Antimycobacterial Activities of Hydroxamic Acids and Their Iron(II/III), Nickel(II), Copper(II) and Zinc(II) Complexes
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Methods
2.2.1. Antimycobacterial Drug Susceptibility Assay
2.2.2. Biofilm Growth Assay
2.3. Proteomic Analysis
3. Results
3.1. HA Compounds Present Antimycobacterial Activities
3.2. HA10Fe2, HA12Fe2 and HA12FeCl Can Also Reduce Pre-Formed P. aeruginosa Biofilms
3.3. Proteomic Profile of the HA10FeCl-Treated Bacilli
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2022; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Daffe, M.; Marrakchi, H. Unraveling the Structure of the Mycobacterial Envelope. Microbiol. Spectr. 2019, 7, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Astarie-Dequeker, C.; Le Guyader, L.; Malaga, W.; Seaphanh, F.K.; Chalut, C.; Lopez, A.; Guilhot, C. Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathog. 2009, 5, e1000289. [Google Scholar] [CrossRef] [PubMed]
- Soetaert, K.; Rens, C.; Wang, X.M.; De Bruyn, J.; Laneelle, M.A.; Laval, F.; Lemassu, A.; Daffe, M.; Bifani, P.; Fontaine, V.; et al. Increased Vancomycin Susceptibility in Mycobacteria: A New Approach To Identify Synergistic Activity against Multidrug-Resistant Mycobacteria. Antimicrob. Agents Chemother. 2015, 59, 5057–5060. [Google Scholar] [CrossRef]
- Bakulina, O.; Bannykh, A.; Levashova, E.; Krasavin, M. Conjugates of Iron-Transporting N-Hydroxylactams with Ciprofloxacin. Molecules 2022, 27, 3910. [Google Scholar] [CrossRef]
- McAllister, L.A.; Montgomery, J.I.; Abramite, J.A.; Reilly, U.; Brown, M.F.; Chen, J.M.; Barham, R.A.; Che, Y.; Chung, S.W.; Menard, C.A.; et al. Heterocyclic methylsulfone hydroxamic acid LpxC inhibitors as Gram-negative antibacterial agents. Bioorg. Med. Chem. Lett. 2012, 22, 6832–6838. [Google Scholar] [CrossRef]
- Frei, A.; Verderosa, A.D.; Elliott, A.G.; Zuegg, J.; Blaskovich, M.A.T. Metals to combat antimicrobial resistance. Nat. Rev. Chem. 2023, 7, 202–224. [Google Scholar] [CrossRef] [PubMed]
- Palermo, G.; Spinello, A.; Saha, A.; Magistrato, A. Frontiers of metal-coordinating drug design. Expert Opin. Drug Discov. 2021, 16, 497–511. [Google Scholar] [CrossRef]
- Andrews, S.C.; Robinson, A.K.; Rodriguez-Quinones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 2003, 27, 215–237. [Google Scholar] [CrossRef]
- Li, J.; Ren, X.; Fan, B.; Huang, Z.; Wang, W.; Zhou, H.; Lou, Z.; Ding, H.; Lyu, J.; Tan, G. Zinc Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli. Appl. Environ. Microbiol. 2019, 85, e01967-18. [Google Scholar] [CrossRef]
- Macomber, L.; Hausinger, R.P. Mechanisms of nickel toxicity in microorganisms. Metallomics 2011, 3, 1153–1162. [Google Scholar] [CrossRef]
- Jezowska-Bojczuk, M.; Stokowa-Soltys, K. Peptides having antimicrobial activity and their complexes with transition metal ions. Eur. J. Med. Chem. 2018, 143, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Sow, I.S.; Gelbcke, M.; Meyer, F.; Vandeput, M.; Marloye, M.; Basov, S.; Van Bael, M.J.; Berger, G.; Robeyns, K.; Hermans, S.; et al. Synthesis and biological activity of iron(II), iron(III), nickel(II), copper(II) and zinc(II) complexes of aliphatic hydroxamic acids. J. Coord. Chem. 2023, 76, 76–105. [Google Scholar] [CrossRef]
