Biogeochemical Activity of Methane-Related Microbial Communities in Bottom Sediments of Cold Seeps of the Laptev Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Study and Sampling
2.2. Determination of the Composition of Microbial Communities by High-Throughput Sequencing of the 16S rRNA Genes
2.3. Stable Isotope Analyses
3. Results
3.1. Geochemical Characterization of the Upper Sediments (0–27 cm)
Station | Horizon | Description | Eh, mV | Corg, % | CH4, µM L−1 | Alk, µM L−1 | Reads Initial |
---|---|---|---|---|---|---|---|
6027 (seep) 76.89 N 127.80 E | 0–1 cm | Oxidized, strongly hydrated, brown | +200 | 0.49 | 1.04 | 3.0 | 140504 |
1–3 cm | Oxidized, sandy-aleuric, gray | +80 | 0.62 | 1.31 | 2.8 | 110552 | |
3–5 cm | Transitional, gray, and black, of average density | +20 | 0.52 | 1.34 | 3.2 | 118701 | |
5–8 cm | Reduced, aleurite, black, dense | −60 | 0.41 | 1.59 | 3.8 | 111650 | |
8–14 cm | Reduced, black, more dense | −110 | 0.43 | 1.05 | 5.0 | 130303 | |
14–18 cm | Reduced, black, soft | −100 | 0.51 | 1.82 | 7.7 | 110552 | |
6045 (seep) 76.77 N 125.76 E | Near-bottom water | +220 | 0.17 | 2.1 | 123661 | ||
Warp | Light brown | +160 | 0.35 | 2.3 | 120119 | ||
0–1 cm | Reduced, brown, very liquid | +140 | 0.98 | 2.58 | 3.0 | 111475 | |
1–3 cm | Slightly oxidized, gray, liquid | +60 | 1.05 | 6.27 | 3.0 | 106337 | |
3–7 cm | Transitional, gray, and black, of average density | −10 | 0.88 | 13.17 | 4.0 | 131133 | |
7–12 cm | Reduced, aleurite, black, dense | −120 | 0.97 | 20.32 | 5.4 | 132668 | |
12–18 cm | Reduced, black, more dense | −160 | 0.90 | 36.73 | 7.0 | 108153 | |
18–23 cm | Reduced, aleurite, black, dense | −160 | 0.53 | 16.92 | 7.5 | 123661 | |
23–27 cm | Reduced, aleuric sand, black | −110 | 0.39 | 15.88 | 8.5 | 120119 | |
6053 (reference) 76.74 N 128.45 E | 0–3 cm | Reduced, brown | +180 | 1.47 | 0.93 | 2.5 | 121114 |
3–6 cm | Reduced, light brown, or gray | +120 | 1.26 | 1.10 | 2.6 | 124989 | |
6–10 cm | Transitional, gray, more dense | +30 | 1.21 | 1.38 | 3.2 | 126268 | |
10–16 cm | Gray, with hydrotroilite inclusions | −10 | 1.22 | 1.97 | 3.4 | 120495 | |
16–23 cm | Dark gray, hydrotroilite | −40 | 1.08 | 1.63 | 3.2 | 124246 | |
23–27 cm | Dark gray, hydrotroilite | −40 | 1.23 | 1.60 | 3.4 | 136443 |
3.2. Composition of the Microbial Community of the Sediments
3.3. Analysis of Microbial Genomes Assembled from Metagenomes
3.4. Genomes of Sulfate-Reducing Bacteria
3.5. Zixibacteria, a Possible Partner of ANME Archaea in Methane Seep Microbial Communities
3.6. Rates of Microbial Processes
3.7. Carbon Isotopic Composition of Organic Matter and Methane
4. Discussion
4.1. Rates of Microbial Methane Oxidation in the Sediments of the Global Ocean
4.2. Carbon Isotopic Composition of Organic Matter in the Sediments
4.3. Composition of the Microbial Community Responsible for AOM
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hunter, S.; Goldobin, D.; Haywood, A.; Ridgwell, A.; Rees, J. Sensitivity of the global submarine hydrate inventory to scenarios of future climate change. Earth Planet. Sci. Lett. 2013, 367, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Baranov, B.; Galkin, S.; Vedenin, A.; Dozorova, K.; Gebruk, A.; Flint, M. Methane seeps on the outer shelf of the Laptev Sea: Characteristic features, structural control, and benthic fauna. Geo-Mar. Lett. 2020, 40, 541–557. [Google Scholar] [CrossRef]
- Pimenov, N.; Savvichev, A.; Rusanov, I.; Egorov, A.V.; Gebruk, A.; Moskalev, L.; Vogt, P.R. Microbial processes of carbon cycle as the base of food chain of Haakon Mosby mud volcano benthic community. Geo-Mar. Lett. 1999, 19, 89–96. [Google Scholar] [CrossRef]
- Åström, E.K.L.; Carroll, M.L.; Ambrose, W.G.; Sen, A.; Silyakova, A.; Carroll, J.L. Methane cold seeps as biological oases in the high-Arctic deep sea. Limnol. Oceanogr. 2018, 63, S209–S231. [Google Scholar] [CrossRef]
- Niemann, H.; Linke, P.; Knittel, K.; MacPherson, E.; Boetius, A.; Brückmann, W.; Larvik, G.; Wallmann, K.; Schacht, U.; Omoregie, E.; et al. Methane-carbon flow into the benthic food web at cold seeps—A case study from the Costa Rica subduction zone. PLoS ONE 2013, 8, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Niemann, H.; Fischer, D.; Graffe, D.; Knittel, K.; Montiel, A.; Hellmayer, O.; Nöthen, K.; Pape, T.; Kasten, S.; Bohrmann, G.; et al. Biogeochemistry of a low-activity cold seep in the Larsen B area, western Weddell Sea, Antarctica. Biogeosciences 2009, 6, 2383–2395. [Google Scholar] [CrossRef]
