The Role of Bifidobacterium in Liver Diseases: A Systematic Review of Next-Generation Sequencing Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Selection Criteria
2.2. Data Extraction and Analysis
3. Results
3.1. Selected Studies
3.2. Risk-of-Bias and Quality Assessment
4. Discussion
4.1. The Progression and Stages of Liver Diseases
4.2. The Bifidobacterium Genus
4.3. Bifidobacterium in ALD
4.4. Bifidobacterium in NAFLD
4.5. Bifidobacterium in NASH
4.6. Bifidobacterium in Cirrhosis
4.7. Bifidobacterium in HCC
4.8. Risk-of-Bias and Quality Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pezzino, S.; Sofia, M.; Faletra, G.; Mazzone, C.; Litrico, G.; La Greca, G.; Latteri, S. Gut–liver Axis and Non-alcoholic Fatty Liver Disease: A Vicious Circle of Dysfunctions Orchestrated by the Gut Microbiome. Biology 2022, 11, 1622. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.P.; Suk, K.T.; Kim, D.J. Significance of Gut Microbiota in Alcoholic and Non-Alcoholic Fatty Liver Diseases. World J. Gastroenterol. 2021, 27, 6161–6179. [Google Scholar] [CrossRef] [PubMed]
- Seitz, H.K.; Bataller, R.; Cortez-Pinto, H.; Gao, B.; Gual, A.; Lackner, C.; Mathurin, P.; Mueller, S.; Szabo, G.; Tsukamoto, H. Alcoholic Liver Disease. Nat. Rev. Dis. Primers 2018, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Huo, R.; Chen, Y.; Li, J.; Xu, Q.; Guo, J.; Xu, H.; You, Y.; Zheng, C.; Chen, Y. Altered Gut Microbiota Composition and its Potential Association in Patients with Advanced Hepatocellular Carcinoma. Curr. Oncol. 2023, 30, 1818–1830. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Mandal, S. Bifidobacteria—Insight into Clinical Outcomes and Mechanisms of its Probiotic Action. Microbiol. Res. 2016, 192, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jiao, T.; Yu, Q.; Wang, J.; Wang, L.; Wang, G.; Zhang, H.; Zhao, J.; Chen, W. Bifidobacterium bifidum Shows More Diversified Ways of Relieving Non-Alcoholic Fatty Liver Compared with Bifidobacterium adolescentis. Biomedicines 2022, 10, 84. [Google Scholar] [CrossRef] [PubMed]
- Shahi, S.K.; Zarei, K.; Guseva, N.V.; Mangalam, A.K. Microbiota Analysis Using Two-step PCR and Next-generation 16S rRNA Gene Sequencing. J. Vis. Exp. 2019, 152, e59980. [Google Scholar] [CrossRef]
- Sanschagrin, S.; Yergeau, E. Next-generation Sequencing of 16S Ribosomal RNA Gene Amplicons. J. Vis. Exp. 2014, 90, e51709. [Google Scholar] [CrossRef]
- Ranjan, R.; Rani, A.; Metwally, A.; McGee, H.S.; Perkins, D.L. Analysis of the Microbiome: Advantages of Whole Genome Shotgun Versus 16S Amplicon Sequencing. Biochem. Biophys. Res. Commun. 2016, 469, 967–977. [Google Scholar] [CrossRef]
- Purushothaman, S.; Meola, M.; Egli, A. Combination of Whole Genome Sequencing and Metagenomics for Microbiological Diagnostics. Int. J. Mol. Sci. 2022, 23, 9834. [Google Scholar] [CrossRef]
- Marquardt, J.U.; Andersen, J.B. Next-generation Sequencing: Application in Liver Cancer—Past, Present and Future? Biology 2012, 1, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Moola, S.; Munn, Z.; Tufanaru, C.; Aromataris, E.; Sears, K.; Sfetcu, R.; Currie, M.; Lisy, K.; Qureshi, R.; Mattis, P.; et al. Chapter 7: Systematic Reviews of Etiology and Risk. In JBI Manual for Evidence Synthesis; Aromataris, E., Munn, Z., Eds.; JBI: Adelaide, Australia, 2020. [Google Scholar] [CrossRef]
