Oral Antibiotics for Bacteremia and Infective Endocarditis: Current Evidence and Future Perspectives
Abstract
:1. Introduction
2. Methods
3. Effect of Acute Febrile Infection on Oral Antibiotic Absorption
3.1. Bacteremia and Oral Antibiotics
3.1.1. Gram-Negative Bacteremia
Enterobacterales Bacteremia: Clinical Efficacy Data and Upcoming Trials
Enterobacterales Bacteremia: Oral Agent Selection
Oral Cephalosporins for Enterobacterales Bacteremia: PK/PD Data
Pseudomonas Bacteremia: Clinical Efficacy Data
Oral Ciprofloxacin for Gram-Negative Bacteremia—PK/PD and TDM Data
3.1.2. Gram-Positive Bacteremia
S. aureus Bacteremia: Clinical Efficacy Data
S. aureus Bacteremia: Duration of Treatment
Linezolid for S. aureus Bacteremia
Clindamycin for S. aureus Bacteremia
Fluoroquinolones for S. aureus Bacteremia
Rifampicin-Containing Regimens for S. aureus Bacteremia
Streptococcal Bacteremia: Clinical Efficacy Data
Enterococcal Bacteremia: Clinical Efficacy Data
Linezolid for Gram-Positive Bacteremia: PK/PD and TDM Data
Oral Antibiotic | Microorganism | MIC (mg/L) | Dosage | Dose Adjustment for Special Populations | References |
---|---|---|---|---|---|
Ciprofloxacin | Enterobacterales; Pseudomonas | ≤0.125 | 500 mg bid | eGFR ≤ 30 mL/min: 25% dose reduction Obesity: no dose modification | [10,56,58,121] |
0.25 | 750 mg bid | ||||
>0.25 | Avoid | ||||
Levofloxacin | Enterobacterales; Pseudomonas; Streptococci | ≤1 | Dose guided by creatinine clearance based on ideal body weight | ≤30 mL/min: 500 mg qd 30–90 mL/min: 750 mg qd >90 mL/min: 500 mg bid | [122,123,124] |
>1 | Avoid | ||||
Moxifloxacin | Enterobacterales; | ≤0.25 | 400 mg qd | Renal impairment or obesity: no dose modification | [83,84,125] |
Streptococci | >0.25 | Avoid | |||
Staphylococci | ≤0.06 | 400 mg qd | |||
0.125 | Use in combination with another agent or 800 mg/day, preferably with TDM | ||||
>0.125 | Avoid | ||||
TMP/SMX | Enterobacterales; Streptococci; Staphylococci | ≤1 | 10 mg/kg/day (TMP component) | eGFR ≤ 30 mL/min: 50% dose reduction | [126,127] |
(as TMP concentration [=20 mg/L TMP/SXT]) | divided in 2–3 doses | ||||
>1 | Avoid | ||||
Clindamycin | Staphylococci; Streptococci | ≤0.25 | 600 mg tid | Bone source of bacteremia and either body weight >75 kg or MIC = 0.25 mg/L: 900 mg tid | [70,76,77,79,128,129] |
>0.25 | Avoid | ||||
Linezolid | Staphylococci; Streptococci; Enterococci | <2 | 600 mg bid | eGFR ≤ 60 mL/min, Child-Pugh C cirrhosis or INR > 2 due to hepatic impairment: 300 mg bid Dialysis-dependent patients: 300 mg bid or 600 mg qd eGFR ≥ 120 mL/min: avoid Obesity plus eGFR ≤ 60 mL/min: 600 mg bid Obesity plus eGFR ≥ 60 mL/min: 450 mg tid If body weight is >140 kg, use only if MIC ≤ 1 mg/L | [112,113,116,117,118,119,120,130,131,132,133,134,135] |
2 | Use in combination if possible or use TDM | ||||
>2 | Avoid | ||||
Rifampicin | Staphylococci; Streptococci; Enterococci (adjunct treatment) | ≤0.06 | 300 mg tid | None | [136,137] |
Metronidazole | Anaerobes | ≤4 | Infections outside central nervous system: 500 mg bid | Obesity: 500 mg tid | [138,139,140] |
Oral Amoxicillin for Bacteremia: PK/PD Data
3.2. Infective Endocarditis
3.2.1. Clinical Efficacy Data and Relevant Guidelines
3.2.2. Considerations Regarding Oral Antibiotic Selection in Endocarditis
3.2.3. Probenecid as an Adjunct to Oral Beta-Lactams
3.2.4. Infective Endocarditis—Upcoming Trials
3.2.5. The Potential Utility of Oral Fosfomycin against Endocarditis and Bacteremia
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hospenthal, D.R.; Waters, C.D.; Beekmann, S.E.; Polgreen, P.M. Practice Patterns of Infectious Diseases Physicians in Transitioning From Intravenous to Oral Therapy in Patients With Bacteremia. Open Forum Infect. Dis. 2020, 7, ofz386. [Google Scholar] [CrossRef] [PubMed]
- Thaden, J.T.; Tamma, P.D.; Doi, Y.; Daneman, N. Variability in oral antibiotic step-down therapy in the management of Gram-negative bloodstream infections. Int. J. Antimicrob. Agents 2021, 58, 106451. [Google Scholar] [CrossRef] [PubMed]
- Lau, B.D.; Pinto, B.L.; Thiemann, D.R.; Lehmann, C.U. Budget impact analysis of conversion from intravenous to oral medication when clinically eligible for oral intake. Clin. Ther. 2011, 33, 1792–1796. [Google Scholar] [CrossRef] [PubMed]
- Amodio-Groton, M.; Madu, A.; Madu, C.N.; Briceland, L.L.; Seligman, M.; McMaster, P.; Miller, M.H. Sequential parenteral and oral ciprofloxacin regimen versus parenteral therapy for bacteremia: A pharmacoeconomic analysis. Ann. Pharmacother. 1996, 30, 596–602. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Shrestha, J.; Everett, A.; Carroll, D.; Gordon, S.M.; Butler, R.S.; Rehm, S.J. Vascular access complications during outpatient parenteral antimicrobial therapy at home: A retrospe ctive cohort study. J. Antimicrob. Chemother. 2016, 71, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Keller, S.C.; Williams, D.; Gavgani, M.; Hirsch, D.; Adamovich, J.; Hohl, D.; Gurses, A.P.; Cosgrove, S.E. Rates of and Risk Factors for Adverse Drug Events in Outpatient Parenteral Antimicrobial Therapy. Clin. Infect. Dis. 2018, 66, 11–19. [Google Scholar] [CrossRef]
- Grau, D.; Clarivet, B.; Lotthé, A.; Bommart, S.; Parer, S. Complications with peripherally inserted central catheters (PICCs) used in hospitalized patients and outpatients: A prospective cohort study. Antimicrob. Resist. Infect. Control 2017, 6, 18. [Google Scholar] [CrossRef]
- Krein, S.L.; Saint, S.; Trautner, B.W.; Kuhn, L.; Colozzi, J.; Ratz, D.; Lescinskas, E.; Chopra, V. Patient-reported complications related to peripherally inserted central catheters: A multicentre prospective cohort study. BMJ Qual. Saf. 2019, 28, 574–581. [Google Scholar] [CrossRef]
- Eek, D.; Krohe, M.; Mazar, I.; Horsfield, A.; Pompilus, F.; Friebe, R.; Shields, A.L. Patient-reported preferences for oral versus intravenous administration for the treatment of cancer: A review of the literature. Patient Prefer. Adherence 2016, 10, 1609–1621. [Google Scholar] [CrossRef]
- Van Den Broek, A.K.; Visser, C.E.; Veenstra, J.; Van Den Berg, B.T.J.; Prins, J.M.; Van Hest, R.M. The effect of the acute phase of infection on absorption of and exposure to orally administered antibiotics in non-critically ill, hospitalized patients. J. Antimicrob. Chemother. 2023, 78, 389–396. [Google Scholar] [CrossRef]
- Gasparetto, J.; Tuon, F.F.; Dos Santos Oliveira, D.; Zequinao, T.; Pipolo, G.R.; Ribeiro, G.V.; Benincá, P.D.; Cruz, J.A.W.; Moraes, T.P. Intravenous-to-oral antibiotic switch therapy: A cross-sectional study in critical care units. BMC Infect. Dis. 2019, 19, 650. [Google Scholar] [CrossRef] [PubMed]
