehensive investigation of various structural features of bituminous coals using advanced analytical techniques. Energy Fuels 2015, 29, 7178–7189. [Google Scholar] [CrossRef]
- Zhang, D.; He, H.; Ren, Y.; Haider, R.; Urynowicz, M.; Fallgren, P.H.; Huang, Z. A mini review on biotransformation of coal to methane by enhancement of chemical pretreatment. Fuel 2022, 308, 121961. [Google Scholar] [CrossRef]
- Bezza, F.A.; Chirwa, E.M.N. Bioremediation of polycyclic aromatic hydrocarbon contaminated soil by a microbial consortium through supplementation of biosurfactant produced by Pseudomonas aeruginosa strain. Polycycl. Aromat. Compd. 2016, 36, 848–872. [Google Scholar] [CrossRef]
- Pan, T.; Ren, S.; Xu, M.; Sun, G.; Guo, J. Extractive biodecolorization of triphenylmethane dyes in cloud point system by Aeromonas hydrophila DN322p. Appl. Microbiol. Biotechnol. 2013, 97, 6051–6055. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D. Surfactant controlled bacterial interfacial behaviors of PAHs and its mechanisms. Ph.D. Thesis, Zhejiang University, Zhejiang, China, 2013. [Google Scholar]
- Solomon, P.R.; Fletcher, T.H.; Pugmire, R.J. Progress in coal pyrolysis. Fuel 1993, 72, 587–597. [Google Scholar] [CrossRef]
- Gamboa, A.C.; Martínez, M.; Garbán, G.; Esteves, I.; Escobar, M.; Quintero, K.; Lorenzo, É. Effect of solvent structure and amine addition on the depolymerization of a bituminous Venezuelan coal. Fuel 2019, 235, 908–912. [Google Scholar] [CrossRef]
- Yin, S.; Tao, X.; Shi, K. The role of surfactants in coal bio-solubilisation. Fuel Process. Technol. 2011, 92, 1554–1559. [Google Scholar] [CrossRef]
- Cho, E.; Lee, T.S. Manipulation of intramolecular hydrogen bonds in single-benzene derivatives: Esterase sensing, fluorescence patterning, and inkless writing. Sens. Actuators B Chem. 2020, 319, 128307. [Google Scholar] [CrossRef]
Coal | Proximate Analysis/% | Ultimate Analysis/% | |||||||
---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FC * | Cad | Had | Nad | St,ad | O * | |
Raw coal | 7.10 | 9.32 | 28.52 | 55.06 | 60.24 | 3.18 | 4.50 | 0.12 | 31.96 |
Oxidized coal | 2.72 | 3.08 | 40.04 | 54.16 | 58.34 | 3.66 | 4.25 | 0 | 33.75 |
Name | Abbr. | Classification | Structure |
---|---|---|---|
Rhamnolipid | Rh | Biological surfactant | |
Polyethylene glycol octylphenyl ether | Triton X-100 | Nonionic surfactant | |
Straight chain alkyl benzene sulfonate | LAS | Anionic surfactant | |
Dodecyltrimethylammonium bromide | DTAB | Cationic surfactant |
Experiment | No. | A-Amount of Coal (g) | B-Biodegradation Time (d) | C-Inoculation Volume (mL) |
---|---|---|---|---|
Single-factor experiment | 1 | 0.1 | 3 | 4 |
2 | 0.3 | 6 | 6 | |
3 | 0.5 | 9 | 8 | |
4 | 0.7 | 12 | 10 | |
5 | 0.9 | 15 | 12 | |