- Gu, Z.; Wu, Y.; Wang, Y.; Sun, H.; You, Y.; Piao, C.; Liu, J.; Wang, Y. Lactobacillus rhamnosus Granules Dose-Dependently Balance Intestinal Microbiome Disorders and Ameliorate Chronic Alcohol-Induced Liver Injury. J. Med. Food 2020, 23, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Coker, O.O.; Chu, E.S.; Fu, K.; Lau, H.C.H.; Wang, Y.-X.; Chan, A.W.H.; Wei, H.; Yang, X.; Sung, J.J.Y.; et al. Dietary Cholesterol Drives Fatty Liver-Associated Liver Cancer by Modulating Gut Microbiota and Metabolites. Gut 2021, 70, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Ponziani, F.R.; Bhoori, S.; Castelli, C.; Putignani, L.; Rivoltini, L.; Del Chierico, F.; Sanguinetti, M.; Morelli, D.; Sterbini, F.P.; Petito, V.; et al. Hepatocellular Carcinoma is Associated with Gut Microbiota Profile and Inflammation in Nonalcoholic Fatty Liver Disease. Hepatology 2019, 69, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Kajihara, M.; Koido, S.; Kanai, T.; Ito, Z.; Matsumoto, Y.; Takakura, K.; Saruta, M.; Kato, K.; Odamaki, T.; Xiao, J.-Z.; et al. Characterisation of Blood Microbiota in Patients with Liver Cirrhosis. Eur. J. Gastroenterol. Hepatol. 2019, 31, 1577–1583. [Google Scholar] [CrossRef]
- Wei, X.; Yan, X.; Zou, D.; Yang, Z.; Wang, X.; Liu, W.; Wang, S.; Li, X.; Han, J.; Huang, L.; et al. Abnormal Fecal Microbiota Community and Functions in Patients with Hepatitis B Liver Cirrhosis as Revealed by a Metagenomic Approach. BMC Gastroenterol. 2013, 13, 175. [Google Scholar] [CrossRef]
- Dubinkina, V.B.; Tyakht, A.V.; Odintsova, V.Y.; Yarygin, K.S.; Kovarsky, B.A.; Pavlenko, A.V.; Ischenko, D.S.; Popenko, A.S.; Alexeev, D.G.; Taraskina, A.Y.; et al. Links of Gut Microbiota Composition with Alcohol Dependence Syndrome and Alcoholic Liver Disease. Microbiome 2017, 5, 141. [Google Scholar] [CrossRef]
- Juárez-Fernández, M.; Porras, D.; Petrov, P.; Román-Sagüillo, S.; García-Mediavilla, M.V.; Soluyanova, P.; Martínez-Flórez, S.; González-Gallego, J.; Nistal, E.; Jover, R.; et al. The Synbiotic Combination of Akkermansia muciniphila and Quercetin Ameliorates Early Obesity and NAFLD through Gut Microbiota Reshaping and Bile Acid Metabolism Modulation. Antioxidants 2021, 10, 2001. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Cui, B. Modulation of the Fecal Microbiome and Metabolome by Resistant Dextrin Ameliorates Hepatic Steatosis and Mitochondrial Abnormalities in Mice. Food Funct. 2021, 12, 4504–4518. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Sun, Y.; Pan, D.; Sang, L.-X.; Sun, M.-J.; Li, Y.-L.; Chang, B. Distinctive Gut Microbial Dysbiosis Between Chronic Alcoholic Fatty Liver Disease and Metabolic-Associated Fatty Liver Disease in Mice. Exp. Ther. Med. 2021, 21, 418. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, J.; Yu, J.; Chen, H.; Zhang, D.; Zhang, T.; Ma, Y.; Zou, C.; Zhang, Z.; Ma, L.; et al. Gut Microbiome Determines Therapeutic Effects of OCA on NAFLD by Modulating Bile Acid Metabolism. npj Biofilms Microbiomes 2023, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, K.; Yang, H. Pectin Alleviates High Fat (Lard) Diet-Induced Nonalcoholic Fatty Liver Disease in Mice: Possible Role of Short-Chain Fatty Acids and Gut Microbiota Regulated by Pectin. J. Agric. Food Chem. 2018, 66, 8015–8025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Luo, X.; Han, C.; Liu, J.; Zhang, L.; Qi, J.; Gu, J.; Tan, R.; Gong, P. Terminalia bellirica Ethanol Extract Ameliorates Nonalcoholic Fatty Liver Disease in Mice by Amending the Intestinal Microbiota and Faecal Metabolites. J. Ethnopharmacol. 2023, 305, 116082. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.-Z.; Li, Y.-T.; Wu, W.-R.; Shi, D.; Fang, D.-Q.; Yang, L.-Y.; Bian, X.-Y.; Wu, J.-J.; Wang, Q.; Jiang, X.-W.; et al. Dynamic Alterations in the Gut Microbiota and Metabolome During the Development of Methionine-Choline-Deficient Diet-Induced Nonalcoholic Steatohepatitis. World J. Gastroenterol. 2018, 24, 2468–2481. [Google Scholar] [CrossRef] [PubMed]