- Rebuck, J.A.; Fish, D.N.; Abraham, E. Pharmacokinetics of intravenous and oral levofloxacin in critically ill adults in a medical intensive care unit. Pharmacotherapy 2002, 22, 1216–1225. [Google Scholar] [CrossRef] [PubMed]
- Thurber, K.M.; Arnold, J.R.; Narayanan, P.P.; Dierkhising, R.A.; Sampathkumar, P. Comparison of intravenous and oral definitive antibiotic regimens in hospitalised patients with Gram-negative bacteraemia from a urinary tract infection. J. Glob. Antimicrob. Resist. 2019, 18, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Conley, A.T.; Cosgrove, S.E.; Harris, A.D.; Lautenbach, E.; Amoah, J.; Avdic, E.; Tolomeo, P.; Wise, J.; Subudhi, S.; et al. Association of 30-Day Mortality With Oral Step-Down vs Continued Intravenous Therapy in Patients Hospitalized With Enterobacteriaceae Bacteremia. JAMA Intern. Med. 2019, 179, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Rieger, K.L.; Bosso, J.A.; MacVane, S.H.; Temple, Z.; Wahlquist, A.; Bohm, N. Intravenous-only or Intravenous Transitioned to Oral Antimicrobials for Enterobacteriaceae-Associated Bacteremic Urinary Tract Infection. Pharmacotherapy 2017, 37, 1479–1483. [Google Scholar] [CrossRef] [PubMed]
- Nisly, S.A.; McClain, D.L.; Fillius, A.G.; Davis, K.A. Oral antibiotics for the treatment of Gram-negative bloodstream infections: A retrospective comparison of three antibiotic classes. J. Glob. Antimicrob. Resist. 2020, 20, 74–77. [Google Scholar] [CrossRef]
- Nguyen, N.; Jayachandran, A.; Mui, M.; Olson, K. Clinical Impact of Oral Step-Down Therapy for Gram-Negative Bacteremia: A Retrospective Study. HCA Healthc. J. Med. 2023, 4, 119–124. [Google Scholar] [CrossRef]
- McAteer, J.; Lee, J.H.; Cosgrove, S.E.; Dzintars, K.; Fiawoo, S.; Heil, E.L.; Kendall, R.E.; Louie, T.; Malani, A.N.; Nori, P.; et al. Defining the Optimal Duration of Therapy for Hospitalized Patients With Complicated Urinary Tract Infections and Associated Bacteremia. Clin. Infect. Dis. 2023, 76, 1604–1612. [Google Scholar] [CrossRef]
- Sutton, J.D.; Stevens, V.W.; Chang, N.N.; Khader, K.; Timbrook, T.T.; Spivak, E.S. Oral β-Lactam Antibiotics vs Fluoroquinolones or Trimethoprim-Sulfamethoxazole for Definitive Treatment of Enterobacterales Bacteremia From a Urine Source. JAMA Netw. Open 2020, 3, e2020166. [Google Scholar] [CrossRef]
- Tossey, J.C.; El Boghdadly, Z.; Reed, E.E.; Dela-Pena, J.; Coe, K.; Williams, S.N.; Wardlow, L.C. Oral fluoroquinolones for definitive treatment of gram-negative bacteremia in cancer patients. Support Care Cancer 2021, 29, 5057–5064. [Google Scholar] [CrossRef]
- Park, T.Y.; Choi, J.S.; Song, T.J.; Do, J.H.; Choi, S.H.; Oh, H.C. Early oral antibiotic switch compared with conventional intravenous antibiotic therapy for acute cholangitis with bacteremia. Dig. Dis. Sci. 2014, 59, 2790–2796. [Google Scholar] [CrossRef] [PubMed]
- Mack, T.; Hiles, J.J.; Wrin, J.; Desai, A. Use of Fluoroquinolones or Sulfamethoxazole-Trimethoprim Compared to Β-Lactams for Oral Step-Down Therapy in Hospitalized Patients With Uncomplicated Enterobacterales Bacteremia. Ann. Pharmacother. 2023, 57, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Mercuro, N.J.; Stogsdill, P.; Wungwattana, M. Retrospective analysis comparing oral stepdown therapy for enterobacteriaceae bloodstream infections: Fluoroquinolones versus β-lactams. Int. J. Antimicrob. Agents 2018, 51, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Yahav, D.; Franceschini, E.; Koppel, F.; Turjeman, A.; Babich, T.; Bitterman, R.; Neuberger, A.; Ghanem-Zoubi, N.; Santoro, A.; Eliakim-Raz, N.; et al. Seven Versus 14 Days of Antibiotic Therapy for Uncomplicated Gram-negative Bacteremia: A Noninferiority Randomized Controlled Trial. Clin. Infect. Dis. 2019, 69, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Mombelli, G.; Pezzoli, R.; Pinoja-Lutz, G.; Monotti, R.; Marone, C.; Franciolli, M. Oral vs intravenous ciprofloxacin in the initial empirical management of severe pyelonephritis or complicated urinary tract infections: A prospective randomized clinical trial. Arch. Intern. Med. 1999, 159, 53–58. [Google Scholar] [CrossRef]
- Switch to Oral Antibiotics in Gram-Negative Bacteremia (SOAB); A Randomized, Open-Label, Clinical Trial. Available online: https://clinicaltrials.gov/study/NCT04146922#more-information (accessed on 11 November 2023).
- Lee, I.R.; Tong, S.Y.C.; Davis, J.S.; Paterson, D.L.; Syed-Omar, S.F.; Peck, K.R.; Chung, D.R.; Cooke, G.S.; Libau, E.A.; Rahman, S.B.A.; et al. Early oral stepdown antibiotic therapy versus continuing intravenous therapy for uncomplicated Gram-negative bacteraemia (the INVEST trial): Study protocol for a multicentre, randomised controlled, open-label, phase III, non-inferiority trial. Trials 2022, 23, 572. [Google Scholar] [CrossRef]
- Obaro, S.K.; Hassan-Hanga, F.; Olateju, E.K.; Umoru, D.; Lawson, L.; Olanipekun, G.; Ibrahim, S.; Munir, H.; Ihesiolor, G.; Maduekwe, A.; et al. Salmonella Bacteremia Among Children in Central and Northwest Nigeria, 2008-2015. Clin. Infect. Dis. 2015, 61 (Suppl. S4), S325–S331. [Google Scholar] [CrossRef]
- Kuehn, R.; Stoesser, N.; Eyre, D.; Darton, T.C.; Basnyat, B.; Parry, C.M. Treatment of enteric fever (typhoid and paratyphoid fever) with cephalosporins. Cochrane Database Syst. Rev. 2022, 11, Cd010452. [Google Scholar] [CrossRef]
- Bhutta, Z.A.; Khan, I.A.; Molla, A.M. Therapy of multidrug-resistant typhoid fever with oral cefixime vs. intravenous ceftriaxone. Pediatr. Infect. Dis. J. 1994, 13, 990–994. [Google Scholar] [CrossRef]
- Girgis, N.I.; Tribble, D.R.; Sultan, Y.; Farid, Z. Short course chemotherapy with cefixime in children with multidrug-resistant Salmonella typhi Septicaemia. J. Trop. Pediatr. 1995, 41, 364–365. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Tansarli, G.S.; Rafailidis, P.I.; Falagas, M.E. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2012, 67, 2793–2803. [Google Scholar] [CrossRef] [PubMed]
- Meije, Y.; Pigrau, C.; Fernández-Hidalgo, N.; Clemente, M.; Ortega, L.; Sanz, X.; Loureiro-Amigo, J.; Sierra, M.; Ayestarán, A.; Morales-Cartagena, A.; et al. Non-intravenous carbapenem-sparing antibiotics for definitive treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamase (ESBL) or AmpC β-lactamase: A propensity score study. Int. J. Antimicrob. Agents 2019, 54, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Brigmon, M.M.; Bookstaver, P.B.; Kohn, J.; Albrecht, H.; Al-Hasan, M.N. Impact of fluoroquinolone resistance in Gram-negative bloodstream infections on healthcare utilization. Clin. Microbiol. Infect. 2015, 21, 843–849. [Google Scholar] [CrossRef]