- Coelho, T.S.; Halicki, P.C.B.; Silva, L., Jr.; de Menezes Vicenti, J.R.; Goncalves, B.L.; Almeida da Silva, P.E.; Ramos, D.F. Metal-based antimicrobial strategies against intramacrophage Mycobacterium tuberculosis. Lett. Appl. Microbiol. 2020, 71, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Gebhardt, P.; Crumbliss, A.L.; Miller, M.J.; Mollmann, U. Synthesis and biological activity of saccharide based lipophilic siderophore mimetics as potential growth promoters for mycobacteria. Biometals 2008, 21, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Mavrikaki, V.; Pagonis, A.; Poncin, I.; Mallick, I.; Canaan, S.; Magrioti, V.; Cavalier, J.F. Design, synthesis and antibacterial activity against pathogenic mycobacteria of conjugated hydroxamic acids, hydrazides and O-alkyl/O-acyl protected hydroxamic derivatives. Bioorg. Med. Chem. Lett. 2022, 64, 128692. [Google Scholar] [CrossRef] [PubMed]
- Majewski, M.W.; Cho, S.; Miller, P.A.; Franzblau, S.G.; Miller, M.J. Syntheses and evaluation of substituted aromatic hydroxamates and hydroxamic acids that target Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 2015, 25, 4933–4936. [Google Scholar] [CrossRef]
- Carvalho, E.M.; de Freitas Paulo, T.; Saquet, A.S.; Abbadi, B.L.; Macchi, F.S.; Bizarro, C.V.; de Morais Campos, R.; Ferreira, T.L.A.; do Nascimento, N.R.F.; Lopes, L.G.F.; et al. Pentacyanoferrate(II) complex of pyridine-4- and pyrazine-2-hydroxamic acid as source of HNO: Investigation of anti-tubercular and vasodilation activities. J. Biol. Inorg. Chem. 2020, 25, 887–901. [Google Scholar] [CrossRef]
- Rao, M.; Valentini, D.; Zumla, A.; Maeurer, M. Evaluation of the efficacy of valproic acid and suberoylanilide hydroxamic acid (vorinostat) in enhancing the effects of first-line tuberculosis drugs against intracellular Mycobacterium tuberculosis. Int. J. Infect. Dis. 2018, 69, 78–84. [Google Scholar] [CrossRef]
- Rens, C.; Laval, F.; Daffe, M.; Denis, O.; Frita, R.; Baulard, A.; Wattiez, R.; Lefevre, P.; Fontaine, V. Effects of Lipid-Lowering Drugs on Vancomycin Susceptibility of Mycobacteria. Antimicrob. Agents Chemother. 2016, 60, 6193–6199. [Google Scholar] [CrossRef]
- Yang, D.; Vandenbussche, G.; Vertommen, D.; Evrard, D.; Abskharon, R.; Cavalier, J.F.; Berger, G.; Canaan, S.; Khan, M.S.; Zeng, S.; et al. Methyl arachidonyl fluorophosphonate inhibits Mycobacterium tuberculosis thioesterase TesA and globally affects vancomycin susceptibility. FEBS Lett. 2020, 594, 79–93. [Google Scholar] [CrossRef]
- Yang, D.; Klebl, D.P.; Zeng, S.; Sobott, F.; Prevost, M.; Soumillion, P.; Vandenbussche, G.; Fontaine, V. Interplays between copper and Mycobacterium tuberculosis GroEL1. Metallomics 2020, 12, 1267–1277. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Constant, P.; Yang, D.; Baulard, A.; Lefevre, P.; Daffe, M.; Wattiez, R.; Fontaine, V. Cpn60.1 (GroEL1) Contributes to Mycobacterial Crabtree Effect: Implications for Biofilm Formation. Front. Microbiol. 2019, 10, 1149. [Google Scholar] [CrossRef]
- Tre-Hardy, M.; Nagant, C.; El Manssouri, N.; Vanderbist, F.; Traore, H.; Vaneechoutte, M.; Dehaye, J.P. Efficacy of the combination of tobramycin and a macrolide in an in vitro Pseudomonas aeruginosa mature biofilm model. Antimicrob. Agents Chemother. 2010, 54, 4409–4415. [Google Scholar] [CrossRef] [PubMed]
- Wisniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Boopathi, S.; Ramasamy, S.; Haridevamuthu, B.; Murugan, R.; Veerabadhran, M.; Jia, A.-Q.; Arockiaraj, J. Intercellular communication and social behaviors in mycobacteria. Front. Microbiol. 2022, 13, 3525. [Google Scholar] [CrossRef]
- Nino-Padilla, E.I.; Velazquez, C.; Garibay-Escobar, A. Mycobacterial biofilms as players in human infections: A review. Biofouling 2021, 37, 410–432. [Google Scholar] [CrossRef]
- Viljoen, A.; Dufrene, Y.F.; Nigou, J. Mycobacterial Adhesion: From Hydrophobic to Receptor-Ligand Interactions. Microorganisms 2022, 10, 454. [Google Scholar] [CrossRef]
- Belardinelli, J.M.; Stevens, C.M.; Li, W.; Tan, Y.Z.; Jones, V.; Mancia, F.; Zgurskaya, H.I.; Jackson, M. The MmpL3 interactome reveals a complex crosstalk between cell envelope biosynthesis and cell elongation and division in mycobacteria. Sci. Rep. 2019, 9, 10728. [Google Scholar] [CrossRef]
- Bailo, R.; Bhatt, A.; Ainsa, J.A. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development. Biochem. Pharmacol. 2015, 96, 159–167. [Google Scholar] [CrossRef]
- Kurthkoti, K.; Amin, H.; Marakalala, M.J.; Ghanny, S.; Subbian, S.; Sakatos, A.; Livny, J.; Fortune, S.M.; Berney, M.; Rodriguez, G.M. The Capacity of Mycobacterium tuberculosis to Survive Iron Starvation Might Enable It To Persist in Iron-Deprived Microenvironments of Human Granulomas. mBio 2017, 8, e01092-17. [Google Scholar] [CrossRef]
- Sushko, T.; Kavaleuski, A.; Grabovec, I.; Kavaleuskaya, A.; Vakhrameev, D.; Bukhdruker, S.; Marin, E.; Kuzikov, A.; Masamrekh, R.; Shumyantseva, V.; et al. A new twist of rubredoxin function in M. tuberculosis. Bioorg. Chem. 2021, 109, 104721. [Google Scholar] [CrossRef]
- Gilep, A.; Kuzikov, A.; Sushko, T.; Grabovec, I.; Masamrekh, R.; Sigolaeva, L.V.; Pergushov, D.V.; Schacher, F.H.; Strushkevich, N.; Shumyantseva, V.V. Electrochemical characterization of mutant forms of rubredoxin B from Mycobacterium tuberculosis. Biochim. Biophys. Acta Proteins Proteom. 2022, 1870, 140734. [Google Scholar] [CrossRef] [PubMed]
- Gilep, A.; Varaksa, T.; Bukhdruker, S.; Kavaleuski, A.; Ryzhykau, Y.; Smolskaya, S.; Sushko, T.; Tsumoto, K.; Grabovec, I.; Kapranov, I.; et al. Structural insights into 3Fe–4S ferredoxins diversity in M. tuberculosis highlighted by a first redox complex with P450. Front. Mol. Biosci. 2023, 9, 1100032. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, I.; Bhatt, A.; Young, D.C.; Cheng, T.Y.; Eyles, S.J.; Besra, G.S.; Briken, V.; Porcelli, S.A.; Costello, C.E.; Jacobs, W.R., Jr.; et al. Mycobacterium tuberculosis pks12 produces a novel polyketide presented by CD1c to T cells. J. Exp. Med. 2004, 200, 1559–1569. [Google Scholar] [CrossRef] [PubMed]
- Saxena, P.; Yadav, G.; Mohanty, D.; Gokhale, R.S. A new family of type III polyketide syntHAes in Mycobacterium tuberculosis. J. Biol. Chem. 2003, 278, 44780–44790. [Google Scholar] [CrossRef]
- Sirakova, T.D.; Dubey, V.S.; Kim, H.J.; Cynamon, M.H.; Kolattukudy, P.E. The largest open reading frame (pks12) in the Mycobacterium tuberculosis genome is involved in pathogenesis and dimycocerosyl phthiocerol synthesis. Infect. Immun. 2003, 71, 3794–3801. [Google Scholar] [CrossRef]
