The Use of Mycelial Fungi to Test the Fungal Resistance of Polymeric Materials
Abstract
:1. Introduction
2. Degradation of Some Industrial Materials by Fungi
Type of the Material | Fungal Action | Change in Properties during Biodestruction | Fungal Genera Most Actively Involved in Biodegradation | References |
---|---|---|---|---|
Fuels and lubricants, including petroleum fuels | Assimilation of hydrocarbons leading to degradation of the material | Viscosity reduction, change in acid number and oxidation stability | Aspergillus, Penicillium, Fusarium, Hormoconis (Amorphotheca), Monascus, Neosartorya, Paecilomyces, Talaromyces, Graphium, Cunninghamella | [14,15,25] |
Lacquers and paint coatings | Oxidation, reduction, hydrolysis, esterification, decarboxylation | Change in density, color, viscosity reduction, formation of gases | Acremonium, Alternaria, Aspergillus, Aureobasidium, Cladosporium, Fusarium, Penicillium, Trichoderma, Pullularia | [33,34] |
Polymer materials and their components | Oxidation, hydrolysis, esterification, acidification | Change in color, structure, tightness, strength | ||
polyurethane | Aspergillus, Alternaria, Chaetomium, Cladosporium, Fusarium, Geomyces, Gliocladium, Nectria, Penicillium, Pestalotiopsis, Phoma, Trichoderma | [45,46,47,50,51,52,53,54] | ||
polyethylene | Aspergillus, Aureobasidium, Cladosporium, Fusarium, Penicillium, Phanerochaete | [35,40,41,42,55,56,57] | ||
polyethyleneterephthalate | Aspergillus, Fusarium, Humicola | [43] | ||
polystyrene | Gloeophyllum striatum, Gloeophyllum trabeum | [58] |
3. Fungal Enzymes Involved in Plastic Degradation
4. Selection of Strains for Testing Industrial Samples for Biostability
5. Application of Test Micromycetes from the VKM Collection for Investigations in the Field of Biodegradable Material Development
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brambilla, A.; Sangiorgio, A. Mould growth in energy efficient buildings: Causes, health implications and strategies to mitigate the risk. Renew. Sustain. Energy Rev. 2020, 132, 110093. [Google Scholar] [CrossRef]
- Ali, S.S.; Elsamahy, T.; Al-Tohamy, R.; Zhu, D.; Mahmoud, Y.A.-G.; Koutra, E.; Metwally, M.A.; Kornaros, M.; Sun, J. Plastic wastes biodegradation: Mechanisms, challenges and future prospects. Sci. Total. Environ. 2021, 780, 146590. [Google Scholar] [CrossRef]
- Srikanth, M.; Sandeep, T.S.R.S.; Sucharitha, K.; Godi, S. Biodegradation of plastic polymers by fungi: A brief review. Bioresour. Bioprocess. 2022, 9, 42. [Google Scholar] [CrossRef]
- Tomer, A.; Singh, R.; Singh, S.K.; Dwivedi, S.A.; Reddy, C.U.; Keloth, M.R.A.; Rachel, R. Role of Fungi in Bioremediation and Environmental Sustainability. In Mycoremediation and Environmental Sustainability; Prasad, R., Nayak, S.C., Khawar, R.N., Dubey, N.K., Eds.; Springer: Cham, Switzerland, 2021; Volume 3, pp. 187–200. [Google Scholar] [CrossRef]
- Gutarowska, B.; Czyżowska, A. The ability of filamentous fungi to produce acids on indoor building materials. Ann. Microbiol. 2009, 59, 807–813. [Google Scholar] [CrossRef]
- Liao, J.; Jiang, J.; Xue, S.; Qingyu, C.; Wu, H.; Manikandan, R.; Hartley, W.; Huang, L. A novel acid-producing fungus isolated from bauxite residue: The potential to reduce the alkalinity. Geomicrobiol. J. 2018, 35, 840–847. [Google Scholar] [CrossRef]
