Comparison of Thermophilic–Mesophilic and Mesophilic–Thermophilic Two-Phase High-Solid Sludge Anaerobic Digestion at Different Inoculation Proportions: Digestion Performance and Microbial Diversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup
2.3. Analytical Methods
2.4. Statistical Analysis
3. Results and Discussion
3.1. pH, TAN, and FAN
3.2. VFA, SCOD, TA, and VFA/TA
3.3. Methane Generation
3.4. Bacteria Distribution
3.5. Archaea Distribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, V.; Khoei, S.; Eskicioglu, C. A Review on Two-Stage Anaerobic Digestion Options for Optimizing Municipal Wastewater Sludge Treatment Process. J. Environ. Chem. Eng. 2021, 9, 105502. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, J.; Zhao, X. Towards the Carbon Neutrality of Sludge Treatment and Disposal in China: A Nationwide Analysis Based on Life Cycle Assessment and Scenario Discovery. Environ. Int. 2023, 174, 107927. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Xie, H.; Sun, J. Alkaline Thermal Hydrolysis of Sewage Sludge to Produce High-Quality Liquid Fertilizer Rich in Nitrogen-Containing Plant-Growth-Promoting Nutrients and Biostimulants. Water Res. 2022, 211, 118036. [Google Scholar] [CrossRef]
- He, H.; Xin, X.; Qiu, W. Waste Sludge Disintegration, Methanogenesis and Final Disposal via Various Pretreatments: Comparison of Performance and Effectiveness. Environ. Sci. Ecotechnol. 2021, 8, 100132. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, X.; Zhang, Z. Semi-Continuous Anaerobic Digestion of Secondary Sludge with Free Ammonia Pretreatment: Focusing on Volatile Solids Destruction, Dewaterability, Pathogen Removal and Its Implications. Water Res. 2021, 202, 117481. [Google Scholar] [CrossRef] [PubMed]
- Appels, L.; Baeyens, J.; Degrève, J. Principles and Potential of the Anaerobic Digestion of Waste-Activated Sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Wang, G.; Dai, X.; Zhang, D. Two-Phase High Solid Anaerobic Digestion with Dewatered Sludge: Improved Volatile Solid Degradation and Specific Methane Generation by Temperature and pH Regulation. Bioresour. Technol. 2018, 259, 253–258. [Google Scholar] [CrossRef]
- Paranjpe, A.; Saxena, S.; Jain, P. Biogas Yield Using Single and Two Stage Anaerobic Digestion: An Experimental Approach. Energy Sustain. Dev. 2023, 74, 6–19. [Google Scholar] [CrossRef]
- Ferrari, G.; Holl, E.; Steinbrenner, J. Environmental Assessment of a Two-Stage High Pressure Anaerobic Digestion Process and Biological Upgrading as Alternative Processes for Biomethane Production. Bioresour. Technol. 2022, 360, 127612. [Google Scholar] [CrossRef]
- Huang, J.; Wang, C.; Zhang, S. Optimizing Nitrogenous Organic Wastewater Treatment through Integration of Organic Capture, Anaerobic Digestion, and Anammox Technologies: Sustainability and Challenges. Environ. Sci. Pollut. Res. 2023, 30, 76372–76386. [Google Scholar] [CrossRef]
- Collins, B.A.; Birzer, C.H.; Harris, P.W. Two-Phase Anaerobic Digestion in Leach Bed Reactors Coupled to Anaerobic Filters: A Review and the Potential of Biochar Filters. Renew. Sustain. Energy Rev. 2023, 175, 113187. [Google Scholar] [CrossRef]
