The Imperative Use of Bacillus Consortium and Quercetin Contributes to Suppress Fusarium Wilt Disease by Direct Antagonism and Induced Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Rhizospheric Bacterial Strains
2.2. Selection of Antagonistic Bacterial Strains
2.3. Molecular Identification of Best-Performing Bacterial Strains
2.4. Screening of Potential Agonist/s of Tomato Receptor-Like Kinases SlLYK12
2.4.1. Preparation of Protein Structure and Quality Analysis
2.4.2. Model Refinement and Validation
2.4.3. Virtual Screening by Molecular Docking
2.5. In-Vivo Effect of the Synthetic Elicitor and Consortium of Bacillus Strains on Fusarium Wilt Disease Development and Growth of Tomato Plants
2.6. Analysis of the Biochemical Basis of Induced Defense Responses in Tomato Plants against Fusarium Wilt Disease
2.6.1. Analysis of Total Phenolics and Plant Defense-Related Enzymes
2.6.2. Analysis of the Metabolomic Profile of Tomato Plants
2.7. Statistical Analysis
3. Results
3.1. Selection of Antagonistic Rhizospheric Bacterial Strains
3.2. Molecular Identification of Bacterial Strains
3.3. Screening of Potential Agonist/s of Tomato Receptor-Like Kinases SlLYK12
3.4. In-Vivo Effect of the Synthetic Elicitor and Consortium of Bacillus Strains on Fusarium Wilt Disease Development and Growth of Tomato Plants
3.5. Analysis of the Biochemical Basis of Induced Defense Responses in Tomato Plants against Fusarium Wilt Disease
3.5.1. Analysis of Total Phenolics and Defense-Related Enzymes
3.5.2. Non-Targeted Metabolomic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hussain, I.; Alam, S.S.; Khan, I.; Shah, B.; Naeem, A.; Khan, N.; Ullah, W.; Iqbal, B.; Adnan, M.; Junaid, K. Study on the biological control of fusarium wilt of tomato. J. Entomol. Zool Stud. 2016, 4, 525–528. [Google Scholar]
- Pathak, T.B.; Stoddard, C.S. Climate change effects on the processing tomato growing season in California using growing degree day model. Model. Earth Syst. Environ. 2018, 4, 765–775. [Google Scholar] [CrossRef]
- Venbrux, M.; Crauwels, S.; Rediers, H. Current and emerging trends in techniques for plant pathogen detection. Front. Plant Sci. 2023, 14, 1120968. [Google Scholar] [CrossRef]
- Brahimi, M.; Boukhalfa, K.; Moussaoui, A. Deep learning for tomato diseases: Classification and symptoms visualization. Appl. Artif. Intell. 2017, 31, 299–315. [Google Scholar] [CrossRef]
- Chacón, C.; Bojórquez-Quintal, E.; Caamal-Chan, G.; Ruíz-Valdiviezo, V.M.; Montes-Molina, J.A.; Garrido-Ramírez, E.R.; Rojas-Abarca, L.M.; Ruiz-Lau, N. In vitro antifungal activity and chemical composition of Piper auritum Kunth essential oil against Fusarium oxysporum and Fusarium equiseti. Agronomy 2021, 11, 1098. [Google Scholar] [CrossRef]
- Asif, M.; Haider, M.S.; Akhter, A. Impact of Biochar on Fusarium Wilt of Cotton and the Dynamics of Soil Microbial Community. Sustainability 2023, 15, 12936. [Google Scholar] [CrossRef]
- Chitwood-Brown, J.; Vallad, G.E.; Lee, T.G.; Hutton, S.F. Breeding for resistance to Fusarium wilt of tomato: A review. Genes 2021, 12, 1673. [Google Scholar] [CrossRef]