- Cappitelli, F.; Sorlini, C. Microorganisms Attack Synthetic Polymers in Items Representing Our Cultural Heritage. Appl. Environ. Microbiol. 2008, 74, 564–569. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Wang, H.; Ju, L.-K.; Cheng, G.; Cong, H.; Newby, B.-M.Z. Corrosion of aluminum alloy 2024 caused by Aspergillus niger. Int. Biodeterior. Biodegrad. 2016, 115, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ngo, C.C.; Nguyen, Q.H.; Nguyen, T.H.; Quach, N.T.; Dudhagara, P.; Vu, T.H.N.; Le, T.T.X.; Le, T.T.H.; Do, T.T.H.; Nguyen, V.D.; et al. Identification of Fungal Community Associated with Deterioration of Optical Observation Instruments of Museums in Northern Vietnam. Appl. Sci. 2021, 11, 5351. [Google Scholar] [CrossRef]
- Koval, E.Z.; Sidorenko, L.P. Mycodestructors of Industrial Materials; Naukova Dumka: Kiev, USSR, 1989; p. 189. (In Russian) [Google Scholar]
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front. Microbiol. 2020, 11, 562813. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, C.E.; Rodríguez, E.; Blanco, R.; Cordero, I.; Segura, D. Fungal contamination of stored automobile-fuels in a tropical environment. J. Environ. Sci. 2010, 22, 1595–1601. [Google Scholar] [CrossRef]
- Passman, F.J. Microbial contamination and its control in fuels and fuel systems since 1980–A review. Int. Biodeterior. Biodegrad. 2013, 81, 88–104. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Xue, Q.-H.; Gao, H.; Ma, X.; Wang, P. Degradation of crude oil by fungal enzyme preparations from Aspergillus spp. for potential use in enhanced oil recovery. J. Chem. Technol. Biotechnol. 2016, 91, 865–875. [Google Scholar] [CrossRef]
- Al-Hawash, A.B.; Dragh, M.A.; Li, S.; Alhujaily, A.; Abbood, H.A.; Zhang, X.; Ma, F. Principles of microbial degradation of petroleum hydrocarbons in the environment. Egypt. J. Aquat. Res. 2018, 44, 71–76. [Google Scholar] [CrossRef]
- Mitra, S.; Pramanik, A.; Banerjee, S.; Haldar, S.; Gachhui, R.; Mukherjee, J. Enhanced Biotransformation of Fluoranthene by Intertidally Derived Cunninghamella elegans under Biofilm-Based and Niche-Mimicking Conditions. Appl. Environ. Microbiol. 2013, 79, 7922–7930. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, I.A.; Neveen, M.K.; Mohamed, N.A.E.G. Biodegradation of some polycyclic aromatic hydrocarbons by Aspergillus terreus. Afr. J. Microbiol. Res. 2012, 6, 3783–3790. [Google Scholar] [CrossRef]
- Govarthanan, M.; Fuzisawa, S.; Hosogai, T.; Chang, Y.-C. Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium sp. CHY-2 and characterization of its manganese peroxidase activity. RSC Adv. 2017, 7, 20716–20723. [Google Scholar] [CrossRef] [Green Version]
- Obire, O.; Aleruchi, O.; Wemedo, S. Fungi in Biodegradation of Polycyclic Aromatic Hydrocarbons in Oilfield Wastewater. Acta Sci. Microbiol. 2020, 3, 220–224. [Google Scholar] [CrossRef]
- Li, Q.; Liu, J.; Gadd, G.M. Fungal bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals. Appl. Microbiol. Biotechnol. 2020, 104, 8999–9008. [Google Scholar] [CrossRef]
- Prenafeta-Boldú, F.X.; de Hoog, G.S.; Summerbell, R.C. Fungal communities in hydrocarbon degradation. In Microbial Communities Utilizing Hydrocarbons and Lipids: Members, Metagenomics and Ecophysiology Handbook of Hydrocarbon and Lipid Microbiology; McGenity, T.J., Ed.; Springer: Cham, Switzerland, 2018; pp. 1–36. [Google Scholar]
- Shapiro, T.; Chekanov, K.; Alexandrova, A.; Dolnikova, G.; Ivanova, E.; Lobakova, E. Revealing of Non-Cultivable Bacteria Associated with the Mycelium of Fungi in the Kerosene-Degrading Community Isolated from the Contaminated Jet Fuel. J. Fungi 2021, 7, 43. [Google Scholar] [CrossRef]
