Study of Ecological Relationship of Yeast Species with Candida albicans in the Context of Vulvovaginal Infections
Abstract
:1. Introduction
2. Methods
2.1. Strains
2.2. Determination of Growth Curves
2.3. Biofilm Formation
2.4. Biofilm Biomass Quantification
2.5. Biofilm Metabolic Viability
2.6. Determination of the Ability to Form Germinative Tubes
2.7. Analysis of Results
3. Results
3.1. Growth Curves and Growth Rates
3.2. Biofilms
3.3. Mixed Biofilms
3.4. Preformed Biofilms
3.5. Germ Tube
3.6. Overview Table
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barousse, M.M.; Van Der Pol, B.J.; Fortenberry, D.; Orr, D.; Fidel, P.L. Vaginal yeast colonisation, prevalence of vaginitis, and associated local immunity in adolescents. Sex. Transm. Infect. 2004, 80, 48–53. [Google Scholar] [CrossRef]
- Kullberg, B.J.; Arendrup, M.C. Invasive candidiasis. N. Engl. J. Med. 2015, 373, 1445–1456. [Google Scholar] [CrossRef]
- McCarty, T.P.; Pappas, P.G. Invasive candidiasis. Infect. Dis. Clin. N. Am. 2016, 30, 103–124. [Google Scholar] [CrossRef]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Primers 2018, 4, 18026. [Google Scholar] [CrossRef]
- DeGruttola, A.K.; Low, D.; Mizoguchi, A.; Mizoguchi, E. Current understanding of dysbiosis in disease in human and animal models. Inflamm. Bowel Dis. 2016, 22, 1137–1150. [Google Scholar] [CrossRef]
- El-Sayed, A.; Aleya, L.; Kamel, M. Microbiota’s role in health and diseases. Environ. Sci. Pollut. Res. Int. 2021, 28, 36967–36983. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, T.; Ishizaka, A.; Koga, M.; Tsutsumi, T.; Yotsuyanagi, H. Role of microbiota in viral infections and pathological progression. Viruses 2022, 14, 950. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J.; Turnidge, J.D.; Castanheira, M.; Jones, R.N. Twenty years of the SENTRY antifungal surveillance program: Results for Candida species from 1997–2016. Open Forum Infect. Dis. 2019, 6, S79–S94. [Google Scholar] [CrossRef] [PubMed]
- Harriott, M.M.; Lilly, E.A.; Rodriguez, T.E.; Fidel, P.L., Jr.; Noverr, M. Candida albicans forms biofilms on the vaginal mucosa. Microbiology 2010, 156 Pt 12, 3635–3644. [Google Scholar] [CrossRef]
- Peters, B.M.; Palmer, G.E.; Nash, A.K.; Lilly, E.A.; Fidel, P.L., Jr.; Noverr, M.C. Fungal morphogenetic pathways are required for the hallmark inflammatory response during Candida albicans vaginitis. Infect. Immun. 2014, 82, 532–543. [Google Scholar] [CrossRef]
- Kalaiarasan, K.; Singh, R.; Chaturvedula, L. Changing virulence factors among vaginal non-albicans Candida species. Indian J. Med. Microbiol. 2018, 36, 364–368. [Google Scholar] [CrossRef]
- Vera-González, N.; Shukla, A. Advances in Biomaterials for the Prevention and Disruption of Candida Biofilms. Front. Microbiol. 2020, 11, 2251. [Google Scholar] [CrossRef]
- Lehtoranta, L.; Hibberd, A.A.; Yeung, N.; Laitila, A.; Maukonen, J.; Ouwehand, A.C. Characterization of vaginal fungal communities in healthy women and women with bacterial vaginosis (BV); a pilot study. Microb. Pathog. 2021, 161, 105055. [Google Scholar] [CrossRef]
- Fernandes, M.Z.; Caetano, C.F.; Gaspar, C.; Oliveira, A.S.; Palmeira-de-Oliveira, R.; Martinez-de-Oliveira, J.; Rolo, J.; Palmeira-de-Oliveira, A. Uncovering the Yeast Diversity in the Female Genital Tract: An Exploration of Spatial Distribution and Antifungal Resistance. Pathogens 2023, 12, 595. [Google Scholar] [CrossRef]