- Chen, H.; Chang, S. Dissecting Methanogenesis for Temperature-Phased Anaerobic Digestion: Impact of Temperature on Community Structure, Correlation, and Fate of Methanogens. Bioresour. Technol. 2020, 306, 123104. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Wang, Z.; Yan, J. Enhanced Biomethane Generation from the Anaerobic Digestion of Wilted Corn Straw via Control in Mesophilic and Thermophilic Temperature Intervals. Fuel 2023, 349, 128616. [Google Scholar] [CrossRef]
- Tsegaye, D.; Khan, M.M.; Leta, S. Optimization of Operating Parameters for Two-Phase Anaerobic Digestion Treating Slaughterhouse Wastewater for Biogas Production: Focus on Hydrolytic–Acidogenic Phase. Sustainability 2023, 15, 5544. [Google Scholar] [CrossRef]
- Demichelis, F.; Tommasi, T.; Deorsola, F.A. Effect of Inoculum Origin and Substrate-Inoculum Ratio to Enhance the Anaerobic Digestion of Organic Fraction Municipal Solid Waste (OFMSW). J. Clean. Prod. 2022, 351, 131539. [Google Scholar] [CrossRef]
- Gandhi, B.P.; Otite, S.V.; Fofie, E.A. Kinetic Investigations into the Effect of Inoculum to Substrate Ratio on Batch Anaerobic Digestion of Simulated Food Waste. Renew. Energy 2022, 195, 311–321. [Google Scholar] [CrossRef]
- Radadiya, P.; Lee, J.; Venkateshwaran, K. Acidogenic Fermentation of Food Waste in a Leachate Bed Reactor (LBR) at High Volumetric Organic Loading: Effect of Granular Activated Carbon (GAC) and Sequential Enrichment of Inoculum. Bioresour. Technol. 2022, 361, 127705. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, T.; Xing, Z. Anaerobic Co-Digestion of Chinese Cabbage Waste and Cow Manure at Mesophilic and Thermophilic Temperatures: Digestion Performance, Microbial Community, and Biogas Slurry Fertility. Bioresour. Technol. 2022, 363, 127976. [Google Scholar] [CrossRef]
- Hansen, K.H.; Angelidaki, I.; Ahring, B.K. Anaerobic digestion of swine manure: Inhibition by ammonia. Water Res. 1998, 32, 5–12. [Google Scholar] [CrossRef]
- Wu, L.; Ning, D.; Zhang, B. Global Diversity and Biogeography of Bacterial Communities in Wastewater Treatment Plants. Nat. Microbiol. 2019, 4, 1183–1195. [Google Scholar] [CrossRef]
- Zhai, N.; Zhang, T.; Yin, D. Effect of Initial pH on Anaerobic Co-Digestion of Kitchen Waste and Cow Manure. Waste Manag. 2015, 38, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Xue, Y.; Chen, S. Methanogenic Population Dynamics Regulated by Bacterial Community Responses to Protein-Rich Organic Wastes in a High Solid Anaerobic Digester. Chem. Eng. J. 2017, 317, 444–453. [Google Scholar] [CrossRef]
- Cheah, Y.-K.; Vidal-Antich, C.; Dosta, J. Volatile Fatty Acid Production from Mesophilic Acidogenic Fermentation of Organic Fraction of Municipal Solid Waste and Food Waste under Acidic and Alkaline pH. Environ. Sci. Pollut. Res. 2019, 26, 35509–35522. [Google Scholar] [CrossRef]
- Fu, J.; Yan, B.; Gui, S. Anaerobic Co-Digestion of Thermo-Alkaline Pretreated Microalgae and Sewage Sludge: Methane Potential and Microbial Community. J. Environ. Sci. 2023, 127, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Liu, H.; Zhang, X. Humic Acids Promotion or Inhibition of Sludge Anaerobic Digestion Depends on Their Redox Potentials. Chem. Eng. J. 2023, 464, 142653. [Google Scholar] [CrossRef]