- Nobili, V.; Putignani, L.; Mosca, A.; Del Chierico, F.; Vernocchi, P.; Alisi, A.; Stronati, L.; Cucchiara, S.; Toscano, M.; Drago, L. Bifidobacteria and Lactobacilli in the Gut Microbiome of Children with Non-Alcoholic Fatty Liver Disease: Which Strains Act as Health Players? Arch. Med. Sci. 2018, 14, 81–87. [Google Scholar] [CrossRef]
- Duarte, S.M.B.; Stefano, J.T.; Miele, L.; Ponziani, F.R.; Souza-Basqueira, M.; Okada, L.S.R.R.; de Barros Costa, F.G.; Toda, K.; Mazo, D.F.C.; Sabino, E.C.; et al. Gut Microbiome Composition in Lean Patients with NASH is Associated with Liver Damage Independent of Caloric Intake: A Prospective Pilot Study. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 369–384. [Google Scholar] [CrossRef]
- Pan, X.; Kaminga, A.C.; Liu, A.; Wen, S.W.; Luo, M.; Luo, J. Gut Microbiota, Glucose, Lipid, and Water-Electrolyte Metabolism in Children with Nonalcoholic Fatty Liver Disease. Front. Cell. Infect. Microbiol. 2021, 11, 683743. [Google Scholar] [CrossRef]
- Warner, J.B.; Larsen, I.S.; Hardesty, J.E.; Song, Y.L.; Warner, D.R.; McClain, C.J.; Sun, R.; Deng, Z.; Jensen, B.A.H.; Kirpich, I.A. Human Beta Defensin 2 Ameliorated Alcohol-Associated Liver Disease in Mice. Front. Physiol. 2022, 12, 812882. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, H.; Cao, Y.; Zhang, Y.; Li, W.; Guo, W.; Lv, X.; Rao, P.; Ni, L.; Liu, P. Auricularia auricula Melanin Protects against Alcoholic Liver Injury and Modulates Intestinal Microbiota Composition in Mice Exposed to Alcohol Intake. Foods 2021, 10, 2436. [Google Scholar] [CrossRef] [PubMed]
- Philips, C.A.; Ahamed, R.; Rajesh, S.; Singh, S.; Tharakan, A.; Abduljaleel, J.K.; Augustine, P. Clinical Outcomes and Gut Microbiota Analysis of Severe Alcohol-Associated Hepatitis Patients Undergoing Healthy Donor Fecal Transplant or Pentoxifylline Therapy: Single-Center Experience from Kerala. Gastroenterol. Rep. 2022, 10, goac074. [Google Scholar] [CrossRef] [PubMed]
- Ponziani, F.R.; De Luca, A.; Picca, A.; Marzetti, E.; Petito, V.; Del Chierico, F.; Reddel, S.; Sterbini, F.P.; Sanguinetti, M.; Putignani, L.; et al. Gut Dysbiosis and Fecal Calprotectin Predict Response to Immune Checkpoint Inhibitors in Patients with Hepatocellular Carcinoma. Hepatol. Commun. 2022, 6, 1492–1501. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Chen, L.; Pan, X.; Yao, Y.; Zhang, H.; Zhu, X.; Lou, X.; Zhu, C.; Wang, J.; Li, L.; et al. Lactitol Supplementation Modulates Intestinal Microbiome in Liver Cirrhotic Patients. Front. Med. 2021, 8, 762930. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tang, K.; Deng, Y.; Chen, R.; Liang, S.; Xie, H.; He, Y.; Chen, Y.; Yang, Q. Effects of Shenling Baizhu Powder Herbal Formula on Intestinal Microbiota in High-Fat Diet-Induced NAFLD Rats. Biomed. Pharmacother. 2018, 102, 1025–1036. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Feng, B.; Niu, Y.J.; Hu, C.Y.; Meng, Y.H. Fu Instant Tea Ameliorates Fatty Liver by Improving Microbiota Dysbiosis and Elevating Short-Chain Fatty Acids in the Intestine of Mice Fed a High-Fat Diet. Food Biosci. 2021, 42, 101207. [Google Scholar] [CrossRef]