- Faria-Gonçalves, P.; Rolo, J.; Gaspar, C.; Oliveira, A.S.; Pestana, P.G.; Palmeira-de-Oliveira, R.; Gonçalves, T.; Martinez-De-Oliveira, J.; Palmeira-de-Oliveira, A. Recurrent vulvovaginal Candida spp. isolates phenotypically express less virulence traits. Microb. Pathog. 2020, 148, 104471. [Google Scholar] [CrossRef]
- Caetano, C.F.; Gaspar, C.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, A.; Rolo, J. The Role of Yeasts in Human Health: A Review. Life 2023, 13, 924. [Google Scholar] [CrossRef] [PubMed]
- Lamoth, F.; Lockhart, S.R.; Berkow, E.L.; Calandra, T. Changes in the epidemiological landscape of invasive candidiasis. J. Antimicrob. Chemother. 2018, 73, i4–i13. [Google Scholar] [CrossRef] [PubMed]
- Diaz, P.I.; Strausbaugh, L.D.; Dongari-Bagtzoglou, A. Fungalbacterial interactions and their relevance to oral health: Linking the clinic and the bench. Front. Cell Infect. Microbiol. 2014, 4, 101. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, G.; Tully, L.; Kavanagh, K.A. Candida albicans increases the pathogenicity of Staphylococcus aureus during polymicrobial infection of Galleria mellonella larvae. Microbiology 2020, 166, 375–385. [Google Scholar] [CrossRef]
- Allonsius, C.N.; van den Broek, M.F.L.; De Boeck, I.; Kiekens, S.; Oerlemans, E.F.M.; Kiekens, F.; Foubert, K.; Vandenheuvel, D.; Cos, P.; Delputte, P.; et al. Interplay between Lactobacillus rhamnosus GG and Candida and the involvement of exopolysaccharides. Microb. Biotechnol. 2017, 10, 1753–1763. [Google Scholar] [CrossRef]
- Pascual, L.M.; Daniele, M.B.; Giordano, W.; Pájaro, M.C.; Barberis, I.L. Purification and partial characterization of novel bacteriocin L23 produced by Lactobacillus fermentum L23. Curr. Microbiol. 2008, 56, 397–402. [Google Scholar] [CrossRef]
- Ma, S.; Zhao, Y.; Xia, X.; Dong, X.; Ge, W.; Li, H. Effects of Streptococcus sanguinis bacteriocin on cell surface hydrophobicity, membrane permeability, and ultrastructure of Candida thallus. BioMed Res. Int. 2015, 2015, 514152. [Google Scholar] [CrossRef] [PubMed]
- De Cesare, G.B.; Chebaro, Y.; Guha, S.; Cruz, M.; Garsin, D.; Lorenz, M. Characterization of the mechanism of action of the E. faecalis bacteriocin EntV on C. albicans. Access Microbiol. 2021, 3, 0153. [Google Scholar] [CrossRef]
- Pericolini, E.; Gabrielli, E.; Ballet, N.; Sabbatini, S.; Roselletti, E.; Decherf, A.C.; Pélerin, F.; Luciano, E.; Perito, S.; Jüsten, P.; et al. Therapeutic activity of a Saccharomyces cerevisiae-based probiotic and inactivated whole yeast on vaginal candidiasis. Virulence 2017, 8, 74–90. [Google Scholar] [CrossRef] [PubMed]
- Pires, R.H.; Montanari, L.B.; Martins, C.H.G.; Zaia, J.E.; Almeida, A.M.F.; Matsumoto, M.T.; Mendes-Giannini, M.J.S. Anticandidal efficacy of cinnamon oil against planktonic and biofilm cultures of Candida parapsilosis and Candida orthopsilosis. Mycopathologia 2011, 172, 453–464. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Constituition of the World Health Organization. 2019. Available online: https://radis.ensp.fiocruz.br/index.php/home/reportagem/avanco-dos-fungos (accessed on 15 June 2023).