- Waddell, S.J.; Chung, G.A.; Gibson, K.J.; Everett, M.J.; Minnikin, D.E.; Besra, G.S.; Butcher, P.D. Inactivation of polyketide syntHAe and related genes results in the loss of complex lipids in Mycobacterium tuberculosis H37Rv. Lett. Appl. Microbiol. 2005, 40, 201–206. [Google Scholar] [CrossRef]
- Block, A.M.; Namugenyi, S.B.; Palani, N.P.; Brokaw, A.M.; Zhang, L.; Beckman, K.B.; Tischler, A.D. Mycobacterium tuberculosis Requires the Outer Membrane Lipid Phthiocerol Dimycocerosate for Starvation-Induced Antibiotic Tolerance. mSystems 2023, 8, e0069922. [Google Scholar] [CrossRef]
- Moolla, N.; Bailo, R.; Marshall, R.; Bavro, V.N.; Bhatt, A. Structure-function analysis of MmpL7-mediated lipid transport in mycobacteria. Cell Surf. 2021, 7, 100062. [Google Scholar] [CrossRef]
- Ramos, B.; Gordon, S.V.; Cunha, M.V. Revisiting the expression signature of pks15/1 unveils regulatory patterns controlling phenolphtiocerol and phenolglycolipid production in pathogenic mycobacteria. PLoS ONE 2020, 15, e0229700. [Google Scholar] [CrossRef]
- Simeone, R.; Constant, P.; Malaga, W.; Guilhot, C.; Daffe, M.; Chalut, C. Molecular dissection of the biosynthetic relationship between phthiocerol and phthiodiolone dimycocerosates and their critical role in the virulence and permeability of Mycobacterium tuberculosis. FEBS J. 2007, 274, 1957–1969. [Google Scholar] [CrossRef]
- Rifat, D.; Belchis, D.A.; Karakousis, P.C. senX3-independent contribution of regX3 to Mycobacterium tuberculosis virulence. BMC Microbiol. 2014, 14, 265. [Google Scholar] [CrossRef]
- Rifat, D.; Bishai, W.R.; Karakousis, P.C. Phosphate depletion: A novel trigger for Mycobacterium tuberculosis persistence. J Infect Dis. 2009, 200, 1126–1135. [Google Scholar] [CrossRef]
- Boradia, V.; Frando, A.; Grundner, C. The Mycobacterium tuberculosis PE15/PPE20 complex transports calcium across the outer membrane. PLoS Biol. 2022, 20, e3001906. [Google Scholar] [CrossRef]
Compound | M. bovis BCG | M. marinum | M. tuberculosis H37Ra | |||
---|---|---|---|---|---|---|
MIC | MBIC | MIC | MBIC | MIC | MBIC | |
µM | µM | µM | µM | µM | µM | |
HA2FeCl | >500 | 500 | >500 | 250 | >500 | 250 |
HA6FeCl | >500 | 300 | >500 | ≥250 | 500 | 125 |
HA8FeCl | ≥500 | 100 | 200 | 62.5 | 500 | 250 |
HA10FeCl | 100–200 | 20–100 | >200 | 62.5 | 125 | 31.25 |
HA12FeCl | >200 | 100 | >200 | 500 | 125 | 125 |
HA17FeCl | >500 | >500 | >500 | 500 | 250 | >500 |
HA2Fe2 | >500 | >500 | >500 | >500 | >500 | >500 |
HA6Fe2 | >500 | 100–500 | >500 | 500 | 500 | 250 |
HA8Fe2 | >500 | 100–200 | >500 | 500 | 500 | 250 |
HA10Fe2 | >200 | 20 | >200 | >500 | 250 | >500 |
HA12Fe2 | >500 | 100 | >500 | >500 | 500 | 500 |
HA17Fe2 | 250 | >500 | >500 | 500 | 125 | 250 |
HA2Fe3 | 250–500 | 300–500 | >500 | 250 | >500 | 125 |
HA6Fe3 | 500 | 100–500 | >500 | 250 | ≥500 | 62.5–125 |
HA8Fe3 | 500 | 100 | 250–500 | ≥125 | 125 | 31.25 |
HA10Fe3 | ≥200 | 20–40 | >200 | 62.5 | 125 | 31.25–62.5 |
HA12Fe3 | ≥200 | 100 | >200 | 200–500 | 125–250 | 125 |
HA17Fe3 | >200 | >500 | >500 | 200–500 | 125 | 62.5 |
Compound | M. bovis BCG | M. marinum | M. tuberculosis H37Ra | |||
---|---|---|---|---|---|---|
MIC | MBIC | MIC | MBIC | MIC | MBIC | |