- Krivushina, A.A.; Startsev, V.O. Micromycetes-destructors of polymeric materials among extremophilic microorganisms (review). Trudy VIAM 2022, 1, 12. (In Russian) [Google Scholar] [CrossRef]
- Itah, A.Y.; Brooks, A.A.; Ogar, B.O.; Okure, A.B. Biodegradation of International Jet A-1 Aviation Fuel by Microorganisms Isolated from Aircraft Tank and Joint Hydrant Storage Systems. Bull. Environ. Contam. Toxicol. 2009, 83, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Vasilyeva, A.A.; Chekunova, L.N.; Bilanenko, E.N.; Kachalkin, A.V.; Polyakova, A.V. Characterization of the strain Monascus floridanus P. F. Cannon & E. L. Barnard, isolated from aviation fuel. Microbiology 2012, 81, 244–250. [Google Scholar] [CrossRef]
- Semenov, S.A.; Gumargalieva, K.Z.; Zaikov, G.E. Process characteristics and peculiarities of damages of materials by microorganisms in the exploitation conditions. Vestnik MITHT 2008, 3, 3–23. (In Russian) [Google Scholar]
- Rafin, C.; Veignie, E. Hormoconis resinae, the kerosene fungus. In Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes; Springer: Berlin/Heidelberg, Germany, 2019; pp. 299–318. [Google Scholar]
- Singh, A.K. Industrial Cases of Microbial Induced Corrosion. In Microbially Induced Corrosion and its Mitigation; Springer: Singapore, 2020; pp. 81–106. [Google Scholar] [CrossRef]
- Shkilniuk, I.; Boichenko, S. Biological Risk of Aviation Fuel Supply. In Systems, Decision and Control in Energy I. Studies in Systems, Decision and Control; Babak, V., Isaienko, V., Zaporozhets, A., Eds.; Springer: Cham, Switzerland, 2020; Volume 298, pp. 179–199. [Google Scholar] [CrossRef]
- Maduka, C.M.; Igwilo, N.C. Microorganisms survive in paints. Cur. Anal. Biotechnol. 2019, 2, 1–5. [Google Scholar]
- Phulpoto, A.H.; Maitlo, M.A.; Kanhar, N.A. Culture-dependent to culture-independent approaches for the bioremediation of paints: A review. Int. J. Environ. Sci. Technol. 2021, 18, 241–262. [Google Scholar] [CrossRef]
- Ravikumar, H.R.; Rao, S.S.; Karigar, C.S. Biodegradation of paints: A current status. Indian J. Sci. Technol. 2012, 5, 1977–1987. [Google Scholar] [CrossRef]
- O’Neill, T.B. Succession and interrelationships of microorganisms on painted surfaces. Int. Biodeterior. 1988, 24, 373–379. [Google Scholar] [CrossRef]
- Shirakawa, M.A.; Loh, K.; John, V.M.; Silva, M.E.S.; Gaylarde, C.C. Biodeterioration of painted mortar surfaces in tropical urban and coastal situations: Comparison of four paint formulations. Int. Biodeterior. Biodegrad. 2011, 65, 669–674. [Google Scholar] [CrossRef]
- Ojha, N.; Pradhan, N.; Singh, S.; Barla, A.; Shrivastava, A.; Khatua, P.; Rai, V.; Bose, S. Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci. Rep. 2017, 7, 39515. [Google Scholar] [CrossRef]
- Kyaw, B.M.; Champakalakshmi, R.; Sakharkar, M.K.; Lim, C.S.; Sakharkar, K.R. Biodegradation of Low Density Polythene (LDPE) by Pseudomonas Species. Indian J. Microbiol. 2012, 52, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Lugauskas, A.Y.; Mikulskene, A.I.; Shlyauzhene, D.Y. Catalog of Micromycetes—Biodestructors of Polymeric Materials; Nauka: Moscow, USSR, 1987; p. 344. (In Russian) [Google Scholar]
- Erofeev, V.T.; Smirnov, V.F.; Myshkin, A.V. The study of species composition of the mycoflora, selected surface samples proliferation composites in humid maritime climate. IOP Conf. Ser. Mater. Sci. Eng. 2019, 698, 022082. [Google Scholar] [CrossRef]
