Comparison and Three-Dimensional Fluorescence Spectrum Analysis of Activated Sludge Treatment with Fenton and UV-Fenton
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Machinery
2.2. Activated Sludge
2.3. Fenton and UV-Fenton Processes
2.4. Method of Index Determination
2.4.1. Protein and Humic Acid Detection Method
2.4.2. Protein and Humic Acid Detection Method
2.4.3. Polysaccharide Detection Method
2.5. 3D-EEM Fluorescence Spectroscopy
2.6. SEM Detection Method
2.7. Detection of Sludge Particle Size
3. Discussion
3.1. The Optimal Experimental Conditions of Pure Fenton
3.1.1. The Dosage of Fe2+
3.1.2. The Dosage of H2O2
3.1.3. The Reaction Times
3.2. The Optimal Reaction Time of UV-Fenton
3.3. Basic Component Analysis
3.3.1. Protein, Humic Acid and Polysaccharide
3.3.2. sCOD and TOC
3.4. 3D-EEM Analysis
3.5. Characterization by Electron Microscope
3.6. Sludge Particle Size and Water Content after Pretreatment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Wang, F.; Mei, Z.; Lv, L.; Chi, Y. Status and Development of Sludge Incineration in China. Waste Biomass Valorization 2020, 12, 3541–3574. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Deng, D.; Li, R.; Guo, C.; Ma, J.; Chen, M. Investigation of extracellular polymeric substances (EPS) in four types of sludge: Factors influencing EPS properties and sludge granulation. J. Water Process. Eng. 2021, 40, 7. [Google Scholar] [CrossRef]
- Gao, W.; Song, L.; Wang, Z.; Xuan, L. Pyrite activated peroxymonosulfate combined with as a physical-chemical conditioner modified biochar to improve sludge dewaterability: Analysis of sludge floc structure and dewatering mechanism. Environ. Sci. Pollut. Res. 2022, 29, 74725–74741. [Google Scholar] [CrossRef] [PubMed]
- Wolski, P. Sonification Energy in the Process of Ultrasonic Disintegration. J. Ecol. Eng. 2020, 21, 36–40. [Google Scholar] [CrossRef]
- Yang, B.; Pan, Q.; Liu, Q.; Pan, X. Damage mechanisms of sludge flocs and cell structures by different pretreatment methods. Environ. Technol. Innov. 2023, 30, 12. [Google Scholar] [CrossRef]
- Khanh Nguyen, V.; Kumar Chaudhary, D.; Hari Dahal, R.; Hoang Trinh, N.; Kim, J.; Chang, S.W.; Hong, Y.; Duc La, D.; Nguyen, X.C.; Hao Ngo, H.; et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel 2021, 285, 13. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, H.-Y.; Zhang, Y.-L.; Ran, D.-D.; Wu, L.-Q.; Wang, H.-F.; Zeng, R.J. Effects of sewage sludge pretreatment methods on its use in agricultural applications. J. Hazard Mater. 2022, 428, 10. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Y.; Qi, X.; Chen, T.; Zhang, Y.; Gao, C.; Zhang, A. A new mechanical cutting pretreatment approach towards the improvement of primary sludge fermentation and anaerobic digestion. J. Environ. Chem. Eng. 2022, 10, 9. [Google Scholar] [CrossRef]
- Qiao, Z.; Xu, S.; Zhang, W.; Shi, S.; Zhang, W.; Liu, H. Potassium ferrate pretreatment promotes short chain fatty acids yield and antibiotics reduction in acidogenic fermentation of sewage sludge. J. Environ. Sci. 2022, 120, 41–52. [Google Scholar] [CrossRef]
- Domingues, E.; Fernandes, E.; Gomes, J.; Martins, R.C. Advanced oxidation processes perspective regarding swine wastewater treatment. Sci. Total Environ. 2021, 776. [Google Scholar] [CrossRef]
- Amudha, V.; Kavitha, S.; Fernandez, C.; Adishkumar, S.; Banu, J.R. Effect of deflocculation on the efficiency of sludge reduction by Fenton process. Environ. Sci. Pollut. Res. 2016, 23, 19281–19291. [Google Scholar] [CrossRef] [PubMed]
- Rueda-Márquez, J.J.; Levchuk, I.; Manzano, M.; Sillanpää, M. Toxicity Reduction of Industrial and Municipal Wastewater by Advanced Oxidation Processes (Photo-Fenton, UVC/H2O2, Electro-Fenton and Galvanic Fenton): A Review. Catalysts 2020, 10, 612. [Google Scholar] [CrossRef]
- Zhao, X.L.; Wei, H.B.; Chen, L.C. Advanced treatment of coking wastewater by Fenton reagent oxidation process. China Water Wastewater 2010, 26, 93–95. [Google Scholar]
- Zhang, D.; Huang, Y.; Luo, G. Research progress of fenton and photo-fenton reaction. Environ. Chem. 2006, 2, 121–127. [Google Scholar]
- Her, N.; Amy, G.; McKnight, D.; Sohn, J.; Yoon, Y. Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection. Water Res. 2003, 37, 4295–4303. [Google Scholar] [CrossRef] [PubMed]