µM | µM | µM | µM | µM | µM | |
HA2Zn2 | >500 | >500 | >500 | 500 | >500 | 250 |
HA6Zn2 | >500 | 200 | >500 | 500 | 125 | 125 |
HA8Zn2 | >500 | 100–200 | >500 | 500 | 250 | 250 |
HA10Zn2 | 250 | 100 | 250 | 250–500 | 250 | 250 |
HA12Zn2 | >500 | 100 | >500 | 250 | 250 | 125 |
HA17Zn2 | >500 | >500 | >500 | 500 | >500 | 250 |
HA2Ni2 | >500 | 300–500 | >500 | >500 | >500 | 62.5–125 |
HA6Ni2 | >500 | 200 | >500 | 500 | >500 | 31.25 |
HA8Ni2 | >500 | 100 | >500 | 62.5 | >500 | 31.25 |
HA10Ni2 | >200 | 20 | >200 | 500 | 500 | 125 |
HA12Ni2 | >500 | 100 | >500 | 125 | >500 | 250–500 |
HA17Ni2 | >500 | >500 | >500 | 250 | >500 | 250 |
HA2Cu2 | 250–500 | 300 | >500 | ≥250 | ≥500 | 250 |
HA6Cu2 | ≥500 | 100 | >500 | 500 | >500 | 500 |
HA8Cu2 | >200 | 100–200 | >200 | 250 | >500 | 250 |
HA10Cu2 | >200 | 20 | >200 | 250 | 250 | 250 |
HA12Cu2 | >500 | 100 | >500 | 125 | >500 | 250 |
HA17Cu2 | >500 | ≥500 | >500 | ≥500 | >500 | 250 |
Compound | M. bovis BCG | M. marinum | M. tuberculosis H37Ra | |||
---|---|---|---|---|---|---|
MIC | MBIC | MIC | MBIC | MIC | MBIC | |
µM | µM | µM | µM | µM | µM | |
HA2 | >500 | >500 | >500 | 500 | >500 | 250 |
HA6 | >500 | ~100 | >500 | 500 | 500 | 125 |
HA8 | >500 | 100 | >500 | 500 | 500 | 125 |
HA10 | 250–500 | 100 | 250–500 | 250 | >500 | 125 |
HA12 | >500 | 100–500 | >500 | >500 | 125 | 250 |
HA17 | >500 | >500 | >500 | ≥500 | ≥500 | >500 |
FeCl2 | >500 | >500 | >500 | 500 | >500 | >500 |
FeCl3 | >500 | >500 | >500 | 500 | >500 | >500 |
NiCl2 | >200 | >500 | 500 | ≥500 | >500 | 250 |
CuCl2 | >200 | 200 | >200 | 250 | >500 | 500 |
ZnCl2 | >500 | >500 | >500 | 250 | >500 | 125–250 |
Compounds | MIC (μg/mL)/FICI |
---|---|
Vancomycin | 750/- |
HA10FeCl | 48.18–96.37/- |
HA10FeCl (46.35 μg/mL) + Vancomycin | 125/0.176 |
Vancomycin (50 μg/mL) + HA10FeCl | 11.59/0.125–0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Zhang, Y.; Sow, I.S.; Liang, H.; El Manssouri, N.; Gelbcke, M.; Dong, L.; Chen, G.; Dufrasne, F.; Fontaine, V.; et al. Antimycobacterial Activities of Hydroxamic Acids and Their Iron(II/III), Nickel(II), Copper(II) and Zinc(II) Complexes. Microorganisms 2023, 11, 2611. https://doi.org/10.3390/microorganisms11102611
Yang D, Zhang Y, Sow IS, Liang H, El Manssouri N, Gelbcke M, Dong L, Chen G, Dufrasne F, Fontaine V, et al. Antimycobacterial Activities of Hydroxamic Acids and Their Iron(II/III), Nickel(II), Copper(II) and Zinc(II) Complexes. Microorganisms. 2023; 11(10):2611. https://doi.org/10.3390/microorganisms11102611
Chicago/Turabian StyleYang, Dong, Yanfang Zhang, Ibrahima Sory Sow, Hongping Liang, Naïma El Manssouri, Michel Gelbcke, Lina Dong, Guangxin Chen, François Dufrasne, Véronique Fontaine, and et al. 2023. "Antimycobacterial Activities of Hydroxamic Acids and Their Iron(II/III), Nickel(II), Copper(II) and Zinc(II) Complexes" Microorganisms 11, no. 10: 2611. https://doi.org/10.3390/microorganisms11102611
APA StyleYang, D., Zhang, Y., Sow, I. S., Liang, H., El Manssouri, N., Gelbcke, M., Dong, L., Chen, G., Dufrasne, F., Fontaine, V., & Li, R. (2023). Antimycobacterial Activities of Hydroxamic Acids and Their Iron(II/III), Nickel(II), Copper(II) and Zinc(II) Complexes. Microorganisms, 11(10), 2611. https://doi.org/10.3390/microorganisms11102611