- Ju, W.; Liu, L.; Jin, X.; Duan, C.; Cui, Y.; Wang, J.; Ma, D.; Zhao, W.; Wang, Y.; Fang, L. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Chemosphere 2020, 254, 126724. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, Y.; Khan, M.; Javed, N.; Arif, M.J. Comparative efficacy of fungicides and biological control agents for the management of chickpea wilt caused by Fusarium oxysporum f. sp. ciceris. J. Anim. Plant Sci. 2015, 25, 1063–1071. [Google Scholar]
- Heimpel, G.E.; Mills, N.J. Biological Control; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Anckaert, A.; Arguelles Arias, A.; Hoff, G.; Calonne-Salmon, M.; Declerck, S.; Ongena, M. The Use of Bacillus spp. as Bacterial Biocontrol Agents to Control Plant Diseases; Burleigh Dodds Science Publishing: Cambridge, UK, 2021. [Google Scholar]
- Wang, X.; Zhao, D.; Shen, L.; Jing, C.; Zhang, C. Application and mechanisms of Bacillus subtilis in biological control of plant disease. Role Rhizospheric Microbes Soil Vol. 1 Stress Manag. Agric. Sustain. 2018, 1, 225–250. [Google Scholar]
- Cawoy, H.; Bettiol, W.; Fickers, P.; Ongena, M. Bacillus-based biological control of plant diseases. Pestic. Mod. World-Pestic. Use Manag. 2011, 273–302. [Google Scholar]
- Chen, Z.; Liu, Y.; Liu, Y.; Zhang, R. Research progress in biocontrol of Bacillus spp. against plant diseases. Jiangsu J. Agric. Sci. 2012, 28, 999–1006. [Google Scholar]
- Shafi, J.; Tian, H.; Ji, M. Bacillus species as versatile weapons for plant pathogens: A review. Biotechnol. Biotechnol. Equip. 2017, 31, 446–459. [Google Scholar] [CrossRef]
- Patel, S.; Saraf, M. Interaction of root colonizing biocontrol agents demonstrates the antagonistic effect against Fusarium oxysporum f. sp. lycopersici on tomato. Eur. J. Plant Pathol. 2017, 149, 425–433. [Google Scholar] [CrossRef]
- Smith, D.L.; Praslickova, D.; Ilangumaran, G. Inter-organismal signaling and management of the phytomicrobiome. Front. Plant Sci. 2015, 6, 722. [Google Scholar] [CrossRef]
- Bukhat, S.; Imran, A.; Javaid, S.; Shahid, M.; Majeed, A.; Naqqash, T. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiol. Res. 2020, 238, 126486. [Google Scholar] [CrossRef] [PubMed]
- Alyousif, N.A. Distribution, occurrence and molecular characterization of Bacillus related species isolated from different soil in Basrah Province, Iraq. Biodiversitas J. Biol. Divers. 2022, 23, 679–686. [Google Scholar] [CrossRef]
- Gimenez-Ibanez, S.; Ntoukakis, V.; Rathjen, J.P. The LysM receptor kinase CERK1 mediates bacterial perception in Arabidopsis. Plant Signal. Behav. 2009, 4, 539–541. [Google Scholar] [CrossRef] [PubMed]
- Miya, A.; Albert, P.; Shinya, T.; Desaki, Y.; Ichimura, K.; Shirasu, K.; Narusaka, Y.; Kawakami, N.; Kaku, H.; Shibuya, N. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 2007, 104, 19613–19618. [Google Scholar] [CrossRef]
- Shirron, N.; Yaron, S. Active suppression of early immune response in tobacco by the human pathogen Salmonella Typhimurium. PLoS ONE 2011, 6, e18855. [Google Scholar] [CrossRef]