- Shehab, N.; Lovegrove, M.C.; Geller, A.I.; Rose, K.O.; Weidle, N.J.; Budnitz, D.S. US Emergency Department Visits for Outpatient Adverse Drug Events, 2013-2014. JAMA 2016, 316, 2115–2125. [Google Scholar] [CrossRef] [PubMed]
- Bjork, L.; Hopkins, T.; Yang, L.; Teng, C.; Jones, X.; Cadena, J.; Walter, E.; Frei, C.R. Comparative-Effectiveness of Oral Beta-Lactams and Fluoroquinolones for Stepdown Therapy in Patients with Enterobacterales Bloodstream Infections: A Retrospective Cohort Study. Int. J. Med. Sci. 2023, 20, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Saad, S.; Mina, N.; Lee, C.; Afra, K. Oral beta-lactam step down in bacteremic E. coli urinary tract infections. BMC Infect. Dis. 2020, 20, 785. [Google Scholar] [CrossRef] [PubMed]
- Mponponsuo, K.; Brown, K.A.; Fridman, D.J.; Johnstone, J.; Langford, B.J.; Lee, S.M.; MacFadden, D.R.; Patel, S.N.; Schwartz, K.L.; Daneman, N. Highly versus less bioavailable oral antibiotics in the treatment of gram-negative bloodstream infections: A propensity-matched cohort analysis. Clin. Microbiol. Infect. 2023, 29, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Kutob, L.F.; Justo, J.A.; Bookstaver, P.B.; Kohn, J.; Albrecht, H.; Al-Hasan, M.N. Effectiveness of oral antibiotics for definitive therapy of Gram-negative bloodstream infections. Int. J. Antimicrob. Agents 2016, 48, 498–503. [Google Scholar] [CrossRef]
- Mogle, B.T.; Beccari, M.V.; Steele, J.M.; Fazili, T.; Kufel, W.D. Clinical considerations for oral beta-lactams as step-down therapy for Enterobacteriaceae bloodstream infections. Expert. Opin. Pharmacother. 2019, 20, 903–907. [Google Scholar] [CrossRef]
- Rodríguez-Gascón, A.; Aguirre-Quiñonero, A.; Canut-Blasco, A. Are oral cefuroxime axetil, cefixime and cefditoren pivoxil adequate to treat uncomplicated acute pyelonephritis after switching from intravenous therapy? A pharmacokinetic/pharmacodynamic perspective. Enferm. Infecc. Microbiol. Clin. 2020, 38, 306–311. [Google Scholar] [CrossRef]
- Yamada, T.; Minami, K.; Oda, K.; Suzuki, K.; Nishihara, M.; Uchiyama, K.; Ukimura, A. Probability of target attainment of oral antimicrobials for Escherichia coli and Klebsiella pneumoniae based on Monte Carlo simulations. Diagn. Microbiol. Infect. Dis. 2022, 103, 115662. [Google Scholar] [CrossRef] [PubMed]
- Everts, R.J.; Gardiner, S.J.; Zhang, M.; Begg, R.; Chambers, S.T.; Turnidge, J.; Begg, E.J. Probenecid effects on cephalexin pharmacokinetics and pharmacodynamics in healthy volunteers. J. Infect. 2021, 83, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Iversen, K.; Ihlemann, N.; Gill, S.U.; Madsen, T.; Elming, H.; Jensen, K.T.; Bruun, N.E.; Høfsten, D.E.; Fursted, K.; Christensen, J.J.; et al. Partial Oral versus Intravenous Antibiotic Treatment of Endocarditis. N. Engl. J. Med. 2019, 380, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Smit, C.; Sen, S.; von Dach, E.; Karmime, A.; Lescuyer, P.; Tonoli, D.; Bielicki, J.; Huttner, A.; Pfister, M. Steering Away from Current Amoxicillin Dose Reductions in Hospitalized Patients with Impaired Kidney Function to Avoid Subtherapeutic Drug Exposure. Antibiotics 2022, 11, 1190. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, D.N.; Chamber, H.F.; Saag, M.S.; Pavia, A.T.; Boucher, H.W.; Black, D. The Sanford Guide to Antimicrobial Therapy, 53rd ed.; Antimicrobial Therapy, Inc.: Sperryville, VA, USA, 2023. [Google Scholar]
- Cattrall, J.W.S.; Asín-Prieto, E.; Freeman, J.; Trocóniz, I.F.; Kirby, A. A pharmacokinetic-pharmacodynamic assessment of oral antibiotics for pyelonephritis. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 2311–2321. [Google Scholar] [CrossRef] [PubMed]
- de Velde, F.; de Winter, B.C.; Koch, B.C.; van Gelder, T.; Mouton, J.W. Non-linear absorption pharmacokinetics of amoxicillin: Consequences for dosing regimens and clinical breakpoints. J. Antimicrob. Chemother. 2016, 71, 2909–2917. [Google Scholar] [CrossRef] [PubMed]
- Bathini, L.; Jandoc, R.; Kuwornu, P.; McArthur, E.; Weir, M.A.; Sood, M.M.; Battistella, M.; Muanda, F.T.; Liu, A.; Jain, A.K.; et al. Clinical Outcomes of Failing to Dose-Reduce Cephalosporin Antibiotics in Older Adults with CKD. Clin. J. Am. Soc. Nephrol. 2019, 14, 197–205. [Google Scholar] [CrossRef]
- Wu, P.F.; Lin, Y.T.; Wang, F.D.; Yang, T.C.; Fung, C.P. Is fluoroquinolone monotherapy a useful alternative treatment for Pseudomonas aeruginosa bacteraemia? Infection 2018, 46, 365–373. [Google Scholar] [CrossRef]
- Reid, E.; Walters, R.W.; Destache, C.J. Beta-Lactam vs. Fluoroquinolone Monotherapy for Pseudomonas aeruginosa Infection: A Systematic Review and Meta-Analysis. Antibiotics 2021, 10, 1483. [Google Scholar] [CrossRef]
- Bouza, E.; Díaz-López, M.D.; Bernaldo de Quirós, J.C.; Rodríguez-Créixems, M. Ciprofloxacin in patients with bacteremic infections. The Spanish Group for the Study of Ciprofloxacin. Am. J. Med. 1989, 87, 228s–231s. [Google Scholar] [CrossRef]
- Pradubkham, T.; Suwanpimolkul, G.; Gross, A.E.; Nakaranurack, C. Intravenous to oral transition of antibiotics for gram-negative bloodstream infection at a University hospital in Thailand: Clinical outcomes and predictors of treatment failure. PLoS ONE 2022, 17, e0273369. [Google Scholar] [CrossRef] [PubMed]
- Forrest, A.; Nix, D.E.; Ballow, C.H.; Goss, T.F.; Birmingham, M.C.; Schentag, J.J. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob. Agents Chemother. 1993, 37, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- van Zanten, A.R.; Polderman, K.H.; van Geijlswijk, I.M.; van der Meer, G.Y.; Schouten, M.A.; Girbes, A.R. Ciprofloxacin pharmacokinetics in critically ill patients: A prospective cohort study. J. Crit. Care 2008, 23, 422–430. [Google Scholar] [CrossRef] [PubMed]
- de Vroom, S.L.; van Hest, R.M.; van Daalen, F.V.; Kuil, S.D.; Mathôt, R.A.A.; Geerlings, S.E.; Jager, N.G.L. Pharmacokinetic/pharmacodynamic target attainment of ciprofloxacin in adult patients on general wards with adequate and impaired renal function. Int. J. Antimicrob. Agents 2020, 56, 106166. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Ciprofloxacin Bayer Referral Annex. Available online: https://www.ema.europa.eu/en/documents/referral/ciprofloxacin-bayer-article-30-referral-annex-i-ii-iii_en.pdf (accessed on 11 November 2023).