- Wang, C.; Nakakoji, S.; Ng, T.C.A. Acclimatizing Waste Activated Sludge in a Thermophilic Anaerobic Fixed-Bed Biofilm Reactor to Maximize Biogas Production for Food Waste Treatment at High Organic Loading Rates. Water Res. 2023, 242, 120299. [Google Scholar] [CrossRef]
- Kimisto, A.K.; Muia, A.W.; Ong’ondo, G.O. Molecular Characterization of Microorganisms with Industrial Potential for Methane Production in Sludge from Kangemi Sewage Treatment Plant, Nyeri County–Kenya. Heliyon 2023, 9, e15715. [Google Scholar] [CrossRef]
- Pavez-Jara, J.A.; Van Lier, J.B.; De Kreuk, M.K. Accumulating Ammoniacal Nitrogen Instead of Melanoidins Determines the Anaerobic Digestibility of Thermally Hydrolyzed Waste Activated Sludge. Chemosphere 2023, 332, 138896. [Google Scholar] [CrossRef]
- Takashima, M.; Yaguchi, J. High-Solids Thermophilic Anaerobic Digestion of Sewage Sludge: Effect of Ammonia Concentration. J. Mater. Cycles Waste Manag. 2021, 23, 205–213. [Google Scholar] [CrossRef]
- Kundu, R.; Kunnoth, B.; Pilli, S. Biochar Symbiosis in Anaerobic Digestion to Enhance Biogas Production: A Comprehensive Review. J. Environ. Manag. 2023, 344, 118743. [Google Scholar] [CrossRef]
- Li, D.; Chen, L.; Liu, X. Instability Mechanisms and Early Warning Indicators for Mesophilic Anaerobic Digestion of Vegetable Waste. Bioresour. Technol. 2017, 245, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Huang, R.; Wu, J. Biohythane Production and Microbial Characteristics of Two Alternating Mesophilic and Thermophilic Two-Stage Anaerobic Co-Digesters Fed with Rice Straw and Pig Manure. Bioresour. Technol. 2021, 320, 124303. [Google Scholar] [CrossRef] [PubMed]
- Valentino, F.; Munarin, G.; Biasiolo, M. Enhancing Volatile Fatty Acids (VFA) Production from Food Waste in a Two-Phases Pilot-Scale Anaerobic Digestion Process. J. Environ. Chem. Eng. 2021, 9, 106062. [Google Scholar] [CrossRef]
- Zuo, X.; Yuan, H.; Wachemo, A.C. The Relationships among sCOD, VFAs, Microbial Community, and Biogas Production during Anaerobic Digestion of Rice Straw Pretreated with Ammonia. Chin. J. Chem. Eng. 2020, 28, 286–292. [Google Scholar] [CrossRef]
- Kusmayadi, A.; Huang, C.-Y.; Kit Leong, Y.; Lu, P.-H. Integration of Microalgae Cultivation and Anaerobic Co-Digestion with Dairy Wastewater to Enhance Bioenergy and Biochemicals Production. Bioresour. Technol. 2023, 376, 128858. [Google Scholar] [CrossRef]
- Lee, J.; Jang, H.; Kang, S. Shockwave Pre-Treatment Enhances the Physicochemical Availability and Anaerobic Mono- and Co-Digestion of Highly Concentrated Algae. J. Environ. Chem. Eng. 2022, 10, 108993. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, Y.; He, H. Anaerobic Co-Digestion of Dairy Manure and Maize Stover with Different Total Solids Content: From the Characteristics of Digestion to Economic Evaluation. J. Environ. Chem. Eng. 2022, 10, 107602. [Google Scholar] [CrossRef]