- Bao, T.; He, F.; Zhang, X.; Zhu, L.; Wang, Z.; Lu, H.; Wang, T.; Li, Y.; Yang, S.; Wang, H. Inulin Exerts Beneficial Effects on Non-Alcoholic Fatty Liver Disease via Modulating gut Microbiome and Suppressing the Lipopolysaccharide-Toll-Like Receptor 4-Mψ-Nuclear Factor-κB-Nod-Like Receptor Protein 3 Pathway via Gut-Liver Axis in Mice. Front. Pharmacol. 2020, 11, 558525. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Su, H.; Lv, Y.; Tao, H.; Jiang, Y.; Ni, Z.; Peng, L.; Chen, X. Inulin Intervention Attenuates Hepatic Steatosis in Rats Via Modulating Gut Microbiota and Maintaining Intestinal Barrier Function. Food Res. Int. 2023, 163, 112309. [Google Scholar] [CrossRef]
- Hu, W.; Gao, W.; Liu, Z.; Fang, Z.; Wang, H.; Zhao, J.; Zhang, H.; Lu, W.; Chen, W. Specific Strains of Faecalibacterium prausnitzii Ameliorate Nonalcoholic Fatty Liver Disease in Mice in Association with Gut Microbiota Regulation. Nutrients 2022, 14, 2945. [Google Scholar] [CrossRef]
- Ghosh, S.; Yang, X.; Wang, L.; Zhang, C.; Zhao, L. Active Phase Prebiotic Feeding Alters Gut Microbiota, Induces Weight-Independent Alleviation of Hepatic Steatosis and Serum Cholesterol in High-Fat Diet-Fed Mice. Comput. Struct. Biotechnol. J. 2021, 19, 448–458. [Google Scholar] [CrossRef]
- Abernathy, B.E.; Schoenfuss, T.C.; Bailey, A.S.; Gallaher, D.D. Polylactose Exhibits Prebiotic Activity and Reduces Adiposity and Nonalcoholic Fatty Liver Disease in Rats Fed a High-Fat Diet. J. Nutr. 2021, 151, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Satapathy, S.K.M.; Banerjee, P.; Pierre, J.F.; Higgins, D.; Dutta, S.; Heda, R.B.; Khan, S.D.B.; Mupparaju, V.K.; Mas, V.; Nair, S.; et al. Characterization of Gut Microbiome in Liver Transplant Recipients with Nonalcoholic Steatohepatitis. Transplant. Direct 2020, 6, e625. [Google Scholar] [CrossRef] [PubMed]
- Bomhof, M.R.; Parnell, J.A.; Ramay, H.R.; Crotty, P.; Rioux, K.P.; Probert, C.S.; Jayakumar, S.; Raman, M.; Reimer, R.A. Histological Improvement of Non-Alcoholic Steatohepatitis with a Prebiotic: A Pilot Clinical Trial. Eur. J. Nutr. 2019, 58, 1735–1745. [Google Scholar] [CrossRef] [PubMed]
- Bessone, F.; Razori, M.V.; Roma, M.G. Molecular Pathways of Nonalcoholic Fatty Liver Disease Development and Progression. Cell. Mol. Life Sci. 2019, 76, 99–128. [Google Scholar] [CrossRef] [PubMed]
- Ceni, E.; Mello, T.; Galli, A. Pathogenesis of Alcoholic Liver Disease: Role of Oxidative Metabolism. World J. Gastroenterol. 2014, 20, 17756–17772. [Google Scholar] [CrossRef] [PubMed]
- Dolicka, D.; Sobolewski, C.; Correia de Sousa, M.; Gjorgjieva, M.; Foti, M. mRNA Post-Transcriptional Regulation by AU-Rich Element-Binding Proteins in Liver Inflammation and Cancer. Int. J. Mol. Sci. 2020, 21, 6648. [Google Scholar] [CrossRef] [PubMed]
- Sgorbati, B.; Biavati, B.; Palenzona, D. The Genus Bifidobacterium. In The Genera of Lactic Acid Bacteria; Wood, B.J.B., Holzapfel, W.H., Eds.; Springer: New York, NY, USA, 1995; Volume 2. [Google Scholar] [CrossRef]
- Parte, A.C. LPSN—List of Prokaryotic Names with Standing in Nomenclature. Nucleic Acids Res. 2014, 42, D613–D616. [Google Scholar] [CrossRef] [PubMed]
- Turroni, F.; van Sinderen, D.; Ventura, M. Genomics and Ecological Overview of the Genus Bifidobacterium. Int. J. Food Microbiol. 2011, 149, 37–44. [Google Scholar] [CrossRef]
- Arboleya, S.; Watkins, C.; Stanton, C.; Ross, R.P. Gut Bifidobacteria Populations in Human Health and Aging. Front. Microbiol. 2016, 7, 1204. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Z.; Jiang, S.; Bai, X.; Ma, C.; Peng, Q.; Chen, K.; Chang, H.; Fang, T.; Zhang, H. Probiotic Bifidobacterium lactis V9 Regulates the Secretion of Sex Hormones in Polycystic Ovary Syndrome Patients through the Gut-Brain Axis. mSystems 2019, 4, e00017-19. [Google Scholar] [CrossRef]