- Rohwedder, R.; Bergan, T.; Thorsteinsson, S.B.; Scholl, H. Transintestinal elimination of ciprofloxacin. Chemotherapy 1990, 36, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Carney, D.N.; Parker, R.H.; Fossieck, B.E., Jr. Staphylococcal bacteremia in cancer patients: Intravenous and oral antimicrobial therapy. South. Med. J. 1982, 75, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Diego-Yagüe, I.; Mora-Vargas, A.; Vázquez-Comendador, J.M.; Santamarina-Alcantud, B.; Fernández-Cruz, A.; Múñez-Rubio, E.; Gutiérrez-Villanueva, A.; Sanchez-Romero, I.; Moreno-Torres, V.; Ramos-Martínez, A.; et al. Sequential oral antibiotic in uncomplicated Staphylococcus aureus bacteraemia: A propensity-matched cohort analysis. Clin. Microbiol. Infect. 2023, 29, 744–750. [Google Scholar] [CrossRef]
- Bupha-Intr, O.; Blackmore, T.; Bloomfield, M. Efficacy of Early Oral Switch with β-Lactams for Low-Risk Staphylococcus aureus Bacteremia. Antimicrob. Agents Chemother. 2020, 64, e02345-19. [Google Scholar] [CrossRef]
- Jorgensen, S.C.J.; Lagnf, A.M.; Bhatia, S.; Shamim, M.D.; Rybak, M.J. Sequential intravenous-to-oral outpatient antibiotic therapy for MRSA bacteraemia: One step closer. J. Antimicrob. Chemother. 2019, 74, 489–498. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, M.T.; Sousa, A.; Moreno-Flores, A.; Longueira, R.; Diéguez, P.; Suárez, M.; Lima, O.; Vasallo, F.J.; Álvarez-Fernández, M.; Crespo, M. The benefits and safety of oral sequential antibiotic therapy in non-complicated and complicated Staphylococcus aureus bacteremia. Int. J. Infect. Dis. 2021, 102, 554–560. [Google Scholar] [CrossRef]
- Li, H.K.; Rombach, I.; Zambellas, R.; Walker, A.S.; McNally, M.A.; Atkins, B.L.; Lipsky, B.A.; Hughes, H.C.; Bose, D.; Kümin, M.; et al. Oral versus Intravenous Antibiotics for Bone and Joint Infection. N. Engl. J. Med. 2019, 380, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Wildenthal, J.A.; Atkinson, A.; Lewis, S.; Sayood, S.; Nolan, N.S.; Cabrera, N.L.; Marschall, J.; Durkin, M.J.; Marks, L.R. Outcomes of Partial Oral Antibiotic Treatment for Complicated Staphylococcus aureus Bacteremia in People Who Inject Drugs. Clin. Infect. Dis. 2023, 76, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Shorr, A.F.; Kunkel, M.J.; Kollef, M. Linezolid versus vancomycin for Staphylococcus aureus bacteraemia: Pooled analysis of randomized studies. J. Antimicrob. Chemother. 2005, 56, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Schrenzel, J.; Harbarth, S.; Schockmel, G.; Genné, D.; Bregenzer, T.; Flueckiger, U.; Petignat, C.; Jacobs, F.; Francioli, P.; Zimmerli, W.; et al. A randomized clinical trial to compare fleroxacin-rifampicin with flucloxacillin or vancomycin for the treatment of staphylococcal infection. Clin. Infect. Dis. 2004, 39, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.M.; Goodman, A.L.; Horner, C.; Jenkins, A.; Brown, E.M. Treatment of methicillin-resistant Staphylococcus aureus (MRSA): Updated guidelines from the UK. JAC Antimicrob. Resist. 2021, 3, dlaa114. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Bishara, J.; Yahav, D.; Goldberg, E.; Neuberger, A.; Ghanem-Zoubi, N.; Dickstein, Y.; Nseir, W.; Dan, M.; Leibovici, L. Trimethoprim-sulfamethoxazole versus vancomycin for severe infections caused by meticillin resistant Staphylococcus aureus: Randomised controlled trial. BMJ 2015, 350, h2219. [Google Scholar] [CrossRef] [PubMed]
- Kaasch, A.J.; López-Cortés, L.E.; Rodríguez-Baño, J.; Cisneros, J.M.; Navarro, M.D.; Fätkenheuer, G.; Jung, N.; Rieg, S.; Lepeule, R.; Coutte, L.; et al. Early oral switch in low-risk Staphylococcus aureus bloodstream infection. medRxiv 2023, 1–22. [Google Scholar] [CrossRef]
- Chong, Y.P.; Moon, S.M.; Bang, K.M.; Park, H.J.; Park, S.Y.; Kim, M.N.; Park, K.H.; Kim, S.H.; Lee, S.O.; Choi, S.H.; et al. Treatment duration for uncomplicated Staphylococcus aureus bacteremia to prevent relapse: Analysis of a prospective observational cohort study. Antimicrob. Agents Chemother. 2013, 57, 1150–1156. [Google Scholar] [CrossRef]
- Crowley, A.L.; Peterson, G.E.; Benjamin, D.K., Jr.; Rimmer, S.H.; Todd, C.; Cabell, C.H.; Reller, L.B.; Ryan, T.; Corey, G.R.; Fowler, V.G., Jr. Venous thrombosis in patients with short- and long-term central venous catheter-associated Staphylococcus aureus bacteremia. Crit. Care Med. 2008, 36, 385–390. [Google Scholar] [CrossRef]
- Wilcox, M.H.; Tack, K.J.; Bouza, E.; Herr, D.L.; Ruf, B.R.; Ijzerman, M.M.; Croos-Dabrera, R.V.; Kunkel, M.J.; Knirsch, C. Complicated skin and skin-structure infections and catheter-related bloodstream infections: Noninferiority of linezolid in a phase 3 study. Clin. Infect. Dis. 2009, 48, 203–212. [Google Scholar] [CrossRef]
- Yeager, S.D.; Oliver, J.E.; Shorman, M.A.; Wright, L.R.; Veve, M.P. Comparison of linezolid step-down therapy to standard parenteral therapy in methicillin-resistant Staphylococcus aureus bloodstream infections. Int. J. Antimicrob. Agents 2021, 57, 106329. [Google Scholar] [CrossRef] [PubMed]
- Willekens, R.; Puig-Asensio, M.; Ruiz-Camps, I.; Larrosa, M.N.; González-López, J.J.; Rodríguez-Pardo, D.; Fernández-Hidalgo, N.; Pigrau, C.; Almirante, B. Early Oral Switch to Linezolid for Low-risk Patients With Staphylococcus aureus Bloodstream Infections: A Propensity-matched Cohort Study. Clin. Infect. Dis. 2019, 69, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Guthridge, I.; Smith, S.; Law, M.; Binotto, E.; Hanson, J. Efficacy and Safety of Intravenous Lincosamide Therapy in Methicillin-Resistant Staphylococcus aureus Bacteremia. Antimicrob. Agents Chemother. 2021, 65, e0034321. [Google Scholar] [CrossRef] [PubMed]
- Bouazza, N.; Pestre, V.; Jullien, V.; Curis, E.; Urien, S.; Salmon, D.; Tréluyer, J.M. Population pharmacokinetics of clindamycin orally and intravenously administered in patients with osteomyelitis. Br. J. Clin. Pharmacol. 2012, 74, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Duckworth, C.; Fisher, J.F.; Carter, S.A.; Newman, C.L.; Cogburn, C.; Nesbit, R.R.; Wray, C.H. Tissue penetration of clindamycin in diabetic foot infections. J. Antimicrob. Chemother. 1993, 31, 581–584. [Google Scholar] [CrossRef]
- Bernard, A.; Kermarrec, G.; Parize, P.; Caruba, T.; Bouvet, A.; Mainardi, J.L.; Sabatier, B.; Nich, C. Dramatic reduction of clindamycin serum concentration in staphylococcal osteoarticular infection patients treated with the oral clindamycin-rifampicin combination. J. Infect. 2015, 71, 200–206. [Google Scholar] [CrossRef]
- Zeller, V.; Magreault, S.; Heym, B.; Salmon, D.; Kitzis, M.D.; Billaud, E.; Marmor, S.; Jannot, A.S.; Salomon, L.; Jullien, V. Influence of the clindamycin administration route on the magnitude of clindamycin-rifampicin interaction: A prospective pharmacokinetic study. Clin. Microbiol. Infect. 2021, 27, 1857.e1851–1857.e1857. [Google Scholar] [CrossRef]
- Vostrov, S.N.; Kononenko, O.V.; Lubenko, I.Y.; Zinner, S.H.; Firsov, A.A. Comparative pharmacodynamics of gatifloxacin and ciprofloxacin in an in vitro dynamic model: Prediction of equiefficient doses and the breakpoints of the area under the curve/MIC ratio. Antimicrob. Agents Chemother. 2000, 44, 879–884. [Google Scholar] [CrossRef]
- Firsov, A.A.; Lubenko, I.Y.; Vostrov, S.N.; Kononenko, O.V.; Zinner, S.H.; Portnoy, Y.A. Comparative pharmacodynamics of moxifloxacin and levofloxacin in an in vitro dynamic model: Prediction of the equivalent AUC/MIC breakpoints and equiefficient doses. J. Antimicrob. Chemother. 2000, 46, 725–732. [Google Scholar] [CrossRef]
- Iqbal, K.; Broeker, A.; Nowak, H.; Rahmel, T.; Nussbaumer-Pröll, A.; Österreicher, Z.; Zeitlinger, M.; Wicha, S.G. A pharmacometric approach to define target site-specific breakpoints for bacterial killing and resistance suppression integrating microdialysis, time-kill curves and heteroresistance data: A case study with moxifloxacin. Clin. Microbiol. Infect. 2020, 26, 1255.e1251–1255.e1258. [Google Scholar] [CrossRef]