- Gimenez-Ibanez, S.; Hann, D.R.; Ntoukakis, V.; Petutschnig, E.; Lipka, V.; Rathjen, J.P. AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr. Biol. 2009, 19, 423–429. [Google Scholar] [CrossRef]
- Cao, Y.; Liang, Y.; Tanaka, K.; Nguyen, C.T.; Jedrzejczak, R.P.; Joachimiak, A.; Stacey, G. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife 2014, 3, e03766. [Google Scholar] [CrossRef]
- Zipfel, C. Plant pattern-recognition receptors. Trends Immunol. 2014, 35, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.; Sun, X.; Wang, N.; Song, F.; Liang, Y. Tomato LysM receptor-like kinase SlLYK12 is involved in arbuscular mycorrhizal symbiosis. Front. Plant Sci. 2018, 9, 1004. [Google Scholar] [CrossRef] [PubMed]
- Sulistiyani, T.R.; Kusmiati, M.; Putri, G.A. The 16S rRNA analysis and enzyme screening of Bacillus from rhizosphere soil of Lombok Island. J. Ilmu Pertan. Indones. 2021, 26, 582–590. [Google Scholar] [CrossRef]
- Naik, S.; Palys, S.; Di Falco, M.; Tsang, A.; Périnet, P.; Ramanan, U.S.; Dayanandan, S. Isolation and Characterization of Bacillus velezensis EB14, an Endophytic Bacterial Strain Antagonistic to Poplar Stem Canker Pathogen Sphaerulina musiva and Its Interactions with the Endophytic Fungal Microbiome in Poplar. PhytoFrontiers 2021, 1, 229–238. [Google Scholar] [CrossRef]
- Heuer, H.; Krsek, M.; Baker, P.; Smalla, K.; Wellington, E. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 1997, 63, 3233–3241. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547. [Google Scholar] [CrossRef]
- Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 1981, 17, 368–376. [Google Scholar] [CrossRef]
- Zeng, L.; Velásquez, A.C.; Munkvold, K.R.; Zhang, J.; Martin, G.B. A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB. Plant J. 2012, 69, 92–103. [Google Scholar] [CrossRef]
- Girardin, A.; Wang, T.; Ding, Y.; Keller, J.; Buendia, L.; Gaston, M.; Ribeyre, C.; Gasciolli, V.; Auriac, M.-C.; Vernié, T. LCO receptors involved in arbuscular mycorrhiza are functional for rhizobia perception in legumes. Curr. Biol. 2019, 29, 4249–4259.e4245. [Google Scholar] [CrossRef]
- García, Y.H.; Zamora, O.R.; Troncoso-Rojas, R.; Tiznado-Hernández, M.E.; Báez-Flores, M.E.; Carvajal-Millan, E.; Rascón-Chu, A. Toward understanding the molecular recognition of fungal chitin and activation of the plant defense mechanism in horticultural crops. Molecules 2021, 26, 6513. [Google Scholar] [CrossRef]
- Vriend, G. WHAT IF: A molecular modeling and drug design program. J. Mol. Graph. 1990, 8, 52–56. [Google Scholar] [CrossRef]
- Vollan, H.S.; Caugant, D.A.; Eldholm, V.; Alfsnes, K.; Debech, N.; Brynildsrud, O. Naturally occurring Neisseria gonorrhoeae can have large deletions in housekeeping gene abcZ, making them untypable with multilocus sequence typing. Microb. Genom. 2022, 8, mgen000889. [Google Scholar] [CrossRef] [PubMed]
- Mora Lagares, L.; Minovski, N.; Caballero Alfonso, A.Y.; Benfenati, E.; Wellens, S.; Culot, M.; Gosselet, F.; Novič, M. Homology modeling of the human p-glycoprotein (Abcb1) and insights into ligand binding through molecular docking studies. Int. J. Mol. Sci. 2020, 21, 4058. [Google Scholar] [CrossRef] [PubMed]