- Liczbiński, P.; Borowski, S.; Cieciura-Włoch, W. Anaerobic Co-Digestion of Kitchen Waste with Hyperthermophilically Pretreated Grass for Biohydrogen and Biomethane Production. Bioresour. Technol. 2022, 364, 128053. [Google Scholar] [CrossRef]
- Shen, R.; Geng, T.; Yao, Z. Characteristics of Instability and Suitable Early-Warning Indicators for Cornstalk-Fed Anaerobic Digestion Subjected to Various Sudden Changes. Energy 2023, 278, 127735. [Google Scholar] [CrossRef]
- Wang, S.; Ma, F.; Ma, W. Influence of Temperature on Biogas Production Efficiency and Microbial Community in a Two-Phase Anaerobic Digestion System. Water 2019, 11, 133. [Google Scholar] [CrossRef]
- Bacosa, H.P.; Cayabo, G.D.B.; Inoue, C. Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Microbial Consortium from Paddy Rice Soil. J. Environ. Sci. Health Part A 2023, 58, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhu, X.; Yellezuome, D. Effects of Adding Thermoanaerobacterium Thermosaccharolyticum in the Hydrogen Production Stage of a Two-Stage Anaerobic Digestion System on Hydrogen-Methane Production and Microbial Communities. Fuel 2023, 342, 127831. [Google Scholar] [CrossRef]
- Yang, S.; Li, Z.; Wang, X. Research Progress of Enhanced Methane Production by Anaerobic Digestion of Blackwater. J. Water Process Eng. 2023, 53, 103719. [Google Scholar] [CrossRef]
- Aili Hamzah, A.F.; Hamzah, M.H.; Che Man, H. Effect of Organic Loading on Anaerobic Digestion of Cow Dung: Methane Production and Kinetic Study. Heliyon 2023, 9, e16791. [Google Scholar] [CrossRef]
- Zhang, Q.; Zeng, L.; Fu, X. Comparison of Anaerobic Co-Digestion of Pig Manure and Sludge at Different Mixing Ratios at Thermophilic and Mesophilic Temperatures. Bioresour. Technol. 2021, 337, 125425. [Google Scholar] [CrossRef] [PubMed]
- Lü, F.; Bize, A.; Guillot, A.; Monnet, V. Metaproteomics of Cellulose Methanisation under Thermophilic Conditions Reveals a Surprisingly High Proteolytic Activity. ISME J. 2014, 8, 88–102. [Google Scholar] [CrossRef]
- Lee, J.T.E.; Lim, E.Y.; Zhang, L. Methanosarcina Thermophila Bioaugmentation and Its Synergy with Biochar Growth Support Particles versus Polypropylene Microplastics in Thermophilic Food Waste Anaerobic Digestion. Bioresour. Technol. 2022, 360, 127531. [Google Scholar] [CrossRef]
- Gagliano, M.C.; Braguglia, C.M.; Petruccioli, M. Ecology and Biotechnological Potential of the Thermophilic Fermentative Coprothermobacter spp. FEMS Microbiol. Ecol. 2015, 91, fiv018. [Google Scholar] [CrossRef]
- He, L.; Yu, J.; Lin, Z. Organic Matter Removal Performance, Pathway and Microbial Community Succession during the Construction of High-Ammonia Anaerobic Biosystems Treating Anaerobic Digestate Food Waste Effluent. J. Environ. Manag. 2022, 317, 115428. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, S.T.; Sequeira, M.C. Illumina Sequencing of 16S rRNA Genes Reveals a Unique Microbial Community in Three Anaerobic Sludge Digesters of Dubai. PLoS ONE 2021, 16, e0249023. [Google Scholar] [CrossRef]