- Ruslami, R.; Ganiem, A.R.; Dian, S.; Apriani, L.; Achmad, T.H.; van der Ven, A.J.; Borm, G.; Aarnoutse, R.E.; van Crevel, R. Intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis: An open-label, randomised controlled phase 2 trial. Lancet Infect. Dis. 2013, 13, 27–35. [Google Scholar] [CrossRef] [PubMed]
- San Juan, R.; Garcia-Reyne, A.; Caba, P.; Chaves, F.; Resines, C.; Llanos, F.; López-Medrano, F.; Lizasoain, M.; Aguado, J.M. Safety and efficacy of moxifloxacin monotherapy for treatment of orthopedic implant-related staphylococcal infections. Antimicrob. Agents Chemother. 2010, 54, 5161–5166. [Google Scholar] [CrossRef] [PubMed]
- Wouthuyzen-Bakker, M.; Tornero, E.; Morata, L.; Nannan Panday, P.V.; Jutte, P.C.; Bori, G.; Kampinga, G.A.; Soriano, A. Moxifloxacin plus rifampin as an alternative for levofloxacin plus rifampin in the treatment of a prosthetic joint infection with Staphylococcus aureus. Int. J. Antimicrob. Agents 2018, 51, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Nijland, H.M.; Ruslami, R.; Suroto, A.J.; Burger, D.M.; Alisjahbana, B.; van Crevel, R.; Aarnoutse, R.E. Rifampicin reduces plasma concentrations of moxifloxacin in patients with tuberculosis. Clin. Infect. Dis. 2007, 45, 1001–1007. [Google Scholar] [CrossRef]
- Ramachandran, G.; Hemanth Kumar, A.K.; Srinivasan, R.; Geetharani, A.; Sugirda, P.; Nandhakumar, B.; Nandini, R.; Tharani, C.B. Effect of rifampicin & isoniazid on the steady state pharmacokinetics of moxifloxacin. Indian J. Med. Res. 2012, 136, 979–984. [Google Scholar] [PubMed]
- Zimmerli, W.; Widmer, A.F.; Blatter, M.; Frei, R.; Ochsner, P.E. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: A randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA 1998, 279, 1537–1541. [Google Scholar] [CrossRef] [PubMed]
- Rieg, S.; Joost, I.; Weiß, V.; Peyerl-Hoffmann, G.; Schneider, C.; Hellmich, M.; Seifert, H.; Kern, W.V.; Kaasch, A. Combination antimicrobial therapy in patients with Staphylococcus aureus bacteraemia-a post hoc analysis in 964 prospectively evaluated patients. Clin. Microbiol. Infect. 2017, 23, 406.e401–406.e408. [Google Scholar] [CrossRef]
- Rieg, S.; Ernst, A.; Peyerl-Hoffmann, G.; Joost, I.; Camp, J.; Hellmich, M.; Kern, W.V.; Kaasch, A.J.; Seifert, H. Combination therapy with rifampicin or fosfomycin in patients with Staphylococcus aureus bloodstream infection at high risk for complications or relapse: Results of a large prospective observational cohort. J. Antimicrob. Chemother. 2020, 75, 2282–2290. [Google Scholar] [CrossRef]
- Goldstein, E.J.C.; Citron, D.M.; Warren, Y.A.; Tyrrell, K.L.; Rybak, M.J. Virulence characteristics of community-associated Staphylococcus aureus and in vitro activities of moxifloxacin alone and in combination against community-associated and healthcare-associated meticillin-resistant and -susceptible S. aureus. J. Med. Microbiol. 2008, 57, 452–456. [Google Scholar] [CrossRef]
- Ramirez, J.A.; Bordon, J. Early switch from intravenous to oral antibiotics in hospitalized patients with bacteremic community-acquired Streptococcus pneumoniae pneumonia. Arch. Intern. Med. 2001, 161, 848–850. [Google Scholar] [CrossRef]
- Siquier, B.; Sánchez-Alvarez, J.; García-Mendez, E.; Sabriá, M.; Santos, J.; Pallarés, R.; Twynholm, M.; Dal-Ré, R. Efficacy and safety of twice-daily pharmacokinetically enhanced amoxicillin/clavulanate (2000/125 mg) in the treatment of adults with community-acquired pneumonia in a country with a high prevalence of penicillin-resistant Streptococcus pneumoniae. J. Antimicrob. Chemother. 2006, 57, 536–545. [Google Scholar] [CrossRef]
- Kang, A.; Beuttler, R.; Minejima, E. Evaluation of step-down oral antibiotic therapy for uncomplicated streptococcal bloodstream infections on clinical outcomes. Ther. Adv. Infect. Dis. 2022, 9, 20499361211073248. [Google Scholar] [CrossRef]
- Waked, R.; Craig, W.Y.; Mercuro, N.J.; Wungwattana, M.; Wood, E.; Rokas, K.E. Uncomplicated Streptococcal Bacteremia: The Era of Oral Antibiotic Step-down Therapy? Int. J. Antimicrob. Agents 2023, 61, 106736. [Google Scholar] [CrossRef]
- Broermann, L.E.; Al-Hasan, M.N.; Withers, S.; Benbow, K.L.; Ramsey, T.; McTavish, M.; Winders, H.R. Intravenous versus Partial Oral Antibiotic Therapy in the Treatment of Uncomplicated Bloodstream Infection Due to Streptococcus Species. Microorganisms 2023, 11, 2313. [Google Scholar] [CrossRef]
- Ramos-Otero, G.P.; Sarangarm, P.; Walraven, C. A Retrospective Analysis of Intravenous vs Oral Antibiotic Step-Down Therapy for the Treatment of Uncomplicated Streptococcal Bloodstream Infections. J. Clin. Pharmacol. 2022, 62, 1372–1378. [Google Scholar] [CrossRef]
- Arensman, K.; Shields, M.; Beganovic, M.; Miller, J.L.; LaChance, E.; Anderson, M.; Dela-Pena, J. Fluoroquinolone versus Beta-Lactam Oral Step-Down Therapy for Uncomplicated Streptococcal Bloodstream Infections. Antimicrob. Agents Chemother. 2020, 64, e01515-20. [Google Scholar] [CrossRef]
- Yetmar, Z.A.; Chesdachai, S.; Lahr, B.D.; Challener, D.W.; Arensman Hannan, K.N.; Epps, K.; Stevens, R.W.; Seville, M.T.; Tande, A.J.; Virk, A. Comparison of Oral and Intravenous Definitive Antibiotic Therapy for Beta-Hemolytic Streptococcus Species Bloodstream Infections from Soft Tissue Sources: A Propensity Score-Matched Analysis. Antimicrob. Agents Chemother. 2023, 67, e0012023. [Google Scholar] [CrossRef]
- Foo, H.; Chater, M.; Maley, M.; van Hal, S.J. Glycopeptide use is associated with increased mortality in Enterococcus faecalis bacteraemia. J. Antimicrob. Chemother. 2014, 69, 2252–2257. [Google Scholar] [CrossRef]
- Hemapanpairoa, J.; Changpradub, D.; Santimaleeworagun, W. Clinical Impact of Vancomycin Treatment in Ampicillin-Susceptible Enterococci Bloodstream Infections. Antibiotics 2022, 11, 1698. [Google Scholar] [CrossRef]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 2020, 77, 835–864. [Google Scholar] [CrossRef] [PubMed]
- Echeverria-Esnal, D.; Sorli, L.; Prim, N.; Conde-Estévez, D.; Mateu-De Antonio, J.; Martin-Ontiyuelo, C.; Horcajada, J.P.; Grau, S. Linezolid vs glycopeptides in the treatment of glycopeptide-susceptible Enterococcus faecium bacteraemia: A propensity score matched comparative study. Int. J. Antimicrob. Agents 2019, 54, 572–578. [Google Scholar] [CrossRef]
- Britt, N.S.; Potter, E.M.; Patel, N.; Steed, M.E. Effect of Continuous and Sequential Therapy among Veterans Receiving Daptomycin or Linezolid for Vancomycin-Resistant Enterococcus faecium Bacteremia. Antimicrob. Agents Chemother. 2017, 61, e02216-16. [Google Scholar] [CrossRef]
- Turnidge, J.; Kahlmeter, G.; Cantón, R.; MacGowan, A.; Giske, C.G. Daptomycin in the treatment of enterococcal bloodstream infections and endocarditis: A EUCAST position paper. Clin. Microbiol. Infect. 2020, 26, 1039–1043. [Google Scholar] [CrossRef]
- Avery, L.M.; Kuti, J.L.; Weisser, M.; Egli, A.; Rybak, M.J.; Zasowski, E.J.; Arias, C.A.; Contreras, G.A.; Chong, P.P.; Aitken, S.L.; et al. Pharmacodynamics of daptomycin in combination with other antibiotics for the treatment of enterococcal bacteraemia. Int. J. Antimicrob. Agents 2019, 54, 346–350. [Google Scholar] [CrossRef]
- Shi, C.; Jin, W.; Xie, Y.; Zhou, D.; Xu, S.; Li, Q.; Lin, N. Efficacy and safety of daptomycin versus linezolid treatment in patients with vancomycin-resistant enterococcal bacteraemia: An updated systematic review and meta-analysis. J. Glob. Antimicrob. Resist. 2020, 21, 235–245. [Google Scholar] [CrossRef]
- Brier, M.E.; Stalker, D.J.; Aronoff, G.R.; Batts, D.H.; Ryan, K.K.; O’Grady, M.; Hopkins, N.K.; Jungbluth, G.L. Pharmacokinetics of linezolid in subjects with renal dysfunction. Antimicrob. Agents Chemother. 2003, 47, 2775–2780. [Google Scholar] [CrossRef]