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Chem. Biol. Methods Protoc. 2015, 1263, 243–250. [Google Scholar]
- Forli, S.; Olson, A.J. A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. J. Med. Chem. 2012, 55, 623–638. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, X.; Gan, J.; Chen, S.; Xiao, Z.-X.; Cao, Y. CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022, 50, W159–W164. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.Y.; Zhang, H.-X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comp. Aided Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef]
- Ijaz, M.; Tahir, M.; Shahid, M.; Ul-Allah, S.; Sattar, A.; Sher, A.; Mahmood, K.; Hussain, M. Combined application of biochar and PGPR consortia for sustainable production of wheat under semiarid conditions with a reduced dose of synthetic fertilizer. Braz. J. Microbiol. 2019, 50, 449–458. [Google Scholar] [CrossRef]
- Purwati, R.D.; Hidayah, N. Inoculation methods and conidial densities of Fusarium oxysporum f. sp. cubense in Abaca. HAYATI J. Biosci. 2008, 15, 1–7. [Google Scholar] [CrossRef]
- Abbasi, S.; Safaie, N.; Sadeghi, A.; Shamsbakhsh, M. Streptomyces strains induce resistance to Fusarium oxysporum f. sp. lycopersici race 3 in tomato through different molecular mechanisms. Front. Microbiol. 2019, 10, 1505. [Google Scholar] [CrossRef]
- Shanmugam, V.; Atri, K.; Gupta, S.; Kanoujia, N.; Naruka, D.S. Selection and differentiation of Bacillus spp. antagonistic to Fusarium oxysporum f. sp. lycopersici and Alternaria solani infecting tomato. Folia Microbiol. 2011, 56, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Pothiraj, G.; Hussain, Z.; Singh, A.K.; Solanke, A.U.; Aggarwal, R.; Ramesh, R.; Shanmugam, V. Characterization of Fusarium spp. inciting vascular wilt of tomato and its management by a Chaetomium-based biocontrol consortium. Front. Plant Sci. 2021, 12, 748013. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Zieslin, N.; Ben-Zaken, R. Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiol. Biochem. 1993, 31, 333–339. [Google Scholar]
- Archana, S.; Prabakar, K.; Raguchander, T.; Hubballi, M.; Valarmathi, P.; Prakasam, V. Defense responses of grapevine to Plasmopara viticola induced by azoxystrobin and Pseudomonas fluorescens. Int. J. Agric. Sustain. 2011, 3, 30–38. [Google Scholar]
- Goldson, A.; Lam, M.; Scaman, C.H.; Clemens, S.; Kermode, A. Screening of phenylalanine ammonia lyase in plant tissues, and retention of activity during dehydration. J. Sci. Food Agric. 2008, 88, 619–625. [Google Scholar] [CrossRef]
- Jo, H.E.; Song, K.; Kim, J.-G.; Lee, C.H. Non-targeted metabolomic analysis for the comparative evaluation of volatile organic compounds in 20 globally representative cucumber lines. Front. Plant Sci. 2022, 13, 1028735. [Google Scholar] [CrossRef] [PubMed]
- Rossouw, L.T.; Madala, N.E.; Tugizimana, F.; Steenkamp, P.A.; Esterhuizen, L.L.; Dubery, I.A. Deciphering the Resistance Mechanism of Tomato Plants Against Whitefly-Mediated Tomato Curly Stunt Virus Infection through Ultra-High-Performance Liquid Chromatography Coupled to Mass Spectrometry (UHPLC-MS)-Based Metabolomics Approaches. Metabolites 2019, 9, 60. [Google Scholar] [CrossRef]