- Lim, H.J.; Shin, H.S. Antimicrobial and Immunomodulatory Effects of Bifidobacterium Strains: A Review. J. Microbiol. Biotechnol. 2020, 30, 1793–1800. [Google Scholar] [CrossRef]
- Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of Gut Microbiota in Type 2 Diabetes Pathophysiology. eBioMedicine 2020, 51, 102590. [Google Scholar] [CrossRef] [PubMed]
- Cheung, S.G.; Goldenthal, A.R.; Uhlemann, A.C.; Mann, J.J.; Miller, J.M.; Sublette, M.E. Systematic Review of Gut Microbiota and Major Depression. Front. Psychiatry 2019, 10, 34. [Google Scholar] [CrossRef] [PubMed]
- Liwinski, T.; Casar, C.; Ruehlemann, M.C.; Bang, C.; Sebode, M.; Hohenester, S.; Denk, G.; Lieb, W.; Lohse, A.W.; Franke, A.; et al. A Disease-Specific Decline of the Relative Abundance of Bifidobacterium in Patients with Autoimmune Hepatitis. Aliment. Pharmacol. Ther. 2020, 51, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
- Bellentani, S.; Tiribelli, C. The Spectrum of Liver Disease in the General Population: Lesson from the Dionysos Study. J. Hepatol. 2001, 35, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Gurwara, S.; Dai, A.; Ajami, N.J.; Graham, D.Y.; White, D.L.; Chen, L.; Jang, A.; Chen, E.; El-Serag, H.B.; Petrosino, J.F.; et al. Alcohol Use Alters the Colonic Mucosa–Associated Gut Microbiota in Humans. Nutr. Res. 2020, 83, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Kolodziejczyk, A.A.; Zheng, D.; Shibolet, O.; Elinav, E. The Role of the Microbiome in NAFLD and NASH. EMBO Mol. Med. 2019, 11, e9302. [Google Scholar] [CrossRef] [PubMed]
- Velázquez, K.T.; Enos, R.T.; E Bader, J.; Sougiannis, A.T.; Carson, M.S.; Chatzistamou, I.; A Carson, J.; Nagarkatti, P.; Nagarkatti, M.; Murphy, E.A. Prolonged High-Fat-Diet Feeding Promotes Non-Alcoholic Fatty Liver Disease and Alters Gut Microbiota in Mice. World J. Hepatol. 2019, 11, 619–637. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.; Rivera, L.; Furness, J.B.; Angus, P.W. The Role of the Gut Microbiota in NAFLD. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 412–425. [Google Scholar] [CrossRef]
- McBurney, M.I.; Davis, C.; Fraser, C.M.; Schneeman, B.O.; Huttenhower, C.; Verbeke, K.; Walter, J.; Latulippe, M.E. Establishing What Constitutes a Healthy Human Gut Microbiome: State of the Science, Regulatory Considerations, and Future Directions. J. Nutr. 2019, 149, 1882–1895. [Google Scholar] [CrossRef]
- Li, F.; Ye, J.; Shao, C.; Zhong, B. Compositional Alterations of Gut Microbiota in Nonalcoholic Fatty Liver Disease Patients: A Systematic Review and Meta-analysis. Lipids Health Dis. 2021, 20, 22. [Google Scholar] [CrossRef] [PubMed]
- Honda, K.; Littman, D. The Microbiota in Adaptive Immune Homeostasis and Disease. Nature 2016, 535, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Jokela, R.; Ponsero, A.J.; Dikareva, E.; Wei, X.; Kolho, K.L.; Korpela, K.; de Vos, W.M.; Salonen, A. Sources of Gut Microbiota Variation in a Large Longitudinal Finnish Infant Cohort. EBioMedicine. 2023, 94, 104695. [Google Scholar] [CrossRef] [PubMed]
- Sheng, W.; Ji, G.; Zhang, L. Immunomodulatory Effects of Inulin and its Intestinal Metabolites. Front Immunol. 2023, 14, 1224092. [Google Scholar] [CrossRef] [PubMed]
- McCullough, A.J. Update on Nonalcoholic Fatty Liver Disease. J. Clin. Gastroenterol. 2002, 34, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Tsay, C.J.; Lim, J.K. NASH and the Gut Microbiome: Implications for New Therapies. Clin. Liver Dis. 2022, 19, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Schuppan, D.; Afdhal, N.H. Liver Cirrhosis. Lancet 2008, 371, 838–851. [Google Scholar] [CrossRef] [PubMed]