- Prathiviraj, R.; Chellapandi, P. Comparative Genomic Analysis Reveals Starvation Survival Systems in Methanothermobacter Thermautotrophicus ΔH. Anaerobe 2020, 64, 102216. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Morita, M.; Sasaki, D. Syntrophic Degradation of Proteinaceous Materials by the Thermophilic Strains Coprothermobacter Proteolyticus and Methanothermobacter Thermautotrophicus. J. Biosci. Bioeng. 2011, 112, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Ziganshina, E.E.; Ziganshin, A.M. Magnetite Nanoparticles and Carbon Nanotubes for Improving the Operation of Mesophilic Anaerobic Digesters. Microorganisms 2023, 11, 938. [Google Scholar] [CrossRef] [PubMed]
Mesophilic Inoculum | Thermophilic Inoculum | Dewatered Sludge | |
---|---|---|---|
pH | 7.48 ± 0.21 | 7.69 ± 0.15 | |
VSS (g L−1) | 9.3 ± 0.1 | 8.0 ± 0.2 | |
TSS (g L−1) | 16.8 ± 0.1 | 14.8 ± 0.3 | |
TS (%) | 1.7 ± 0.0 | 1.5 ± 0.0 | 16.2 ± 0.1 |
VS/TS (%) | 56.1 ± 0.6 | 54.1 ± 1.3 | 44.3 ± 0.5 |
carbon (dry basis) (%) | 21.84 ± 0.12 | ||
nitrogen (dry basis) (%) | 3.94 ± 0.13 |
Ultimate Methane Yields, UMYs (mL g−l VSadded) | Maximum Methane Production Rate, Rm (mL g−1 VSadded d−1) | Lag Phase, λ (d) | R2 | |
---|---|---|---|---|
T-C | 98.07 | 18.48 | 1.91 | 0.997 |
T-M0 | 97.88 | 18.53 | 1.94 | 0.998 |
T-M5 | 99.85 | 17.81 | 1.87 | 0.997 |
T-M10 | 102.51 | 17.59 | 1.86 | 0.995 |
T-M15 | 105.08 | 17.03 | 1.81 | 0.993 |
T-M20 | 100.71 | 18.06 | 1.91 | 0.997 |
M-C | 61.42 | 2.50 | 2.86 | 0.991 |
M-T0 | 108.46 | 7.30 | 7.65 | 0.983 |
M-T5 | 118.34 | 10.60 | 7.84 | 0.993 |
M-T10 | 116.96 | 10.87 | 7.98 | 0.994 |
M-T15 | 132.87 | 11.15 | 7.57 | 0.995 |
M-T20 | 120.29 | 18.06 | 1.91 | 0.994 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Wang, J.; Pu, J.; Bai, C.; Peng, C.; Shi, H.; Wu, R.; Xu, Z.; Zhang, Y.; Luo, D.; et al. Comparison of Thermophilic–Mesophilic and Mesophilic–Thermophilic Two-Phase High-Solid Sludge Anaerobic Digestion at Different Inoculation Proportions: Digestion Performance and Microbial Diversity. Microorganisms 2023, 11, 2409. https://doi.org/10.3390/microorganisms11102409
Wang T, Wang J, Pu J, Bai C, Peng C, Shi H, Wu R, Xu Z, Zhang Y, Luo D, et al. Comparison of Thermophilic–Mesophilic and Mesophilic–Thermophilic Two-Phase High-Solid Sludge Anaerobic Digestion at Different Inoculation Proportions: Digestion Performance and Microbial Diversity. Microorganisms. 2023; 11(10):2409. https://doi.org/10.3390/microorganisms11102409
Chicago/Turabian StyleWang, Tianfeng, Jie Wang, Jiajia Pu, Chengxiang Bai, Cheng Peng, Hailong Shi, Ruoyu Wu, Ziying Xu, Yuqian Zhang, Dan Luo, and et al. 2023. "Comparison of Thermophilic–Mesophilic and Mesophilic–Thermophilic Two-Phase High-Solid Sludge Anaerobic Digestion at Different Inoculation Proportions: Digestion Performance and Microbial Diversity" Microorganisms 11, no. 10: 2409. https://doi.org/10.3390/microorganisms11102409
APA StyleWang, T., Wang, J., Pu, J., Bai, C., Peng, C., Shi, H., Wu, R., Xu, Z., Zhang, Y., Luo, D., Yang, L., & Zhang, Q. (2023). Comparison of Thermophilic–Mesophilic and Mesophilic–Thermophilic Two-Phase High-Solid Sludge Anaerobic Digestion at Different Inoculation Proportions: Digestion Performance and Microbial Diversity. Microorganisms, 11(10), 2409. https://doi.org/10.3390/microorganisms11102409