- Lacerda, A.L.D.F.; Proietti, M.C.; Secchi, E.R.; Taylor, J.D. Diverse groups of fungi are associated with plastics in the surface waters of the Western South Atlantic and the Antarctic Peninsula. Mol. Ecol. 2020, 29, 1903–1918. [Google Scholar] [CrossRef] [PubMed]
- Muhonja, C.N.; Makonde, H.; Magoma, G.; Imbuga, M. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS ONE 2018, 13, e0198446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghatge, S.; Yang, Y.; Ahn, J.-H.; Hur, H.-G. Biodegradation of polyethylene: A brief review. Appl. Biol. Chem. 2020, 63, 27. [Google Scholar] [CrossRef]
- Yamada-Onodera, K.; Mukumoto, H.; Katsuyaya, Y.; Saiganji, A.; Tani, Y. Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym. Degrad. Stab. 2001, 72, 323–327. [Google Scholar] [CrossRef]
- Ahmaditabatabaei, S.; Kyazze, G.; Iqbal, H.M.N.; Keshavarz, T. Fungal Enzymes as Catalytic Tools for Polyethylene Terephthalate (PET) Degradation. J. Fungi 2021, 7, 931. [Google Scholar] [CrossRef] [PubMed]
- Zafar, U.; Houlden, A.; Robson, G.D. Fungal Communities Associated with the Biodegradation of Polyester Polyurethane Buried under Compost at Different Temperatures. Appl. Environ. Microbiol. 2013, 79, 7313–7324. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.R.; Huang, J.; Anand, P.; Kucera, K.; Sandoval, A.G.; Dantzler, K.W.; Hickman, D.; Jee, J.; Kimovec, F.M.; Koppstein, D.; et al. Biodegradation of Polyester Polyurethane by Endophytic Fungi. Appl. Environ. Microbiol. 2011, 77, 6076–6084. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Barragán, J.; Domínguez-Malfavón, L.; Vargas-Suárez, M.; González-Hernández, R.; Aguilar-Osorio, G.; Loza-Tavera, H. Biodegradative Activities of Selected Environmental Fungi on a Polyester Polyurethane Varnish and Polyether Polyurethane Foams. Appl. Environ. Microbiol. 2016, 82, 5225–5235. [Google Scholar] [CrossRef]
- Magnin, A.; Hoornaert, L.; Pollet, E.; Laurichesse, S.; Phalip, V.; Avérous, L. Isolation and characterization of different promising fungi for biological waste management of polyurethanes. Microb. Biotechnol. 2019, 12, 544–555. [Google Scholar] [CrossRef]
- Kochkina, G.A.; Ivanushkina, N.E.; Lupachev, A.V.; Starodumova, I.P.; Vasilenko, O.V.; Ozerskaya, S.M. Diversity of mycelial fungi in natural and human-affected Antarctic soils. Polar Biol. 2019, 42, 47–64. [Google Scholar] [CrossRef]
- Korneikova, M.V.; Evdokimova, G.A.; Lebedeva, E.V. The complexes of microscopic fungi in cultivated soils polluted by oil products on the north of Kola Peninsula. Mykol. Phytopatol. 2011, 45, 249–256. (In Russian) [Google Scholar]
- Cosgrove, L.; McGeechan, P.L.; Robson, G.D.; Handley, P.S. Fungal Communities Associated with Degradation of Polyester Polyurethane in Soil. Appl. Environ. Microbiol. 2007, 73, 5817–5824. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Hu, J.; Yang, S.; Xu, W.; Wang, Z.; Zhuang, P.; Grossart, H.-P.; Luo, Z. Biodegradation of polyester polyurethane by the marine fungus Cladosporium halotolerans 6UPA1. J. Hazard. Mater. 2022, 437, 129406. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, I.N.; Maraqa, A.; Hameed, K.M.; Saadoun, I.M.; Maswadeh, H.M. Assessment of potential plastic-degrading fungi in Jordanian habitats. Turk. J. Biol. 2011, 35, 551–557. [Google Scholar] [CrossRef]
- Loredo-Treviño, A.; García, G.; Velasco-Téllez, A.; Rodríguez-Herrera, R.; Aguilar, C.N. Polyurethane foam as substrate for fungal strains. Adv. Biosci. Biotechnol. 2011, 2, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, N.; Gupta, P. New insights into the microbial degradation of polyurethanes. RSC Adv. 2015, 5, 41839–41854. [Google Scholar] [CrossRef]