- Meijide, J.; Pazos, M.; Sanromán, M. Heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride degradation. Environ. Sci. Pollut. Res. 2019, 26, 3145–3156. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J.; Chen, X.E. Determination of proteins by forinphenol reagent method. Food Drug 2011, 13, 147–151. [Google Scholar]
- Rao, B.; Pang, H.; Fan, F.; Zhang, J.; Xu, P.; Qiu, S.; Wu, X.; Lu, X.; Zhu, J.; Wang, G.; et al. Pore-scale model and dewatering performance of municipal sludge by ultrahigh pressurized electro-dewatering with constant voltage gradient. Water Res. 2021, 189, 13. [Google Scholar] [CrossRef]
- Subramanian, S.B.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: Isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering. Water Res. 2010, 44, 2253–2266. [Google Scholar] [CrossRef]
- Sheng, G.P.; Yu, H.Q.; Li, X.Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnol. Adv. 2010, 28, 882–894. [Google Scholar] [CrossRef]
- Ishak, S.; Malakahmad, A. Optimization of Fenton process for refinery wastewater biodegradability augmentation. Korean J. Chem. Eng. 2013, 30, 1083–1090. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.X.; Fan, X.; Bi, X.J. Optimization of heat extraction method of extracellular polymeric substances from waste activated sludge. J. Qingdao Univ. Technol. 2019, 40, 117–124. [Google Scholar]
- Lei, P.; Chen, C.; Yang, J.; Ma, W.; Zhao, J.; Zang, L. Degradation of Dye Pollutants by Immobilized Polyoxometalate with H2O2 under Visible-Light Irradiation. Environ. Sci. Technol. 2005, 39, 8466–8474. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, P.-Y.; Zeng, G.-M.; Song, X.-G.; Dong, J.-H.; Zhagn, H.-Y.; Wu, Z.; Jia, X.-L. Extracellular Polymeric Substances Disintegration by Fenton Oxidation of Excess Sludge. Environ. Sci. 2009, 30, 475–479. [Google Scholar]
- Tyagi, V.K.; Lo, S.L. Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: An up-to-date review. Rev. Environ. Sci. Bio-Technol. 2011, 10, 215–242. [Google Scholar] [CrossRef]
- Wei, D.; Wang, B.; Ngo, H.H.; Guo, W.; Han, F.; Wang, X.; Du, B.; Wei, Q. Role of extracellular polymeric substances in biosorption of dye wastewater using aerobic granular sludge. Bioresour. Technol. 2015, 185, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gao, M.; Wang, S.; Xin, Y.; Ma, D.; She, Z.; Wang, Z.; Chang, Q.; Ren, Y. Effect of hexavalent chromium on extracellular polymeric substances of granular sludge from an aerobic granular sequencing batch reactor. Chem. Eng. J. 2014, 251, 165–174. [Google Scholar] [CrossRef]
- Sheng, G.P.; Yu, H.Q. Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Res. 2006, 40, 1233–1239. [Google Scholar] [CrossRef]
- Yildiz, S.; Comert, A. Fenton process effect on sludge disintegration. Int. J. Environ. Health Res. 2020, 30, 89–104. [Google Scholar] [CrossRef]
- Li, T. Sludge Disintegration and Effects on Harmful Components in Excess Sludge under Discharge; Northwest A&F University: Xianyang, China, 2022. [Google Scholar]
- Li, J.; Luo, G.B.; Xu, J. Fate and Ecological Risk Assessment of Nutrients and Metals in Sewage Sludge from Ten Wastewater Treatment Plants in Wuxi City, China. Bull. Environ. Contam. Toxicol. 2019, 102, 259–267. [Google Scholar] [CrossRef]
Area | Range Ex/Em (nm) | Fluorescent Substance |
---|---|---|
I | 220–250/280–330 | Aromatic protein I (A) |
II | 220–250/330–380 | Aromatic protein II (B) |
III | 220–250/380–500 | Quasi-fulvic acid (C) |
IV | 250–280/280–380 | Dissolved microbial metabolites (D) |
V | 250–400/380–500 | Humic acid (E) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Chai, T.; Chen, X. Comparison and Three-Dimensional Fluorescence Spectrum Analysis of Activated Sludge Treatment with Fenton and UV-Fenton. Microorganisms 2023, 11, 3003. https://doi.org/10.3390/microorganisms11123003
Wang J, Chai T, Chen X. Comparison and Three-Dimensional Fluorescence Spectrum Analysis of Activated Sludge Treatment with Fenton and UV-Fenton. Microorganisms. 2023; 11(12):3003. https://doi.org/10.3390/microorganisms11123003
Chicago/Turabian StyleWang, Jiamei, Tian Chai, and Xin Chen. 2023. "Comparison and Three-Dimensional Fluorescence Spectrum Analysis of Activated Sludge Treatment with Fenton and UV-Fenton" Microorganisms 11, no. 12: 3003. https://doi.org/10.3390/microorganisms11123003
APA StyleWang, J., Chai, T., & Chen, X. (2023). Comparison and Three-Dimensional Fluorescence Spectrum Analysis of Activated Sludge Treatment with Fenton and UV-Fenton. Microorganisms, 11(12), 3003. https://doi.org/10.3390/microorganisms11123003