- Chee, W.J.Y.; Chew, S.Y.; Than, L.T.L. Vaginal microbiota and the potential of lactobacillus derivatives in maintaining vaginal health. Microb. Cell Factories 2020, 19, 203. [Google Scholar] [CrossRef]
- Sobel, J.D. Recurrent vulvovaginal candidiasis. Am. J. Obstet. Gynecol. 2016, 214, 15–21. [Google Scholar] [CrossRef]
- Matheson, A.; Mazza, D. Recurrent vulvovaginal candidiasis: A review of guideline recommendations. Aust. N. Z. J. Obstet. Gynaecol. 2017, 57, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Denning, D.W.; Kneale, M.; Sobel, J.D.; Rautemaa-Richardson, R. Global burden of recurrent vulvovaginal candidiasis: A systematic review. Lancet Infect. Dis. 2018, 18, e339–e347. [Google Scholar] [CrossRef]
- Brunke, S.; Mogavero, S.; Kasper, L.; Hube, B. Virulence factors in fungal pathogens of man. Curr. Opin. Microbiol. 2016, 32, 89–95. [Google Scholar] [CrossRef]
- Kusch, H.; Engelmann, S.; Bode, R.; Albrecht, D.; Morschhäuser, J.; Hecker, M. A proteomic view of Candida albicans yeast cell metabolism in exponential and stationary growth phases. Int. J. Med. Microbiol. 2008, 298, 291–318. [Google Scholar] [CrossRef] [PubMed]
- Dworecka-Kaszak, B.; Kizerwetter-swida, M. Pseudomycelium forming Rhodotorula unusual picture of biofilm. Mikol. Lek. 2011, 18, 74–78. [Google Scholar]
- Porro, M.N.; Passi, S.; Caprill, F.; Nazzaro, P.; Morpurgo, G. Growth requirements and lipid metabolism of Pity-rosporum orbiculare. J. Investig. Dermatol. 1976, 66, 178–182, 197. [Google Scholar] [CrossRef]
- Mello, T.P.; Aor, A.C.; Gonçalves, D.S.; Seabra, S.H.; Branquinha, M.H.; Santos, A.L.S. Assessment of biofilm formation by Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans. Biofouling 2016, 32, 737–749. [Google Scholar] [CrossRef]
- Kurniadi, I.; Wijaya, W.H.; Timotius, K.H. Malassezia virulence factors and their role in dermatological disorders. Acta Dermatovenerol Alp. Pannonica Adriat. 2022, 31, 65–70. [Google Scholar] [CrossRef]
- Alspaugh, J.A. Virulence mechanisms and Cryptococcus neoformans pathogenesis. Fungal Genet. Biol. 2015, 78, 55–58. [Google Scholar] [CrossRef]
- Jarros, I.C.; Veiga, F.F.; Corrêa, J.L.; Barros, I.L.E.; Gadelha, M.C.; Voidaleski, M.F.; Pieralisi, N.; Pedroso, R.B.; Vicente, V.A.; Negri, M.; et al. Microbiological and virulence aspects of rhodotorula mucilaginosa. EXCLI J. 2020, 19, 687–704. [Google Scholar] [CrossRef]
- Atiencia-Carrera, M.B.; Cabezas-Mera, F.S.; Tejera, E.; Machado, A. Prevalence of biofilms in Candida spp. bloodstream infections: A meta-analysis. PLoS ONE 2022, 17, e0263522. [Google Scholar] [CrossRef]
- Cardoso, B. Produção de Biofilme e Perfil de Suscetibilidade a Antifúngicos de Isolados de Candida spp. em Episódios de Candidemia no Hospital das Clínicas da FMRP-USP. Master’s Dissertation, Programa Pós-Graduação em Biociências Aplicadas à Farmácia, University of São Paulo, São Paulo, Brazil, 2017. [Google Scholar]
- Nunes, J.M.; Bizerra, F.C.; Ferreira, R.C.E.; Colombo, A.L. Molecular identification, antifungal susceptibility profile, and biofilm formation of clinical and environmental Rhodotorula species isolates. Antimicrob. Agents Chemother. 2013, 57, 382–389. [Google Scholar] [CrossRef]
- Gedek, B.R. Adherence of Escherichia coli serogroup O 157 and the Salmonella typhimurium mutant DT 104 to the surface of Saccharomyces boulardii. Mycoses 1999, 42, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Tiago, F.C.; Martins, F.S.; Souza, E.L.; Pimenta, P.F.; Araujo, H.R.; Castro, I.M.; Brandão, R.L.; Nicoli, J.R. Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by Saccharomyces probiotics. J. Med. Microbiol. 2012, 61 Pt 9, 1194–1207. [Google Scholar] [CrossRef]
- Hof, H. Rhodotorula spp. in the gut—Foe or friend? GMS Infect. Dis. 2019, 7, Doc02. [Google Scholar] [PubMed]
- Larone, D.H. Medically Important Fungi: A Guide to Identification, 5th ed.; ASM Press: Washington, DC, USA, 2011. [Google Scholar]
- Angiolella, L.; Leone, C.; Rojas, F.; Mussin, J.; de los Angeles Sosa, M.; Giusiano, G. Biofilm, adherence, and hydrophobicity as virulence factors in Malassezia furfur. Med. Mycol. 2018, 56, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Samaranayake, Y.H.; Cheung, B.P.K.; Yau, J.Y.Y.; Yeung, S.K.W.; Samaranayake, L.P. Human Serum Promotes Candida albicans Biofilm Growth and Virulence Gene Expression on Silicone Biomaterial. PLoS ONE 2013, 8, e62902. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, I.D.; Wilson, D.; Wächtler, B.; Brunke, S.; Naglik, J.R.; Hube, B. Candida albicans dimorphism as a therapeutic target. Expert Rev. Anti Infect. Ther. 2012, 10, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Alves, K.P. Reality and Challenges of Emerging Infections by Rhodotorula spp. in Hospitalized Patients. Florianópolis-SC, 2019. Available online: https://repositorio.ufsc.br/bitstream/handle/123456789/199228/KELLI%20PATR%C3%8DCIA%20ALVES.pdf (accessed on 10 June 2023).