- Danso, D.; Chow, J.; Streit, W.R. Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation. Appl. Environ. Microbiol. 2019, 85, e01095-19. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.K.; Raut, S. Microbial degradation of low density polyethylene (LDPE): A review. J. Environ. Chem. Eng. 2015, 3, 462–473. [Google Scholar] [CrossRef]
- Shah, A.; Hasan, F.; Hameed, A.; Akhter, J. Isolation of Fusarium sp. AF4 from sewage sludge, with the ability to adhere the surface of polyethylene. Afr. J. Microbiol. Res. 2009, 3, 658–663. [Google Scholar]
- Krueger, M.C.; Hofmann, U.; Moeder, M.; Schlosser, D. Potential of Wood-Rotting Fungi to Attack Polystyrene Sulfonate and Its Depolymerisation by Gloeophyllum trabeum via Hydroquinone-Driven Fenton Chemistry. PLoS ONE 2015, 10, e0131773. [Google Scholar] [CrossRef] [PubMed]
- Raaman, N.; Rajitha, N.; Jayshree, A.; Jegadeesh, R. Biodegradation of plastic by Aspergillus sp. isolated from polythene polluted sites around Chennai. J. Acad. Indus. Res. 2012, 1, 313–316. [Google Scholar]
- Cooney, J.J.; Proby, C.M. Fatty Acid Composition of Cladosporium resinae Grown on Glucose and on Hydrocarbons. J. Bacteriol. 1971, 108, 777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagiotidou, E.; Konidaris, C.; Baklavaridis, A.; Zuburtikudis, I.; Achilias, D.; Mitlianga, P. A Simple Route for Purifying Extracellular Poly(3-hydroxybutyrate)-depolymerase from Penicillium pinophilum. Enzym. Res. 2014, 2014, 159809. [Google Scholar] [CrossRef] [Green Version]
- Howard, G.T. Biodegradation of polyurethane: A review. Int. Biodeterior. Biodegrad. 2002, 49, 245–252. [Google Scholar] [CrossRef]
- Mathur, G.; Prasad, R. Degradation of Polyurethane by Aspergillus flavus (ITCC 6051) Isolated from Soil. Appl. Biochem. Biotechnol. 2012, 167, 1595–1602. [Google Scholar] [CrossRef]
- Hadad, D.; Geresh, S.; Sivan, A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J. Appl. Microbiol. 2005, 98, 1093–1096. [Google Scholar] [CrossRef]
- Suzuki, K.; Noguchi, M.T.; Shinozaki, Y.; Koitabashi, M.; Sameshima-Yamashita, Y.; Yoshida, S.; Fujii, T.; Kitamoto, H.K. Purification, characterization, and cloning of the gene for a biodegradable plastic-degrading enzyme from Paraphoma-related fungal strain B47-9. Appl. Microbiol. Biotechnol. 2014, 98, 4457–4465. [Google Scholar] [CrossRef]
- Koitabashi, M.; Sameshima–Yamashita, Y.; Watanabe, T.; Shinozaki, Y.; Kitamoto, H. Phylloplane Fungal Enzyme Accelerate Decomposition of Biodegradable Plastic Film in Agricultural Settings. Jpn. Agric. Res. Quarterly: JARQ 2016, 50, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Sowmya, H.V.; Ramalingappa; Krishnappa, M.; Thippeswamy, B. Degradation of polyethylene by Penicillium simplicissimum isolated from local dumpsite of Shivamogga district. Environ. Dev. Sustain. 2015, 17, 731–745. [Google Scholar] [CrossRef]
- Gupta, S.; Pathak, B. Mycoremediation of polycyclic aromatic hydrocarbons. In Abatement of Environmental Pollutants; Singh, P., Kumar, A., Borthakur, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 127–149. [Google Scholar] [CrossRef]
- Sowmya, H.V.; Ramalingappa; Krishnappa, M.; Thippeswamy, B. Degradation of polyethylene by Trichoderma harzianum—SEM, FTIR, and NMR analyses. Environ. Monit. Assess. 2014, 186, 6577–6586. [Google Scholar] [CrossRef] [PubMed]
- Temporiti, M.E.E.; Nicola, L.; Nielsen, E.; Tosi, S. Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms 2022, 10, 1180. [Google Scholar] [CrossRef]