- Berzigotti, A. Advances and Challenges in Cirrhosis and Portal Hypertension. BMC Med. 2017, 15, 200. [Google Scholar] [CrossRef]
- Cervantes-Alvarez, E.; Vilatoba, M.; la Rosa, N.L.-D.; Mendez-Guerrero, O.; Kershenobich, D.; Torre, A.; Navarro-Alvarez, N. Liver Transplantation is Beneficial Regardless of Cirrhosis Stage or Acute-on-Chronic Liver Failure Grade: A Single-Center Experience. World J. Gastroenterol. 2022, 28, 5881–5892. [Google Scholar] [CrossRef]
- Bajaj, J.S. Altered Microbiota in Cirrhosis and its Relationship to the Development of Infection. Clin. Liver Dis. 2019, 14, 107–111. [Google Scholar] [CrossRef]
- Ganesan, P.; Kulik, L.M. Hepatocellular Carcinoma: New Developments. Clin. Liver Dis. 2023, 27, 85–102. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekaran, R.; Bandoh, S.; Roberts, L.R. Molecular Pathogenesis of Hepatocellular Carcinoma and Impact of Therapeutic Advances. F1000Research 2016, 5, 879. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Guo, S.; Zhou, Y.; Zhao, J.; Wang, M.; Sang, L.; Chang, B.; Wang, B. Hepatocellular Carcinoma: How the Gut Microbiota Contributes to Pathogenesis, Diagnosis, and Therapy. Front. Microbiol. 2022, 13, 873160. [Google Scholar] [CrossRef] [PubMed]
- Litwinowicz, K.; Gamian, A. Microbiome Alterations in Alcohol Use Disorder and Alcoholic Liver Disease. Int. J. Mol. Sci. 2023, 24, 2461. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Peddada, S.D. Analysis of Compositions of Microbiomes with Bias Correction. Nat. Commun. 2020, 11, 3514. [Google Scholar] [CrossRef] [PubMed]
- Mirzayi, C.; Renson, A.; Genomic Standards Consortium; Massive Analysis and Quality Control Society; Zohra, F.; Elsafoury, S.; Geistlinger, L.; Kasselman, L.J.; Eckenrode, K.; van de Wijgert, J.; et al. Reporting Guidelines for Human Microbiome Research: The STORMS Checklist. Nat. Med. 2021, 27, 1885–1892. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Study | Country | Disease | Population | Type of Study | Type of Sample | N | Groups | Abundance in Disease | Clinical Relevance |
---|---|---|---|---|---|---|---|---|---|
Gu, Z. et al., 2020 [15] | China | ALD | Animal | Preclinical study | Cecum | 64 | 7 Control | Down | Excessive alcohol alters gut bacteria, causing inflammation and other complications |
12 ALD | |||||||||
45 ALD + treatment | |||||||||
Zhang, X. et al., 2021 [16] | China | HCC | Animal | Preclinical study | Stool | 98 | 39 Control | Down | Bifidobacterium reduction linked to gut imbalance, chronic inflammation, immune dysfunction, and carcinoma development |
59 HCC | |||||||||
Huo, R. et al., 2023 [4] | China | HCC | Human | Case-control | Stool | 40 | 20 Control | Down | |
20 HCC | |||||||||
Ponziani, F.R. et al., 2019 [17] | Italy | HCC | Human | Case-control | Stool | 61 | 20 Control | Down | |
21 HCC | |||||||||
20 NAFLD + Cirrhosis | |||||||||
Kajihara, M. et al., 2019 [18] | Japan | Cirrhosis | Human | Cross-sectional | Peripheral blood | 80 | 14 Control | Down | Reduced Bifidobacterium levels in cirrhosis patients promote inflammation and worsen liver damage |
66 Cirrhosis | |||||||||
Wei, X. et al., 2013 [19] | China | Cirrhosis | Human | Case-control | Stool | 240 | 120 Control | Up | Unexpected result, but supported by related studies. No evidence of health issues with increased Bifidobacterium |
120 Cirrhosis | |||||||||