- Slatter, J.G.; Stalker, D.J.; Feenstra, K.L.; Welshman, I.R.; Bruss, J.B.; Sams, J.P.; Johnson, M.G.; Sanders, P.E.; Hauer, M.J.; Fagerness, P.E.; et al. Pharmacokinetics, metabolism, and excretion of linezolid following an oral dose of [(14)C]linezolid to healthy human subjects. Drug. Metab. Dispos. 2001, 29, 1136–1145. [Google Scholar]
- Abdul-Aziz, M.H.; Alffenaar, J.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.A.; Pea, F.; Sjovall, F.; et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: A Position Paper. Intensive Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef]
- Lin, B.; Hu, Y.; Xu, P.; Xu, T.; Chen, C.; He, L.; Zhou, M.; Chen, Z.; Zhang, C.; Yu, X.; et al. Expert consensus statement on therapeutic drug monitoring and individualization of linezolid. Front. Public Health 2022, 10, 967311. [Google Scholar] [CrossRef]
- Liu, X.; Aoki, M.; Osa, S.; Ito, C.; Saiki, R.; Nagai, T.; Enoki, Y.; Taguchi, K.; Matsumoto, K. Safety of linezolid in patients with decreased renal function and trough monitoring: A systematic review and meta-analysis. BMC Pharmacol. Toxicol. 2022, 23, 89. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Xia, J.; Ye, J.; Xie, Y.; Jin, W.; Zhang, W.; Wang, L.; Ding, X.; Lin, N.; Wang, L. Effect of renal function on the risk of thrombocytopaenia in patients receiving linezolid therapy: A systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2022, 88, 464–475. [Google Scholar] [CrossRef]
- Hanai, Y.; Matsuo, K.; Ogawa, M.; Higashi, A.; Kimura, I.; Hirayama, S.; Kosugi, T.; Nishizawa, K.; Yoshio, T. A retrospective study of the risk factors for linezolid-induced thrombocytopenia and anemia. J. Infect. Chemother. 2016, 22, 536–542. [Google Scholar] [CrossRef]
- Crass, R.L.; Cojutti, P.G.; Pai, M.P.; Pea, F. Reappraisal of Linezolid Dosing in Renal Impairment To Improve Safety. Antimicrob. Agents Chemother. 2019, 63, e00605-19. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhu, Z.Y.; Chen, Z.; Li, Y.; Zou, Y.; Yan, M.; Xu, Y.; Wang, F.; Liu, M.Z.; Zhang, M.; et al. Population Pharmacokinetics and Dosage Optimization of Linezolid in Patients with Liver Dysfunction. Antimicrob. Agents Chemother. 2020, 64, eaac.00133-20. [Google Scholar] [CrossRef]
- Soraluce, A.; Barrasa, H.; Asín-Prieto, E.; Sánchez-Izquierdo, J.; Maynar, J.; Isla, A.; Rodríguez-Gascón, A. Novel Population Pharmacokinetic Model for Linezolid in Critically Ill Patients and Evaluation of the Adequacy of the Current Dosing Recommendation. Pharmaceutics 2020, 12, 54. [Google Scholar] [CrossRef]
- Ehmann, L.; Simon, P.; Busse, D.; Petroff, D.; Dorn, C.; Huisinga, W.; Dietrich, A.; Zeitlinger, M.; Wrigge, H.; Kloft, C. Risk of target non-attainment in obese compared to non-obese patients in calculated linezolid therapy. Clin. Microbiol. Infect. 2020, 26, 1222–1228. [Google Scholar] [CrossRef]
- Blackman, A.L.; Jarugula, P.; Nicolau, D.P.; Chui, S.H.; Joshi, M.; Heil, E.L.; Gopalakrishnan, M. Evaluation of Linezolid Pharmacokinetics in Critically Ill Obese Patients with Severe Skin and Soft Tissue Infections. Antimicrob. Agents Chemother. 2021, 65, e01619-20. [Google Scholar] [CrossRef]
- van Rhee, K.P.; Smit, C.; Wasmann, R.E.; van der Linden, P.D.; Wiezer, R.; Van Dongen, E.P.A.; Krekels, E.H.J.; Brüggemann, R.J.M.; Knibbe, C.A.J. Ciprofloxacin Pharmacokinetics After Oral and Intravenous Administration in (Morbidly) Obese and Non-obese Individuals: A Prospective Clinical Study. Clin. Pharmacokinet. 2022, 61, 1167–1175. [Google Scholar] [CrossRef]
- Pai, M.P.; Cojutti, P.; Pea, F. Levofloxacin dosing regimen in severely morbidly obese patients (BMI ≥ 40 kg/m2) should be guided by creatinine clearance estimates based on ideal body weight and optimized by therapeutic drug monitoring. Clin. Pharmacokinet. 2014, 53, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.M.; Martin, C.; Adams, V.R.; Morehead, R.S. Pharmacokinetics of intravenous levofloxacin administered at 750 milligrams in obese adults. Antimicrob. Agents Chemother. 2011, 55, 3240–3243. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. EUCAST Clinical Breakpoints for Bacteria (v 13.1). Available online: https://www.eucast.org/clinical_breakpoints (accessed on 11 November 2023).
- Kees, M.G.; Weber, S.; Kees, F.; Horbach, T. Pharmacokinetics of moxifloxacin in plasma and tissue of morbidly obese patients. J. Antimicrob. Chemother. 2011, 66, 2330–2335. [Google Scholar] [CrossRef]
- Autmizguine, J.; Melloni, C.; Hornik, C.P.; Dallefeld, S.; Harper, B.; Yogev, R.; Sullivan, J.E.; Atz, A.M.; Al-Uzri, A.; Mendley, S.; et al. Population Pharmacokinetics of Trimethoprim-Sulfamethoxazole in Infants and Children. Antimicrob. Agents Chemother. 2018, 62, e01813-17. [Google Scholar] [CrossRef]
- Punjabi, C.; Tien, V.; Meng, L.; Deresinski, S.; Holubar, M. Oral Fluoroquinolone or Trimethoprim-sulfamethoxazole vs. ß-lactams as Step-Down Therapy for Enterobacteriaceae Bacteremia: Systematic Review and Meta-analysis. Open Forum Infect. Dis. 2019, 6, ofz364. [Google Scholar] [CrossRef]
- Tissot-Dupont, H.; Gouriet, F.; Oliver, L.; Jamme, M.; Casalta, J.P.; Jimeno, M.T.; Arregle, F.; Lavoute, C.; Hubert, S.; Philip, M.; et al. High-dose trimethoprim-sulfamethoxazole and clindamycin for Staphylococcus aureus endocarditis. Int. J. Antimicrob. Agents 2019, 54, 143–148. [Google Scholar] [CrossRef]
- Mimram, L.; Magréault, S.; Kerroumi, Y.; Salmon, D.; Kably, B.; Marmor, S.; Jannot, A.S.; Jullien, V.; Zeller, V. Population Pharmacokinetics of Orally Administered Clindamycin to Treat Prosthetic Joint Infections: A Prospective Study. Antibiotics 2022, 11, 1462. [Google Scholar] [CrossRef]
- Tripodi, A.; Lippi, G.; Plebani, M. How to report results of prothrombin and activated partial thromboplastin times. Clin. Chem. Lab. Med. 2016, 54, 215–222. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Yao, F.; Chen, S.; Hou, Y.; Zheng, Z.; Luo, J.; Qiu, B.; Li, Z.; Wang, Y.; et al. Pharmacokinetics of Linezolid Dose Adjustment for Creatinine Clearance in Critically Ill Patients: A Multicenter, Prospective, Open-Label, Observational Study. Drug Des. Devel. Ther. 2021, 15, 2129–2141. [Google Scholar] [CrossRef]
- Roger, C.; Muller, L.; Wallis, S.C.; Louart, B.; Saissi, G.; Lipman, J.; Lefrant, J.Y.; Roberts, J.A. Population pharmacokinetics of linezolid in critically ill patients on renal replacement therapy: Comparison of equal doses in continuous venovenous haemofiltration and continuous venovenous haemodiafiltration. J. Antimicrob. Chemother. 2016, 71, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Kawasuji, H.; Tsuji, Y.; Ogami, C.; Kaneda, M.; Murai, Y.; Kimoto, K.; Ueno, A.; Miyajima, Y.; Fukui, Y.; Sakamaki, I.; et al. Initially Reduced Linezolid Dosing Regimen to Prevent Thrombocytopenia in Hemodialysis Patients. Antibiotics 2021, 10, 496. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Takane, H.; Ogawa, K.; Isagawa, S.; Hirota, T.; Higuchi, S.; Horii, T.; Otsubo, K.; Ieiri, I. Population pharmacokinetic and pharmacodynamic analysis of linezolid and a hematologic side effect, thrombocytopenia, in Japanese patients. Antimicrob. Agents Chemother. 2011, 55, 1867–1873. [Google Scholar] [CrossRef] [PubMed]
- Cojutti, P.; Pai, M.P.; Pea, F. Population Pharmacokinetics and Dosing Considerations for the Use of Linezolid in Overweight and Obese Adult Patients. Clin. Pharmacokinet. 2018, 57, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Baddour, L.M.; Wilson, W.R.; Bayer, A.S.; Fowler, V.G., Jr.; Tleyjeh, I.M.; Rybak, M.J.; Barsic, B.; Lockhart, P.B.; Gewitz, M.H.; Levison, M.E.; et al. Infective Endocarditis in Adults: Diagnosis, Antimicrobial Therapy, and Management of Complications: A Scientific Statement for Healthcare Professionals From the American Heart Association. Circulation 2015, 132, 1435–1486. [Google Scholar] [CrossRef] [PubMed]