- Li, X.; Wang, P.; Tong, Y.; Liu, J.; Shu, G. UHPLC-Q-Exactive orbitrap MS/MS-Based untargeted metabolomics and molecular networking reveal the differential chemical constituents of the bulbs and flowers of Fritillaria thunbergii. Molecules 2022, 27, 6944. [Google Scholar] [CrossRef] [PubMed]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef] [PubMed]
- Errard, A.; Ulrichs, C.; Kühne, S.; Mewis, I.; Drungowski, M.; Schreiner, M.; Baldermann, S. Single- versus Multiple-Pest Infestation Affects Differently the Biochemistry of Tomato (Solanum lycopersicum ‘Ailsa Craig’). J. Agric. Food Chem. 2015, 63, 10103–10111. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Jauregui, O.; Medina-Remón, A.; Andrés-Lacueva, C.; Lamuela-Raventós, R.M. Improved characterization of tomato polyphenols using liquid chromatography/electrospray ionization linear ion trap quadrupole Orbitrap mass spectrometry and liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 2986–2992. [Google Scholar] [CrossRef]
- Onofri, A.; Pannacci, E. Spreadsheet tools for biometry classes in crop science programmes. Commun. Biometry Crop Sci. 2014, 9, 3–13. [Google Scholar]
- Mari, F.; Memon, R.; Lohano, H. Measuring returns to scale for onion, tomato and chillies production in Sindh province of Pakistan. Int. J. Agric. Biol. 2007, 9, 788–790. [Google Scholar]
- Deng, X.; Zhang, N.; Shen, Z.; Zhu, C.; Li, R.; Salles, J.F.; Shen, Q. Rhizosphere bacteria assembly derived from fumigation and organic amendment triggers the direct and indirect suppression of tomato bacterial wilt disease. Appl. Soil Ecol. 2020, 147, 103364. [Google Scholar] [CrossRef]
- Ongena, M.; Jacques, P.; Touré, Y.; Destain, J.; Jabrane, A.; Thonart, P. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl. Microbiol. Biotechnol. 2005, 69, 29–38. [Google Scholar] [CrossRef]
- Adrees, H.; Haider, M.S.; Anjum, T.; Akram, W. Inducing systemic resistance in cotton plants against charcoal root rot pathogen using indigenous rhizospheric bacterial strains and chemical elicitors. Crop Prot. 2019, 115, 75–83. [Google Scholar] [CrossRef]
- Mojica-Marín, V.; Luna-Olvera, H.A.; Sandoval-Coronado, C.F.; Pereyra-Alférez, B.; Morales-Ramos, L.H.; Hernández-Luna, C.E.; Alvarado-Gomez, O.G. Antagonistic activity of selected strains of Bacillus thuringiensis against Rhizoctonia solani of chili pepper. Afr. J. Biotechnol. 2008, 7, 1271–1276. [Google Scholar]
- Yan, H.; Qiu, Y.; Yang, S.; Wang, Y.; Wang, K.; Jiang, L.; Wang, H. Antagonistic activity of Bacillus velezensis SDTB038 against Phytophthora infestans in Potato. Plant Dis. 2021, 105, 1738–1747. [Google Scholar] [CrossRef] [PubMed]
- Rayavarapu, V.B.; Padmavathi, T. Bacillus sp. as potential plant growth promoting rhizobacteria. Int J Adv Life Sci 2016, 9, 29–36. [Google Scholar]
- Bisen, K.; Singh, V.; Keswani, C.; Ray, S.; Sarma, B.K.; Singh, H. Use of Biocontrol Agents for the Management of Seed-Borne Diseases. Seed-Borne Dis. Agric. Crops Detect. Diagn. Manag. 2020, 651–663. [Google Scholar] [CrossRef]