Dubinkina, V.B. et al., 2017 [20] | Russia | Cirrhosis | Human | Cross-sectional | Stool | 159 | 60 Control | Up | |
27 Cirrhosis | |||||||||
72 Alcohol dependence syndrome | |||||||||
Juárez-Fernández, M. et al., 2021 [21] | Spain | NAFLD | Animal | Preclinical study | Stool | 60 | 30 Control | Up | No evidence of harm from increased Bifidobacterium levels, but caution is advised due to similar trends in other diseases. Authors recommend caution when using Bifidobacterium as a probiotic |
30 NAFLD | |||||||||
Zhang, Z. et al., 2021 [22] | China | NAFLD | Animal | Preclinical study | Stool | 18 | 6 Control | Up | |
6 NAFLD | |||||||||
6 NAFLD + prebiotic | |||||||||
Kang, K. et al., 2021 [23] | China | NAFLD | Animal | Preclinical study | Intestine | 28 | 7 AFLD Control | Down | Imbalanced gut microbiota causes lower Bifidobacterium levels, increasing chronic inflammation and other clinical implications |
7 AFLD | |||||||||
7 NAFLD Control | |||||||||
7 NAFLD | |||||||||
Liu, J.J. et al., 2023 [24] | China | NAFLD | Animal | Preclinical study | Stool | 66 | 11 Control | Down | |
11 NAFLD | |||||||||
33 NAFLD + treatment | |||||||||
11 Fecal microbiota transplantation | |||||||||
Li, W.F. et al., 2018 [25] | China | NAFLD | Animal | Preclinical study | Colon | 32 | 8 Control | Down | |
8 NAFLD | |||||||||
16 NAFLD + treatment | |||||||||
Zhang, B. et al., 2023 [26] | China | NAFLD | Animal | Preclinical study | Stool | 60 | 10 Control | Down | |
10 NAFLD | |||||||||
40 NAFLD + treatment | |||||||||
Ye, J.Z. et al., 2018 [27] | China | NASH | Animal | Preclinical study | Stool | 24 | 12 Control | Down | Low levels of Bifidobacterium correlate with chronic inflammation and liver fibrosis |
12 NASH | |||||||||
Nobili, V. et al., 2018 [28] | Italy | NASH | Human | Case-control | Stool | 115 | 54 Control | Down | |
61 NASH | |||||||||
Duarte, S.M.B. et al., 2018 [29] | Brazil | NASH | Human | Cross-sectional | Stool | 23 | 10 Control | Down | |
13 NASH | |||||||||
Pan, X. et al., 2021 [30] | China | NASH | Human | Case-control | Stool | 75 | 25 Control | Down | |
25 NASH | |||||||||
25 NAFLD |
Study | Country | Disease | Population | Type of Study | Type of Sample | N | Groups | Treatment | Abundance by Treatment | Clinical Relevance |
---|---|---|---|---|---|---|---|---|---|---|
Warner, J. et al., 2021 [31] | USA | ALD | Animal | Preclinical study | Stool | 36 | 6 Control | Human Beta Defensin 2 (hBD-2) | Up | Reduced of steatosis, hepatocellular death, and inflammation |
14 ALD | ||||||||||
16 ALD + treatment | ||||||||||
Lin, Y. et al., 2021 [32] | China | ALD | Animal | Preclinical study | Stool | 40 | 10 Control | Auricularia auricula Melanin (AMM) | Up | Harmful bacteria suppressed, gut barrier balanced, and reduced inflammation |
10 ALD | ||||||||||
20 ALD + treatment | ||||||||||
Philips, C.A. et al., 2022 [33] | India | ALD | Human | Retrospective cohort | Stool | 72 | 47 ALD + treatment 1 | Fecal microbiota transplantation (1) and Pentoxifylline (2) | Up | Enhaced digestion and immunity through microbiota modulation |
25 ALD + treatment 2 | ||||||||||
Ponziani, F.R. et al., 2022 [34] | Italy | HCC | Human | Prospective cohort | Stool | 11 | 6 HCC responders | Tremelimumab and Durvalumab | Up | Improved gut microbiota promotes clinical remission of HCC |
5 HCC non-responders | ||||||||||
Lu, H. et al., 2021 [35] | China | Cirrhosis | Human | Case-control | Stool | 53 | 29 Control | Lactitol | Up | Less endotoxin biosynthesis, lower inflammation, and disease severity |
24 Cirrhosis + treatment | ||||||||||