- Delgado, V.; Ajmone Marsan, N.; de Waha, S.; Bonaros, N.; Brida, M.; Burri, H.; Caselli, S.; Doenst, T.; Ederhy, S.; Erba, P.A.; et al. 2023 ESC Guidelines for the management of endocarditis. Eur. Heart J. 2023, 44, 3948–4042. [Google Scholar] [CrossRef] [PubMed]
- Dorn, C.; Petroff, D.; Stoelzel, M.; Kees, M.G.; Kratzer, A.; Dietrich, A.; Kloft, C.; Zeitlinger, M.; Kees, F.; Wrigge, H.; et al. Perioperative administration of cefazolin and metronidazole in obese and non-obese patients: A pharmacokinetic study in plasma and interstitial fluid. J. Antimicrob. Chemother. 2021, 76, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Earl, P.; Sisson, P.R.; Ingham, H.R. Twelve-hourly dosage schedule for oral and intravenous metronidazole. J. Antimicrob. Chemother. 1989, 23, 619–621. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Adams, K.; Merwede, J.; McManus, D.; Topal, J. Three is a crowd: Clinical outcomes of a twice daily versus a thrice daily metronidazole dosing strategy from a multicenter study. Anaerobe 2021, 71, 102378. [Google Scholar] [CrossRef] [PubMed]
- Sjövall, J.; Alván, G.; Westerlund, D. Dose-dependent absorption of amoxycillin and bacampicillin. Clin. Pharmacol. Ther. 1985, 38, 241–250. [Google Scholar] [CrossRef]
- Chulavatnatol, S.; Charles, B.G. Determination of dose-dependent absorption of amoxycillin from urinary excretion data in healthy subjects. Br. J. Clin. Pharmacol. 1994, 38, 274–277. [Google Scholar] [CrossRef]
- Sjövall, J.; Alván, G.; Akerlund, J.E.; Svensson, J.O.; Paintaud, G.; Nord, C.E.; Angelin, B. Dose-dependent absorption of amoxicillin in patients with an ileostomy. Eur. J. Clin. Pharmacol. 1992, 43, 277–281. [Google Scholar] [CrossRef]
- Hvidberg, H.; Struve, C.; Krogfelt, K.A.; Christensen, N.; Rasmussen, S.N.; Frimodt-Møller, N. Development of a long-term ascending urinary tract infection mouse model for antibiotic treatment studies. Antimicrob. Agents Chemother. 2000, 44, 156–163. [Google Scholar] [CrossRef]
- Lemaignen, A.; Bernard, L.; Tattevin, P.; Bru, J.P.; Duval, X.; Hoen, B.; Brunet-Houdard, S.; Mainardi, J.L.; Caille, A. Oral switch versus standard intravenous antibiotic therapy in left-sided endocarditis due to susceptible staphylococci, streptococci or enterococci (RODEO): A protocol for two open-label randomised controlled trials. BMJ Open 2020, 10, e033540. [Google Scholar] [CrossRef] [PubMed]
- Parker, R.H.; Fossieck, B.E., Jr. Intravenous followed by oral antimicrobial therapy for staphylococcal endocarditis. Ann. Intern. Med. 1980, 93, 832–834. [Google Scholar] [CrossRef] [PubMed]
- Heldman, A.W.; Hartert, T.V.; Ray, S.C.; Daoud, E.G.; Kowalski, T.E.; Pompili, V.J.; Sisson, S.D.; Tidmore, W.C.; vom Eigen, K.A.; Goodman, S.N.; et al. Oral antibiotic treatment of right-sided staphylococcal endocarditis in injection drug users: Prospective randomized comparison with parenteral therapy. Am. J. Med. 1996, 101, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Tubiana, S.; Duval, X.; Alla, F.; Selton-Suty, C.; Tattevin, P.; Delahaye, F.; Piroth, L.; Chirouze, C.; Lavigne, J.P.; Erpelding, M.L.; et al. The VIRSTA score, a prediction score to estimate risk of infective endocarditis and determine priority for echocardiography in patients with Staphylococcus aureus bacteremia. J. Infect. 2016, 72, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Peinado-Acevedo, J.S.; Hurtado-Guerra, J.J.; Hincapié, C.; Mesa-Abad, J.; Uribe-Delgado, J.R.; Giraldo-Ramírez, S.; Lengerke-Diaz, P.A.; Jaimes, F. Validation of VIRSTA and Predicting Risk of Endocarditis Using a Clinical Tool (PREDICT) Scores to Determine the Priority of Echocardiography in Patients With Staphylococcus aureus Bacteremia. Clin. Infect. Dis. 2021, 73, e1151–e1157. [Google Scholar] [CrossRef]
- Berge, A.; Krantz, A.; Östlund, H.; Nauclér, P.; Rasmussen, M. The DENOVA score efficiently identifies patients with monomicrobial Enterococcus faecalis bacteremia where echocardiography is not necessary. Infection 2019, 47, 45–50. [Google Scholar] [CrossRef]
- Habib, G.; Lancellotti, P.; Antunes, M.J.; Bongiorni, M.G.; Casalta, J.P.; Del Zotti, F.; Dulgheru, R.; El Khoury, G.; Erba, P.A.; Iung, B.; et al. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur. Heart J. 2015, 36, 3075–3128. [Google Scholar] [CrossRef]
- Falagas, M.E.; Manta, K.G.; Ntziora, F.; Vardakas, K.Z. Linezolid for the treatment of patients with endocarditis: A systematic review of the published evidence. J. Antimicrob. Chemother. 2006, 58, 273–280. [Google Scholar] [CrossRef]
- Colli, A.; Campodonico, R.; Gherli, T. Early switch from vancomycin to oral linezolid for treatment of gram-positive heart valve endocarditis. Ann. Thorac. Surg. 2007, 84, 87–91. [Google Scholar] [CrossRef]
- Bundgaard, H.; Ihlemann, N.; Gill, S.U.; Bruun, N.E.; Elming, H.; Madsen, T.; Jensen, K.T.; Fursted, K.; Christensen, J.J.; Schultz, M.; et al. Long-Term Outcomes of Partial Oral Treatment of Endocarditis. N. Engl. J. Med. 2019, 380, 1373–1374. [Google Scholar] [CrossRef]
- Pries-Heje, M.M.; Wiingaard, C.; Ihlemann, N.; Gill, S.U.; Bruun, N.E.; Elming, H.; Povlsen, J.A.; Madsen, T.; Jensen, K.T.; Fursted, K.; et al. Five-Year Outcomes of the Partial Oral Treatment of Endocarditis (POET) Trial. N. Engl. J. Med. 2022, 386, 601–602. [Google Scholar] [CrossRef] [PubMed]
- Mzabi, A.; Kernéis, S.; Richaud, C.; Podglajen, I.; Fernandez-Gerlinger, M.P.; Mainardi, J.L. Switch to oral antibiotics in the treatment of infective endocarditis is not associated with increased risk of mortality in non-severely ill patients. Clin. Microbiol. Infect. 2016, 22, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Attanasio, V.; Di Luca, M.; Carozza, A.; Severino, S.; Pallotto, C.; Capoluongo, N.; Palmiero, G.; Bernardo, M.; Tascini, C. Clinical efficacy of amoxicillin/clavulanate plus cefditoren as de-escalation combination therapy for endocarditis due to strongly biofilm-forming Enterococcus faecalis. Infect. Dis. 2020, 52, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, F.; Tsuji, Y.; Seto, Y.; Ogami, C.; Yamamoto, Y.; To, H. Effects of a rifampicin pre-treatment on linezolid pharmacokinetics. PLoS ONE 2019, 14, e0214037. [Google Scholar] [CrossRef] [PubMed]
- Bock, M.; Theut, A.M.; van Hasselt, J.G.C.; Wang, H.; Fuursted, K.; Høiby, N.; Lerche, C.J.; Ihlemann, N.; Gill, S.; Christiansen, U.; et al. Attainment of target antibiotic levels by oral treatment of left-sided infective endocarditis: A POET substudy. Clin. Infect. Dis. 2023, 77, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Workowski, K.A.; Bachmann, L.H.; Chan, P.A.; Johnston, C.M.; Muzny, C.A.; Park, I.; Reno, H.; Zenilman, J.M.; Bolan, G.A. Sexually Transmitted Infections Treatment Guidelines, 2021. MMWR Recomm. Rep. 2021, 70, 1–187. [Google Scholar] [CrossRef]
- O’Mahony, C.; Bradley, M.G.; McKeown, J.; Arya, O.P. Treponemicidal levels of amoxicillin can be achieved in cerebrospinal fluid following oral treatment with only 4 g amoxicillin and 2 g probenecid daily in late stage syphilis. Int. J. STD AIDS 2012, 23, 758. [Google Scholar] [CrossRef]
- Wilson, R.C.; Arkell, P.; Riezk, A.; Gilchrist, M.; Wheeler, G.; Hope, W.; Holmes, A.H.; Rawson, T.M. Addition of probenecid to oral β-lactam antibiotics: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2022, 77, 2364–2372. [Google Scholar] [CrossRef]
- Partial Oral Antimicrobial Versus Intravenous Antimicrobial Therapy to Treat Infective Endocarditis in People Who Inject Drugs. Available online: https://clinicaltrials.gov/study/NCT04544306#study-record-dates (accessed on 11 November 2023).