- Pieterse, C.M.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.; Bakker, P.A. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef]
- Gond, S.K.; Bergen, M.S.; Torres, M.S.; White Jr, J.F. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol. Res. 2015, 172, 79–87. [Google Scholar] [CrossRef]
- Bektas, Y.; Eulgem, T. Synthetic plant defense elicitors. Front. Plant Sci. 2015, 5, 804. [Google Scholar] [CrossRef] [PubMed]
- White, R. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 1979, 99, 410–412. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Qiao, Z.; Muchero, W.; Chen, J.-G. Lectin receptor-like kinases: The sensor and mediator at the plant cell surface. Front. Plant Sci. 2020, 11, 596301. [Google Scholar] [CrossRef]
- Scardino, V.; Di Filippo, J.I.; Cavasotto, C.N. How good are AlphaFold models for docking-based virtual screening? Iscience 2023, 26, 105920. [Google Scholar] [CrossRef]
- Oltrogge, L.M.; Boxer, S.G. Short hydrogen bonds and proton delocalization in green fluorescent protein (GFP). ACS Cent. Sci. 2015, 1, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Pace, C.N.; Fu, H.; Fryar, K.L.; Landua, J.; Trevino, S.R.; Shirley, B.A.; Hendricks, M.M.; Iimura, S.; Gajiwala, K.; Scholtz, J.M.; et al. Contribution of Hydrophobic Interactions to Protein Stability. J. Mol. Biol. 2011, 408, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Hafez, E.; Omara, A.E.D.; Ahmed, A. The coupling effects of plant growth promoting rhizobacteria and salicylic acid on physiological modifications, yield traits, and productivity of wheat under water deficient conditions. Agronomy 2019, 9, 524. [Google Scholar] [CrossRef]
- Mufti, R.; Bano, A.; Munis, M.F.H.; Andleeb, T.; Quraishi, U.M.; Khan, N. Integrated Application of Salicylic Acid and PGPRs to Control Fusarium Wilt of Chickpea. Front. Biosci. Landmark 2023, 28, 20. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Yang, J.; Ahmed, W.; Xiong, X.; Liu, Q.; Huang, Q.; Ji, G. Unraveling the association between metabolic changes in inter-genus and intra-genus bacteria to mitigate clubroot disease of Chinese cabbage. Agronomy 2021, 11, 2424. [Google Scholar] [CrossRef]
- Srivastava, R.; Khalid, A.; Singh, U.; Sharma, A. Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biol. Control 2010, 53, 24–31. [Google Scholar] [CrossRef]
- Maciag, T.; Kozieł, E.; Rusin, P.; Otulak-Kozieł, K.; Jafra, S.; Czajkowski, R. Microbial Consortia for Plant Protection against Diseases: More than the Sum of Its Parts. Int. J. Mol. Sci. 2023, 24, 12227. [Google Scholar] [CrossRef]
- Singh, P.; Arif, Y.; Bajguz, A.; Hayat, S. The role of quercetin in plants. Plant Physiol. Biochem. 2021, 166, 10–19. [Google Scholar] [CrossRef]
- Mohammed, M.Y.; Al-Hayany, E.H. The effect of spraying with quercetin in some of the growth characteristics of cow peas (Vigna sinensis) exposed to drought stress. Biochem. Cell. Arch. 2020, 20, 4335–4340. [Google Scholar]