Zhang, Y. et al., 2018 [36] | China | NAFLD | Animal | Preclinical study | Stool | 69 | 12 Control | Shenling baizhu powder | Up | Improved gut microbiota, reduced hepatic steatosis, and restored colonic mucosa enhance liver and intestinal health |
12 NAFLD | ||||||||||
10 NAFLD + LPS | ||||||||||
12 NAFLD + saline | ||||||||||
11 NAFLD + treatment | ||||||||||
12 NAFLD + probiotic | ||||||||||
Yang, F. et al., 2021 [37] | China | NAFLD | Animal | Preclinical study | Stool | 60 | 10 Control | Fu instant tea | Up | Enhanced microbiota and short-chain fatty acids boost immune and digestive systems |
10 NAFLD | ||||||||||
10 NAFLD + positive control | ||||||||||
30 NAFLD + treatment | ||||||||||
Bao, T. et al., 2020 [38] | China | NAFLD | Animal | Preclinical study | Stool | 60 | 15 Control | Inulin | Up | Improved gut barrier enhances nutrient absorption and health |
15 NAFLD | ||||||||||
15 Control + treatment | ||||||||||
15 NAFLD + treatment | ||||||||||
Yang, Z.D. et al., 2023 [39] | China | NAFLD | Animal | Preclinical study | Stool | 18 | 6 Control | Inulin | Up | Increased short-chain fatty acids enhance the immune and digestive systems |
6 NAFLD | ||||||||||
6 NAFLD + treatment | ||||||||||
Hu, W. et al., 2022 [40] | China | NAFLD | Animal | Preclinical study | Stool | 21 | 7 Control | Faecalibacterium prausnitzii LC49/LB8 | Up | Enhanced metabolism benefits patient health by improving NAFLD and metabolic function |
7 NAFLD | ||||||||||
7 NAFLD + treatment | ||||||||||
Ghosh, S. et al., 2020 [41] | China | NAFLD | Animal | Preclinical study | Stool | 30 | 10 Control | Inulin, fructooligosaccharide, and xylooligosaccharide | Up | Elevated short-chain fatty acids enhance immune function |
10 Unrestricted acess to treatment | ||||||||||
10 Restricted acess to treatment | ||||||||||
Abernathy, B.E. et al., 2021 [42] | USA | NAFLD | Animal | Preclinical study | Cecum | 72 | 12 Control | Polylactose | Up | Fat reduction, improved insulin sensitivity, and decreased systemic inflammation |
12 NAFLD | ||||||||||
48 NAFLD + treatment | ||||||||||
Satapathy, S. et al., 2020 [43] | USA | NASH | Human | Prospective cohort | Stool | 21 | 21 Pretransplant | Liver transplant | Up | Higher Bifidobacterium levels linked to less liver fat, protecting against NASH |
21 Posttransplant | ||||||||||
Bomhof, M.R. et al., 2019 [44] | Canada | NASH | Human | Randomized clinical trial | Stool | 14 | 6 NASH + placebo | Oligofructose | Up | Liver steatosis, inflammation, fibrosis, and NASH activity have been significantly reduced |
8 NASH + treatment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hizo, G.H.; Rampelotto, P.H. The Role of Bifidobacterium in Liver Diseases: A Systematic Review of Next-Generation Sequencing Studies. Microorganisms 2023, 11, 2999. https://doi.org/10.3390/microorganisms11122999
Hizo GH, Rampelotto PH. The Role of Bifidobacterium in Liver Diseases: A Systematic Review of Next-Generation Sequencing Studies. Microorganisms. 2023; 11(12):2999. https://doi.org/10.3390/microorganisms11122999
Chicago/Turabian StyleHizo, Gabriel Henrique, and Pabulo Henrique Rampelotto. 2023. "The Role of Bifidobacterium in Liver Diseases: A Systematic Review of Next-Generation Sequencing Studies" Microorganisms 11, no. 12: 2999. https://doi.org/10.3390/microorganisms11122999
APA StyleHizo, G. H., & Rampelotto, P. H. (2023). The Role of Bifidobacterium in Liver Diseases: A Systematic Review of Next-Generation Sequencing Studies. Microorganisms, 11(12), 2999. https://doi.org/10.3390/microorganisms11122999