- Reffert, J.L.; Smith, W.J. Fosfomycin for the treatment of resistant gram-negative bacterial infections. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy 2014, 34, 845–857. [Google Scholar] [CrossRef]
- Kirby, W.M. Pharmacokinetics of fosfomycin. Chemotherapy 1977, 23 (Suppl. S1), 141–151. [Google Scholar] [CrossRef]
- Dijkmans, A.C.; Zacarías, N.V.O.; Burggraaf, J.; Mouton, J.W.; Wilms, E.B.; van Nieuwkoop, C.; Touw, D.J.; Stevens, J.; Kamerling, I.M.C. Fosfomycin: Pharmacological, Clinical and Future Perspectives. Antibiotics 2017, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Joukhadar, C.; Klein, N.; Dittrich, P.; Zeitlinger, M.; Geppert, A.; Skhirtladze, K.; Frossard, M.; Heinz, G.; Müller, M. Target site penetration of fosfomycin in critically ill patients. J. Antimicrob. Chemother. 2003, 51, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Mazzei, T.; Cassetta, M.I.; Fallani, S.; Arrigucci, S.; Novelli, A. Pharmacokinetic and pharmacodynamic aspects of antimicrobial agents for the treatment of uncomplicated urinary tract infections. Int. J. Antimicrob. Agents 2006, 28 (Suppl. S1), 35–41. [Google Scholar] [CrossRef] [PubMed]
- VanScoy, B.; McCauley, J.; Bhavnani, S.M.; Ellis-Grosse, E.J.; Ambrose, P.G. Relationship between Fosfomycin Exposure and Amplification of Escherichia coli Subpopulations with Reduced Susceptibility in a Hollow-Fiber Infection Model. Antimicrob. Agents Chemother. 2016, 60, 5141–5145. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Rice, L.B.; Dane, A.L.; Stus, V.; Sagan, O.; Fedosiuk, E.; Das, A.F.; Skarinsky, D.; Eckburg, P.B.; Ellis-Grosse, E.J. Fosfomycin for Injection (ZTI-01) Versus Piperacillin-tazobactam for the Treatment of Complicated Urinary Tract Infection Including Acute Pyelonephritis: ZEUS, A Phase 2/3 Randomized Trial. Clin. Infect. Dis. 2019, 69, 2045–2056. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Li, T.; Zhang, N.; Wang, S.; Li, Y.; Peng, Y.; Liu, H.; Yang, G.; Yan, Y.; Jiang, L.; et al. Dose Optimization of Combined Linezolid and Fosfomycin against Enterococcus by Using an In Vitro Pharmacokinetic/Pharmacodynamic Model. Microbiol. Spectr. 2021, 9, e0087121. [Google Scholar] [CrossRef]
- Jiang, L.; Xie, N.; Chen, M.; Liu, Y.; Wang, S.; Mao, J.; Li, J.; Huang, X. Synergistic Combination of Linezolid and Fosfomycin Closing Each Other’s Mutant Selection Window to Prevent Enterococcal Resistance. Front. Microbiol. 2020, 11, 605962. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Mao, J.; Peng, Y.; Yan, Y.; Li, Y.; Zhang, N.; Jiang, L.; Liu, Y.; Li, J.; et al. Pharmacodynamics of Linezolid Plus Fosfomycin Against Vancomycin-Resistant Enterococcus faecium in a Hollow Fiber Infection Model. Front. Microbiol. 2021, 12, 779885. [Google Scholar] [CrossRef]
- Seok, H.; Choi, J.Y.; Wi, Y.M.; Park, D.W.; Peck, K.R.; Ko, K.S. Fosfomycin Resistance in Escherichia coli Isolates from South Korea and in vitro Activity of Fosfomycin Alone and in Combination with Other Antibiotics. Antibiotics 2020, 9, 112. [Google Scholar] [CrossRef]
- Segre, G.; Bianchi, E.; Cataldi, A.; Zannini, G. Pharmacokinetic profile of fosfomycin trometamol (Monuril). Eur. Urol. 1987, 13 (Suppl. S1), 56–63. [Google Scholar] [CrossRef]
- Bergan, T. Degree of absorption, pharmacokinetics of fosfomycin trometamol and duration of urinary antibacterial activity. Infection 1990, 18 (Suppl. S2), 65–69. [Google Scholar] [CrossRef] [PubMed]
- Bergan, T.; Thorsteinsson, S.B.; Albini, E. Pharmacokinetic profile of fosfomycin trometamol. Chemotherapy 1993, 39, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Khatri, A.M.; Anderson, A.D.; Camargo, J.F. Addition of Oral Fosfomycin to Antimicrobial Salvage Therapy for Persistent Vancomycin-Resistant Enterococcal Bacteremia. Clin. Infect. Dis. 2022, 74, 1710–1711. [Google Scholar] [CrossRef] [PubMed]
- Ortiz Zacarías, N.V.; Dijkmans, A.C.; Burggraaf, J.; Mouton, J.W.; Wilms, E.B.; van Nieuwkoop, C.; Touw, D.J.; Kamerling, I.M.C.; Stevens, J. Fosfomycin as a potential therapy for the treatment of systemic infections: A population pharmacokinetic model to simulate multiple dosing regimens. Pharmacol. Res. Perspect. 2018, 6, e00378. [Google Scholar] [CrossRef]
- PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 33613, Amoxicillin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Amoxicillin (accessed on 13 December 2023).
- PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 23675743, Tegopen. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Tegopen (accessed on 13 December 2023).
- PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 27447, Cephalexin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Cephalexin (accessed on 13 December 2023).
- PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 6321416, Cefuroxime Axetil. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Cefuroxime-Axetil (accessed on 13 December 2023).
- PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 5362065, Cefixime. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Cefixime (accessed on 13 December 2023).
- PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 62999, Cipro. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Cipro (accessed on 13 December 2023).
- PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 3033924. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Levofloxacin-Hemihydrate (accessed on 13 December 2023).
- PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 101526, Moxifloxacin Hydrochloride. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Moxifloxacin-Hydrochloride (accessed on 13 December 2023).
- PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 358641, Sulfamethoxazole; Trimethoprim. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/CO-Trimoxazole (accessed on 13 December 2023).
- PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 446598, Clindamycin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Clindamycin (accessed on 13 December 2023).
- PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 441401, Linezolid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Linezolid (accessed on 13 December 2023).
- PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 10199068, Fosfomycin Tromethamine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Fosfomycin-Tromethamine (accessed on 13 December 2023).
Oral Antibiotic | Microorganism | MIC (mg/L) | Dosage | Dose Adjustment for Special Populations | References |
---|---|---|---|---|---|
Amoxicillin | Enterobacterales; Streptococci; Enterococci | ≤1 1–2 >2 | 1 g tid 1 g qid Avoid | eGFR ≤ 10 mL/min or dialysis-dependent patients: 1 g bid | [40,44,45,46,47] |
AMX/CLAV | Enterobacterales | ≤2 >2 | 1000/125 mg tid Avoid | eGFR ≤ 10 mL/min or dialysis-dependent patients: 1000/125 or 875/125 mg bid | [42,46,48] |
Cefalexin | Enterobacterales | ≤1.5 ≤3 >3 | 1 g tid 1 g qid Avoid | eGFR 10–30 mL/min: 1 g tid eGFR ≤ 10 mL/min or dialysis-dependent patients: 1 g bid | [43,49] |
Cefuroxime axetil | Enterobacterales; Streptococci | ≤0.5 >0.5 | 500 mg tid Avoid | None | [41] |
Cefixime - Cefpodoxime | Enterobacterales; Streptococci | ≤0.5 >0.5 | 400 mg bid Avoid | None | [40,41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eleftheriotis, G.; Marangos, M.; Lagadinou, M.; Bhagani, S.; Assimakopoulos, S.F. Oral Antibiotics for Bacteremia and Infective Endocarditis: Current Evidence and Future Perspectives. Microorganisms 2023, 11, 3004. https://doi.org/10.3390/microorganisms11123004
Eleftheriotis G, Marangos M, Lagadinou M, Bhagani S, Assimakopoulos SF. Oral Antibiotics for Bacteremia and Infective Endocarditis: Current Evidence and Future Perspectives. Microorganisms. 2023; 11(12):3004. https://doi.org/10.3390/microorganisms11123004
Chicago/Turabian StyleEleftheriotis, Gerasimos, Markos Marangos, Maria Lagadinou, Sanjay Bhagani, and Stelios F. Assimakopoulos. 2023. "Oral Antibiotics for Bacteremia and Infective Endocarditis: Current Evidence and Future Perspectives" Microorganisms 11, no. 12: 3004. https://doi.org/10.3390/microorganisms11123004
APA StyleEleftheriotis, G., Marangos, M., Lagadinou, M., Bhagani, S., & Assimakopoulos, S. F. (2023). Oral Antibiotics for Bacteremia and Infective Endocarditis: Current Evidence and Future Perspectives. Microorganisms, 11(12), 3004. https://doi.org/10.3390/microorganisms11123004