- Guerriero, G.; Sutera, F.M.; Hoffmann, J.; Leclercq, C.l.C.; Planchon, S.b.; Berni, R.; Hausman, J.-F.; Renaut, J.; Torabi-Pour, N.; Pennington, H.C. Nanoporous Quercetin-Loaded Silicon-Stabilized Hybrid Lipid Nanoparticles Alleviate Salt Stress in Tomato Plants. ACS Appl. Nano Mater. 2023, 6, 3647–3660. [Google Scholar] [CrossRef]
- Parvin, K.; Hasanuzzaman, M.; Bhuyan, M.B.; Mohsin, S.M.; Fujita, M. Quercetin mediated salt tolerance in tomato through the enhancement of plant antioxidant defense and glyoxalase systems. Plants 2019, 8, 247. [Google Scholar] [CrossRef] [PubMed]
- Jańczak-Pieniążek, M.; Migut, D.; Piechowiak, T.; Buczek, J.; Balawejder, M. The effect of exogenous application of quercetin derivative solutions on the course of physiological and biochemical processes in wheat seedlings. Int. J. Mol. Sci. 2021, 22, 6882. [Google Scholar] [CrossRef] [PubMed]
- Chittoor, J.M.; Leach, J.E.; White, E.F. Induction of peroxidase during defence against pathogens. In Pathogenesis-Related Proteins in Plants; Datta, S.K., Muthukrishnan, S.K., Eds.; CRC Press: New York, NY, USA, 1999; pp. 171–193. [Google Scholar]
- Vanitha, S.C.; Niranjana, S.R.; Umesha, S. Role of phenylalanine ammonia lyase and polyphenol oxidase in host resistance to bacterial wilt of tomato. J. Phytopathol. 2009, 157, 552–557. [Google Scholar] [CrossRef]
- Nikoo, F.S.; Sahebani, N.; Aminian, H.; Mokhtarnejad, L.; Ghaderi, R. Induction of systemic resistance and defense-related enzymes in tomato plants using Pseudomonas fluorescens CHAO and salicylic acid against root-knot nematode Meloidogyne javanica. J. Plant Prot. Res. 2014, 54, 383–389. [Google Scholar] [CrossRef]
- Mhlongo, M.I.; Piater, L.A.; Steenkamp, P.A.; Labuschagne, N.; Dubery, I.A. Metabolomic evaluation of tissue-specific defense responses in tomato plants modulated by PGPR-priming against Phytophthora capsici infection. Plants 2021, 10, 1530. [Google Scholar] [CrossRef]
- Mhlongo, M.I.; Piater, L.A.; Steenkamp, P.A.; Labuschagne, N.; Dubery, I.A. Metabolic profiling of PGPR-treated tomato plants reveal priming-related adaptations of secondary metabolites and aromatic amino acids. Metabolites 2020, 10, 210. [Google Scholar] [CrossRef]
Treatment | Description |
---|---|
CC | Carbendazim control |
PC | Pathogen control (FOL) |
T1 | Quercetin (0.01 mM) + FOL |
T2 | Quercetin (0.1 mM) + FOL |
T3 | Quercetin (1.0 mM) + FOL |
T4 | Consortium + FOL |
T5 | Quercetin (0.01 mM) + Consortium + FOL |
T6 | Quercetin (0.1 mM) + Consortium + FOL |
T7 | Quercetin (1.0 mM) + Consortium + FOL |
UC | Untreated control |
No | Code | Gram Staining | Antagonistic Phenotype |
---|---|---|---|
1 | BS1 | Positive | NA |
2 | BS2 | Positive | CGI |
3 | BS3 | Positive | NA |
4 | BS4 | Positive | NA |
5 | BS5 | Positive | NA |
6 | BS6 | Positive | ZGI |
7 | BS7 | Positive | ZGI |
8 | BS8 | Positive | CGI |
9 | BS9 | Positive | ZGI |
10 | BS10 | Positive | NA |
11 | BS11 | Positive | NA |
Parameter | Value |
---|---|
PROCHECK | |
Errors | 5 |
Warning | 2 |
Pass | 2 |
ERRAT | 97.03 |
Ramachandran plot | |
FR | 91.8 |
AR | 8.1 |
GR | 0.2 |
DR | 0.00 |
Verify3D | 62.4 |
Compound | Formula | Molecular Weight | Binding Affinity (kcal/mol) |
---|---|---|---|
Quercetin | C15H10O7 | 302.2 | −8.7 |