- Sudhakar, M.; Doble, M.; Murthy, P.S.; Venkatesan, R. Marine microbe-mediated biodegradation of low and high-density polyethylenes. Int. Biodeter. Biodegr. 2008, 61, 203–213. [Google Scholar] [CrossRef]
- Shimao, M. Biodegradation of plastics. Curr. Opin. Biotechnol. 2001, 12, 242–247. [Google Scholar] [CrossRef]
- Ronkvist, A.M.; Xie, W.; Lu, W.; Gross, R.A. Cutinase-Catalyzed Hydrolysis of Poly(ethylene terephthalate). Macromolecules 2009, 42, 5128–5138. [Google Scholar] [CrossRef]
- Maeda, H.; Yamagata, Y.; Abe, K.; Hasegawa, F.; Machida, M.; Ishioka, R.; Gomi, K.; Nakajima, T. Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl. Microbiol. Biotechnol. 2005, 67, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Tokiwa, Y.; Calabia, B.P.; Ugwu, C.U.; Aiba, S. Biodegradability of Plastics. Int. J. Mol. Sci. 2009, 10, 3722–3742. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kim, T.; Choi, S.; Jeon, H.; Oh, D.X.; Park, J.; Eom, Y.; Hwang, S.Y.; Koo, J.M. Remarkable elasticity and enzymatic degradation of bio-based poly(butylene adipate-co-furanoate): Replacing terephthalate. Green Chem. 2020, 22, 7778–7787. [Google Scholar] [CrossRef]
- Hoshino, A.; Isono, Y. Degradation of aliphatic polyester films by commercially available lipases with special reference to rapid and complete degradation of poly(L-lactide) film by lipase PL derived from Alcaligenes sp. Biodegradation 2002, 13, 141–147. [Google Scholar] [CrossRef]
- Mukherjee, S.; Kundu, P.P. Alkaline fungal degradation of oxidized polyethylene in black liquor: Studies on the effect of lignin peroxidases and manganese peroxidases. J. Appl. Polym. Sci. 2014, 131, 40738. [Google Scholar] [CrossRef]
- Wei, R.; Zimmermann, W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we? Microb. Biotechnol. 2017, 10, 1308–1322. [Google Scholar] [CrossRef] [PubMed]
- Dhanraj, N.D.; Hatha, A.A.M.; Jisha, M.S. Biodegradation of petroleum based and bio-based plastics: Approaches to increase the rate of biodegradation. Arch. Microbiol. 2022, 204, 258. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, I.N.; Maraqa, A.; Hameed, K.M.; Saadoun, I.M.; Maswadeh, H.M.; Nakajima-Kambe, T. Polyester-polyurethane biodegradation by Alternaria solani, isolated from northern Jordan. Adv. Environ. Biol. 2009, 3, 162–170. [Google Scholar]
- Smirnov, V.F.; Glagoleva, A.A.; Mochalova, A.E.; Smirnova, L.A.; Smirnova, O.N.; Anikina, N.A. Effect of factors of the biological and physical nature on biodestruction and physical and chemical properties of compositions based on polyvinylchloride and natural polymers. Plast. Massy 2017, 7–8, 47. (In Russian) [Google Scholar] [CrossRef]
- Kalashnikov, I.N. Biodegradation of Composite Materials Based on Chitosan and Acrylic Polymers Caused by Micromycetes and Climatic Aging Factors. Ph.D. Thesis, Lobachevsky University, Nizhny Novgorod, Russia, 2013; p. 25. (In Russian). [Google Scholar]
- Myasoedova, N.M.; Kolomytseva, M.P.; Chernykh, A.M.; Baskunov, B.R.; Baboshin, M.A.; Kvesitadze, G.I.; Golovleva, L.A. Alternaria alternata F-1120: A new efficient destruction of 2, 4, 6-trinitroluene. Ann. Agrar. Sci. 2012, 10, 25–31. [Google Scholar]
- Antipova, T.V.; Zhelifonova, V.P.; Zaitsev, K.V.; Nedorezova, P.M.; Aladyshev, A.M.; Klyamkina, A.N.; Kostyuk, S.V.; Danilogorskaya, A.A.; Kozlovsky, A.G. Biodegradation of Poly-ε-caprolactones and Poly-l-lactides by Fungi. J. Polym. Environ. 2018, 26, 4350–4359. [Google Scholar] [CrossRef]