Yeasts | Growth Rates | % |
---|---|---|
C. albicans | 0.071 ± 2.660 | 100.00 |
R. mucilaginosa | 0.187 ± 1.185 | 262.76 |
N. albida | 0.112 ± 0.903 | 157.20 |
C. albicans + R. mucilaginosa | 0.027 ± 1.460 | 37.24 |
C. albicans + N. albida | 0.056 ± 2.538 | 78.39 |
Yeasts | Growth Rates | % |
---|---|---|
C. albicans YPD | 0.074 ± 3.703 | 100.00 |
M. furfur | 0.006 ± 1.228 | 7.73 |
C. albicans + M. furfur YPD | 0.090 ± 6.895 | 121.73 |
C. albicans + M. furfur YPDS | 0.111 ± 14.32 | 149.69 |
Yeasts | Growth Rates | % |
---|---|---|
C. albicans YPDS | 0.048 ± 0.6955 | 100.00 |
M. furfur | 0.006 ± 1.228 | 11.87 |
C. albicans + M. furfur YPD | 0.090 ± 6.895 | 186.92 |
C. albicans + M. furfur YPDS | 0.111 ± 14.32 | 229.88 |
C. albicans + | R. mucilaginosa | M. furfur | N. albida |
---|---|---|---|
Growth Curves | |||
Mixed Biofilms | BiomassMetabolic activity | ||
Preformed Biofilms | |||
Germ Tube |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caetano, C.F.; Gaspar, C.; Oliveira, A.S.; Palmeira-de-Oliveira, R.; Rodrigues, L.; Gonçalves, T.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, A.; Rolo, J. Study of Ecological Relationship of Yeast Species with Candida albicans in the Context of Vulvovaginal Infections. Microorganisms 2023, 11, 2398. https://doi.org/10.3390/microorganisms11102398
Caetano CF, Gaspar C, Oliveira AS, Palmeira-de-Oliveira R, Rodrigues L, Gonçalves T, Martinez-de-Oliveira J, Palmeira-de-Oliveira A, Rolo J. Study of Ecological Relationship of Yeast Species with Candida albicans in the Context of Vulvovaginal Infections. Microorganisms. 2023; 11(10):2398. https://doi.org/10.3390/microorganisms11102398
Chicago/Turabian StyleCaetano, Cátia Filipa, Carlos Gaspar, Ana Sofia Oliveira, Rita Palmeira-de-Oliveira, Lisa Rodrigues, Teresa Gonçalves, José Martinez-de-Oliveira, Ana Palmeira-de-Oliveira, and Joana Rolo. 2023. "Study of Ecological Relationship of Yeast Species with Candida albicans in the Context of Vulvovaginal Infections" Microorganisms 11, no. 10: 2398. https://doi.org/10.3390/microorganisms11102398
APA StyleCaetano, C. F., Gaspar, C., Oliveira, A. S., Palmeira-de-Oliveira, R., Rodrigues, L., Gonçalves, T., Martinez-de-Oliveira, J., Palmeira-de-Oliveira, A., & Rolo, J. (2023). Study of Ecological Relationship of Yeast Species with Candida albicans in the Context of Vulvovaginal Infections. Microorganisms, 11(10), 2398. https://doi.org/10.3390/microorganisms11102398