Galbacin | C20H20O5 | 340.4 | −8.7 |
Traumatin | C12H20O3 | 212.2 | −8.3 |
7-Oxotyphasterol | C28H48O5 | 464.7 | −8.2 |
Treatment | Shoot Length (cm) | Root Length (cm) | Shoot Biomass (g) | Root Biomass (g) | Total Chlorophyll (mg/g fw) |
---|---|---|---|---|---|
CC | 08.01 ± 0.5 e–g | 08.62 ± 0.5 ef | 1.82 ± 0.07 de | 0.31 ± 0.02 gh | 11.23 ± 0.76 e–g |
PC | 09.28 ± 0.8 ef | 07.23 ± 0.5 e–g | 1.58 ± 0.09 ef | 0.24 ± 0.02 i | 07.17 ± 0.04 h |
T1 | 11.12 ± 0.9 de | 09.26 ± 0.5 de | 2.06 ± 0.08 b–d | 0.43 ± 0.03 ef | 10.87 ± 0.76 fg |
T2 | 10.38 ± 1.4 de | 10.71 ± 0.7 cd | 1.93 ± 0.12 cd | 0.51 ± 0.04 c–e | 15.91 ± 1.27 cd |
T3 | 13.66 ± 1.5 cd | 11.96 ± 0.7 b–d | 2.24 ± 0.13 bc | 0.57 ± 0.02 cd | 16.08 ± 1.27 cd |
T4 | 14.26 ± 1.3 b–d | 12.81 ± 0.9 bc | 2.59 ± 0.14 bc | 0.65 ± 0.03 c | 16.53 ± 0.98 c |
T5 | 17.05 ± 1.0 bc | 12.54 ± 1.1 bc | 2.66 ± 0.24 ab | 0.59 ± 0.04 cd | 19.58 ± 1.13 a |
T6 | 19.17 ± 1.5 ab | 15.97 ± 1.4 ab | 2.89 ± 0.10 a | 0.81 ± 0.05 ab | 18.32 ± 1.64 ab |
T7 | 21.09 ± 1.1 a | 17.26 ± 1.2 a | 3.07 ± 0.18 a | 0.87 ± 0.06 a | 19.53 ± 1.25 a |
Con | 23.18 ± 1.6 a | 15.62 ± 1.1 ab | 3.24 ± 0.21 a | 0.92 ± 0.05 a | 21.35 ± 1.57 a |
Treatment | Total Phenolics (mg g−1 FW) | PO (ΔOD min−1 g−1 FW) | PPO (ΔOD min−1 g−1 FW) | PAL (ΔOD min−1 g−1 FW) |
---|---|---|---|---|
Untreated Control | 2.03 ± 0.14 e | 0.09 ± 0.00 e | 0.72 ± 0.03 c | 0.18 ± 0.01 d |
Pathogen Control | 4.93 ± 0.51 b–d | 0.68 ± 0.04 c | 1.12 ± 0.25 b | 0.49 ± 0.02 bc |
Consortia + Quercetin (1.0 mM) + FOL | 7.18 ± 0.37 a | 1.03 ± 0.25 a | 2.68 ± 0.09 a | 0.66 ± 0.05 a |
Consortia + FOL | 5.39 ± 0.20 bc | 0.87 ± 0.03 b | 2.17 ± 0.15 a | 0.52 ± 0.03 ab |
Quercetin (1.0 mM) + FOL | 6.28 ± 0.37 ab | 0.56 ± 0.02 cd | 1.32 ± 0.07 b | 0.63 ± 0.04 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, A.; Akram, W.; Rizwana, H.; Aftab, Z.-e.-H.; Hanif, S.; Anjum, T.; Alwahibi, M.S. The Imperative Use of Bacillus Consortium and Quercetin Contributes to Suppress Fusarium Wilt Disease by Direct Antagonism and Induced Resistance. Microorganisms 2023, 11, 2603. https://doi.org/10.3390/microorganisms11102603
Hassan A, Akram W, Rizwana H, Aftab Z-e-H, Hanif S, Anjum T, Alwahibi MS. The Imperative Use of Bacillus Consortium and Quercetin Contributes to Suppress Fusarium Wilt Disease by Direct Antagonism and Induced Resistance. Microorganisms. 2023; 11(10):2603. https://doi.org/10.3390/microorganisms11102603
Chicago/Turabian StyleHassan, Ali, Waheed Akram, Humaira Rizwana, Zill-e-Huma Aftab, Sana Hanif, Tehmina Anjum, and Mona S. Alwahibi. 2023. "The Imperative Use of Bacillus Consortium and Quercetin Contributes to Suppress Fusarium Wilt Disease by Direct Antagonism and Induced Resistance" Microorganisms 11, no. 10: 2603. https://doi.org/10.3390/microorganisms11102603
APA StyleHassan, A., Akram, W., Rizwana, H., Aftab, Z. -e. -H., Hanif, S., Anjum, T., & Alwahibi, M. S. (2023). The Imperative Use of Bacillus Consortium and Quercetin Contributes to Suppress Fusarium Wilt Disease by Direct Antagonism and Induced Resistance. Microorganisms, 11(10), 2603. https://doi.org/10.3390/microorganisms11102603