- Sakaeva, E.K.; Kulikova, V.Y.; Rudakova, V.L. Biodegradation of polymeric composite materials by microscopic fungi. Theor. Appl. Ecol. 2018, 4, 68–75. [Google Scholar] [CrossRef]
- Stawiński, W.; Wal, K. Microbial Degradation of Polymers. In Recent Advances in Microbial Degradation. Environmental and Microbial Biotechnology; Ahamed, M.I., Prasad, R., Eds.; Springer: Singapore, 2021; pp. 19–46. [Google Scholar] [CrossRef]
- Legonkova, O.A.; Selitskaya, O.V. Microbiological destruction of composite polymeric materials in soils. Eurasian Soil Sci. 2009, 42, 62–68. [Google Scholar] [CrossRef]
- Majid, I.; Thakur, M.; Nanda, V. Biodegradable packaging material. In Encyclopedia of Renewable and Sustainable Materials; Hashmi, S., Choudhury, I.A., Eds.; Elsevier Science Publishing Co. Inc.: Oxford, UK, 2018; Volume 2, p. 688. [Google Scholar]
- Iwata, T. Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics. Angew. Chem. Int. Ed. 2015, 54, 3210–3215. [Google Scholar] [CrossRef] [PubMed]
- Rogovina, S.Z. Biodegredable polymer composites based on synthetic and natural polymers of various classes. Polym. Sci. Ser. C 2016, 58, 62–73. [Google Scholar] [CrossRef]
- Rogovina, S.Z.; Aleksanyan, K.V.; Novikov, D.D.; Prut, E.V.; Rebrov, A.V. Synthesis and investigation of polyethylene blends with natural polysaccharides and their derivatives. Polym. Sci. Ser. A 2009, 51, 554–562. [Google Scholar] [CrossRef]
- Rogovina, S.Z.; Alexanyan, C.V.; Prut, E.V. Biodegradable blends based on chitin and chitosan: Production, structure, and properties. J. Appl. Polym. Sci. 2011, 121, 1850–1859. [Google Scholar] [CrossRef]
- Rogovina, S.; Aleksanyan, K.; Prut, E.; Gorenberg, A. Biodegradable blends of cellulose with synthetic polymers and some other polysaccharides. Eur. Polym. J. 2013, 49, 194–202. [Google Scholar] [CrossRef]
- Rogovina, S.; Aleksanyan, K.; Vladimirov, L.; Prut, E.; Ivanushkina, N.; Berlin, A. Development of Novel Biodegradable Polysaccharide-Based Composites and Investigation of Their Structure and Properties. J. Polym. Environ. 2018, 26, 1727–1736. [Google Scholar] [CrossRef]
- Rogovina, S.Z.; Aleksanyan, K.V.; Gorenberg, A.Y.; Ivanushkina, N.E.; Prut, E.V.; Berlin, A.A. Investigation of biodegradability of composites based on polyethylene and polysaccharides by some independent methods. Mendeleev Commun. 2018, 28, 105–107. [Google Scholar] [CrossRef]
- Rogovina, S.Z.; Aleksanyan, K.V.; Kosarev, A.A.; Ivanushkina, N.E.; Prut, E.V.; Berlin, A.A. Biodegradable polymer composites based on polylactide and cellulose. Polym. Sci. Ser. B 2016, 58, 38–46. [Google Scholar] [CrossRef]
- Rogovina, S.Z.; Aleksanyan, K.V.; Loginova, A.A.; Ivanushkina, N.E.; Vladimirov, L.V.; Prut, E.V.; Berlin, A.A. Influence of PEG on Mechanical Properties and Biodegradability of Composites Based on PLA and Starch. Starch/Stärke 2018, 70, 1700268. [Google Scholar] [CrossRef]
- Aleksanyan, K.V.; Rogovina, S.Z.; Ivanushkina, N.E. Novel biodegradable low-density polyethylene–poly(lactic acid)–starch ternary blends. Polym. Eng. Sci. 2021, 61, 802–809. [Google Scholar] [CrossRef]
- Aleksanyan, K.V.; Rogovina, S.Z.; Shakhov, A.M.; Ivanushkina, N.E. Effect of biodegradation conditions on morphology of ternary compositions of low density polyethylene with poly(lactic acid) and starch. Mendeleev Commun. 2022, 32, 558–560. [Google Scholar] [CrossRef]
Enzymes | Fungi | References |
---|---|---|
Catalase | Aspergillus clavatus | [71] |