6 | 1.1 | 18 | 14 | |
Orthogonal experiment | 1 | 0.7 | 6 | 6 |
2 | 0.9 | 9 | 8 | |
3 | 1.1 | 12 | 10 |
No. | A | B | C | A450 |
---|---|---|---|---|
1 | 1 | 1 | 1 | 0.021 |
2 | 2 | 2 | 2 | 0.023 |
3 | 3 | 3 | 3 | 0.022 |
4 | 3 | 1 | 2 | 0.023 |
5 | 1 | 2 | 3 | 0.031 |
6 | 2 | 3 | 1 | 0.025 |
7 | 2 | 1 | 3 | 0.024 |
8 | 3 | 2 | 1 | 0.026 |
9 | 1 | 3 | 2 | 0.032 |
K1j | 0.084 | 0.068 | 0.072 | |
K2j | 0.072 | 0.080 | 0.078 | |
K3j | 0.071 | 0.079 | 0.077 | |
R | 0.013 | 0.012 | 0.006 |
Degradation Types | Biodegradation Rate |
---|---|
Oxidized coal + B. licheniformis | 43.5% ± 2.3% |
Oxidized coal + B. licheniformis + Rh | 51.6% ± 2.6% |
Oxidized coal + B. licheniformis + Triton X-100 | 59.8% ± 3.2% |
Oxidized coal + B. licheniformis + LAS | 54.3% ± 3.6% |
Oxidized coal + B. licheniformis + DTAB | 17.3% ± 1.4% |
No. | Rh | Triton X-100 | LAS | DTAB | Surfactant-Free Control |
---|---|---|---|---|---|
Contact angle (°) | 45.6 ± 1.2 | 32.9 ± 1.4 | 38.2 ± 1.6 | 40.9 ± 1.3 | 88.4 ± 1.7 |
Control Group | Triton X-100 | |||||
---|---|---|---|---|---|---|
No. | Retention Time (min) | Content (%) | Compounds | Retention Time (min) | Content (%) | Compounds |
1 | 5.962 | 2.27 | 5.783 | 4.28% | ||
2 | 7.846 | 1.24 | 6.388 | 1.40% | ||
3 | 9.158 | 2.75 | 8.856 | 9.55% | ||
4 | 12.535 | 1.50 | 9.047 | 2.25% | ||
5 | 12.759 | 8.16 | 9.596 | 2.61% | ||
6 | 12.927 | 2.64 | 11.884 | 7.15% | ||
7 | 13.084 | 1.62 | 12.030 | 2.77% | ||
8 | 16.090 | 2.13 | 12.120 | 6.53% | ||
9 | 16.797 | 6.16 | 12.378 | 1.39% | ||
10 | 20.409 | 4.29 | 12.602 | 12.37% | ||
11 | 22.147 | 1.43 | 12.771 | 12.40% | ||
12 | 24.985 | 2.34 | 16.786 | 2.87% | ||
13 | 32.377 | 2.11 | 17.100 | 1.94% | ||
14 | 33.195 | 3.43 | 23.123 | 1.39% | ||
15 | 5.569 | 1.37 | 24.772 | 2.80% | ||
16 | 5.872 | 3.35 | 32.186 | 14.92% | ||
17 | 6.399 | 1.45 | 32.960 | 1.55% | ||
18 | 6.489 | 2.63 | 35.989 | 11.82% | ||
19 | 9.080 | 1.25 | - | - | - | |
20 | 9.259 | 1.34 | - | - | - | |
21 | 9.585 | 4.02 | - | - | - | |
22 | 9.708 | 1.64 | - | - | - | |
23 | 12.019 | 11.19 | - | - | - | |
24 | 12.164 | 2.44 | - | - | - | |
25 | 12.288 | 4.07 | - | - | - | |
26 | 15.911 | 4.33 | - | - | - | |
27 | 16.976 | 2.68 | - | - | - | |
28 | 17.290 | 1.33 | - | - | - | |
29 | 21.250 | 2.33 | - | - | - | |
30 | 21.317 | 3.94 | - | - | - | |
31 | 22.327 | 1.41 | - | - | - | |
32 | 29.516 | 2.54 | - | - | - | |
33 | 30.201 | 1.90 | - | - | - | |
34 | 37.289 | 2.73 | - | - | - |
Control Group | Triton X-100 | |||||
---|---|---|---|---|---|---|
No. | Retention Time (min) | Content (%) | Compounds | Retention Time (min) | Content (%) | Compounds |
1 | 5.839 | 5.78% | 5.738 | 4.88% | ||
2 | 6.467 | 3.08% | 6.366 | 2.29% | ||
3 | 8.968 | 5.34% | 8.856 | 15.10% | ||
4 | 9.08 | 2.65% | 8.968 | 1.40% | ||