Cutinase | Aspergillus oryzae, Fusarium oxysporum, F. solani, Humicola insolens, Penicillium funiculosum, Paraphoma sp., Trichoderma reesei | [43,65,72,73,74] |
Laccase | Trichoderma harzianum, Penicillium simplicissimum, Aspergillus flavus | [67,69,70] |
Lipase | Thermomyces lanuginosus, Rhizopus arrhizus (syn. R. delemar, R. nivea, R. oryzae) | [75,76,77] |
Manganese peroxidase | Penicillium simplicissimum, Phanerochaete chrysosporium, Trichoderma harzianum | [67,69,72,78,79] |
Polyurethanase | Curvularia senegalensis | [62,75] |
Protease | Alternaria solani, Tritirachium album | [75,80,81] |
Serine hydrolase | Pestalotiopsis microspora | [45] |
Urease | Trichoderma sp. | [53,56] |
Number VKM F- | Species | Numbers of Strain in Other Collections of WFCC * | Type of Testing Samples | |||||
---|---|---|---|---|---|---|---|---|
Technical Products | Polymeric Materials and Their Components | Fabrics, Including Synthetic Fibres | Oils and Lubricants | Paint and Varnish Coatings | Petroleum Fuels | |||
109 | Chaetomium globosum | LCP 679 | + | + | ||||
136 | Fusarium fujikuroi (F. proliferatum) | ATCC 12616; BRL 917; CBS 183.29; DSM 893; IMI 58290 | + | |||||
234 | Penicillium brevicompactum | no | + | |||||
245 | Penicillium chrysogenum | no | + | + | + | + | ||
265 | Penicillium aurantiogriseum (syn. P. cyclopium) | ATCC 8731; ATHUM 2888; CBS 114.74; CECT 2264; DSM 1250; FRR 1888; IMI 089372; MUCL 15613; NRRL 1888 | + | + | ||||
378 | Paecilomyces variotii | no | + | + | + | + | ||
406 | Scopulariopsis brevicaulis | no | + | + | ||||
1025 | Aspergillus terreus | no | + | + | + | + | ||
1115 | Penicillium pinophilum (P. funiculosum) | ATCC 9644; CBS 170.60; CCRC 31621; DSM 1960; IFO 6345; NRRL A-5245; QM 391 | + | + | + | + | ||
1116 | Aureobasidium pullulans | ATCC 9348; CBS 621.80; CCRC 31981; DSM 2404; IMI 145194; NCIM 1049; QM 3090 | + | |||||
1117 | Trichoderma virens (T. viride) | ATCC 9645; CBS 430.54; IAM 5061; IFO 6355; IMI 45 553; NRRL 2314; QM 365 | + | + | + | + | ||
1119 | Aspergillus brasiliensis (A. niger) | ATCC 9642; CBS 246.65; CCRC 31512; DSM 63263; FERM S-2; IFO 6342; IMI 91855; NRRL A-3536 | + | + | + | + | ||
1120 | Alternaria alternata | no | + | |||||
1701 | Hormoconis resinae (syn. Cladosporium resinae) | no | + | |||||
2032 | Penicillium ochrochloron | no | + | + | + | |||
2039 | Aspergillus niger | ATCC 6275; CBS 769.97; CCRC 32073; CECT 2807; IFO 6341; DSM 1957; IMI 45551; NRRL 334 | + | |||||
2096 | Aspergillus sojae (A. oryzae) | ATCC 14895; CBS 134.52; CCRC 30230; NRRL 1989 | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanushkina, N.; Aleksanyan, K.; Rogovina, S.; Kochkina, G. The Use of Mycelial Fungi to Test the Fungal Resistance of Polymeric Materials. Microorganisms 2023, 11, 251. https://doi.org/10.3390/microorganisms11020251
Ivanushkina N, Aleksanyan K, Rogovina S, Kochkina G. The Use of Mycelial Fungi to Test the Fungal Resistance of Polymeric Materials. Microorganisms. 2023; 11(2):251. https://doi.org/10.3390/microorganisms11020251
Chicago/Turabian StyleIvanushkina, Natalya, Kristine Aleksanyan, Svetlana Rogovina, and Galina Kochkina. 2023. "The Use of Mycelial Fungi to Test the Fungal Resistance of Polymeric Materials" Microorganisms 11, no. 2: 251. https://doi.org/10.3390/microorganisms11020251
APA StyleIvanushkina, N., Aleksanyan, K., Rogovina, S., & Kochkina, G. (2023). The Use of Mycelial Fungi to Test the Fungal Resistance of Polymeric Materials. Microorganisms, 11(2), 251. https://doi.org/10.3390/microorganisms11020251