5 | 9.159 | 2.34% | 9.159 | 3.40% | ||
6 | 9.26 | 1.54% | 9.473 | 3.51% | ||
7 | 9.585 | 10.28% | 9.596 | 1.66% | ||
8 | 9.708 | 1.82% | 12.03 | 9.30% | ||
9 | 9.843 | 2.79% | 12.434 | 3.26% | ||
10 | 11.469 | 6.73% | 12.602 | 4.96% | ||
11 | 12.019 | 6.38% | 12.771 | 1.49% | ||
12 | 12.288 | 3.63% | 15.9 | 1.16% | ||
13 | 12.58 | 8.93% | 16.472 | 3.01% | ||
14 | 12.928 | 2.82% | 16.607 | 3.99% | ||
15 | 16.64 | 2.93% | 16.786 | 3.34% | ||
16 | 16.797 | 7.02% | 21.104 | 3.09% | ||
17 | 17.167 | 2.16% | 25.647 | 1.65% | ||
18 | 20.409 | 3.98% | 32.175 | 17.50% | ||
19 | 21.127 | 1.67% | 32.411 | 1.91% | ||
20 | 21.317 | 4.00% | 35.989 | 13.11% | ||
21 | 24.985 | 1.78% | - | - | - | |
22 | 25.86 | 1.50% | - | - | - | |
23 | 29.506 | 1.77% | - | - | - | |
24 | 32.388 | 3.57% | - | - | - | |
25 | 36.202 | 2.20% | - | - | - | |
26 | 37.29 | 3.32% | - | - | - |
Control Group | Triton X-100 | |||||
---|---|---|---|---|---|---|
No. | Retention Time (min) | Content (%) | Compounds | Retention Time (min) | Content (%) | Compounds |
1 | 21.250 | 86.03 | 6.489 | 5.47 | ||
2 | 25.322 | 3.50 | 7.454 | 3.36 | ||
3 | 37.279 | 10.46 | 8.396 | 9.73 | ||
4 | - | - | - | 16.461 | 1.96 | |
5 | - | - | - | 20.185 | 1.92 | |
6 | - | - | - | 21.048 | 51.64 | |
7 | - | - | - | 32.175 | 13.58 | |
8 | - | - | - | 32.96 | 1.66 | |
9 | - | - | - | 35.978 | 10.69 |
Coal | Har/H | A(CH2)/A(CH3) |
---|---|---|
A700–900/(A2800–3000 + A700–900) | A2915–2940/A2950–2975 | |
Raw coal | 0.64 | 1.74 |
Oxidized coal | 0.33 | 3.15 |
RC | 0.27 | 2.46 |
TRC | 0.20 | 1.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, W.; Liu, X.; Shi, C.; Yang, J.; Zhao, S.; Yang, Z.; Wang, D. Influences of Four Kinds of Surfactants on Biodegradations of Tar-Rich Coal in the Ordos Basin by Bacillus bicheniformis. Microorganisms 2023, 11, 2397. https://doi.org/10.3390/microorganisms11102397
Shen W, Liu X, Shi C, Yang J, Zhao S, Yang Z, Wang D. Influences of Four Kinds of Surfactants on Biodegradations of Tar-Rich Coal in the Ordos Basin by Bacillus bicheniformis. Microorganisms. 2023; 11(10):2397. https://doi.org/10.3390/microorganisms11102397
Chicago/Turabian StyleShen, Wensheng, Xiangrong Liu, Chen Shi, Jie Yang, Shunsheng Zhao, Zaiwen Yang, and Dan Wang. 2023. "Influences of Four Kinds of Surfactants on Biodegradations of Tar-Rich Coal in the Ordos Basin by Bacillus bicheniformis" Microorganisms 11, no. 10: 2397. https://doi.org/10.3390/microorganisms11102397
APA StyleShen, W., Liu, X., Shi, C., Yang, J., Zhao, S., Yang, Z., & Wang, D. (2023). Influences of Four Kinds of Surfactants on Biodegradations of Tar-Rich Coal in the Ordos Basin by Bacillus bicheniformis. Microorganisms, 11(10), 2397. https://doi.org/10.3390/microorganisms11102397