- Knittel, K.; Lösekann, T.; Boetius, A.; Kort, R.; Amann, R. Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 2005, 71, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Lichtschlag, A.; Felden, J.; Brüchert, V.; Boetius, A.; de Beer, D. Geochemical processes and chemosynthetic primary production in different thiotrophic mats of the Haakon Mosby Mud Volcano (Barents Sea). Limnol. Oceanogr. 2010, 55, 931–949. [Google Scholar] [CrossRef]
- Knittel, K.; Boetius, A. Anaerobic oxidation of methane: Progress with an unknown process. Annu. Rev. Microbiol. 2009, 63, 311–334. [Google Scholar] [CrossRef]
- Schreiber, L.; Holler, T.; Knittel, K.; Meyerdierks, A.; Amann, R. Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ. Microbiol. 2010, 12, 2327–2340. [Google Scholar] [CrossRef]
- Felden, J.; Wenzhöfer, F.; Feseker, T.; Boetius, A. Transport and consumption of oxygen and methane in different habitats of the Haakon Mosby Mud Volcano (HMMV). Limnol. Oceanogr. 2010, 55, 2366–2380. [Google Scholar] [CrossRef] [Green Version]
- Lösekann, T.; Knittel, K.; Nadalig, T.; Fuchs, B.; Niemann, H.; Boetius, A.; Amann, R. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl. Environ. Microbiol. 2007, 73, 3348–3362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roalkvam, I.; Jørgensen, S.L.; Chen, Y.; Stokke, R.; Dahle, H.; Hocking, W.P.; Lanzen, A.; Haflidason, H.; Steen, I.H. New insight into stratification of anaerobic methanotrophs in cold seep sediments. FEMS Microbiol. Ecol. 2011, 78, 233–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inagaki, F.; Tsunogai, U.; Suzuki, M.; Kosaka, A.; Machiyama, H.; Takai, K.; Nunoura, T.; Nealson, K.H.; Horikoshi, K. Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, Southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA Genes. Appl. Environ. Microbiol. 2004, 70, 7445–7455. [Google Scholar] [CrossRef] [Green Version]
- Shakhova, N.; Semiletov, I.; Sergienko, V.; Lobkovsky, L.; Yusupov, V.; Salyuk, A.; Salomatin, A.; Chernykh, D.; Kosmach, D.; Panteleev, G.; et al. The East Siberian Arctic shelf: Towards further assessment of permafrost-related methane fluxes and role of sea ice. Philos. Trans. R. Soc. A 2015, 373, 20140451. [Google Scholar] [CrossRef]
- Yusupov, V.I.; Salyuk, A.N.; Karnaukh, V.N.; Semiletov, I.P.; Shakhova, N.E. Detection of methane emission in shelf waters of the Laptev Sea in the Eastern Arctic Region. Dokl. Acad. Nauk 2010, 430, 261–264. [Google Scholar] [CrossRef]
- Vedenin, A.A.; Kokarev, V.N.; Chikina, M.V.; Basin, A.B.; Galkin, S.V.; Gebruk, A.V. Fauna associated with shallow-water methane seeps in the Laptev Sea. PeerJ. 2020, 8, e9018. [Google Scholar] [CrossRef]
- Savvichev, A.S.; Rusanov, I.I.; Kadnikov, V.V.; Beletskii, A.V.; Ravin, N.V.; Pimenov, N.V. Microbial community composition and rates of the methane cycle microbial processes in the upper sediments of the Yamal Sector of the Southwestern Kara Sea. Microbiology 2018, 87, 238–248. [Google Scholar] [CrossRef]
- Rusanov, I.I.; Savvichev, A.S.; Yusupov, S.K.; Pimenov, N.V.; Ivanov, M.V. Production of exometabolites in the microbial oxidation of methane in marine ecosystems. Microbiology 1998, 67, 590–596. [Google Scholar]
- Frey, B.; Rime, T.; Phillips, M.; Stierli, B.; Hajdas, I.; Widmer, F.; Hartmann, M. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol. 2016, 92, 18. [Google Scholar] [CrossRef] [Green Version]
- Magoc, T.; Salzberg, S. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyman, J.; Fleming, R.H. Composition of sea water. J. Mar. Res. 1940, 3, 134–139. [Google Scholar]
- Oremland, R.S.; Taylor, B.F. Sulfate reduction and methanogenesis in marine sediments. Geochim. Cosmochim. Acta 1978, 42, 209–214. [Google Scholar] [CrossRef]
- Parks, D.H.; Chuvochina, M.; Waite, D.W.; Rinke, C.; Skarshewski, A.; Chaumeil, P.A.; Hugenholtz, P. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 2018, 36, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Skennerton, C.T.; Chourey, K.; Iyer, R.; Hettich, R.L.; Tyson, G.W.; Orphan, V.J. Methane-fueled syntrophy through extracellular electron transfer: Uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methanotrophic archaea. mBio 2017, 8, e00530-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castelle, C.J.; Hug, L.A.; Wrighton, K.C.; Thomas, B.C.; Williams, K.H.; Wu, D.; Banfield, J.F. Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment. Nat. Commun. 2013, 4, 2120. [Google Scholar] [CrossRef] [Green Version]
- Campanaro, S.; Treu, L.; Rodriguez-R, L.M.; Kovalovszki, A.; Ziels, R.M.; Maus, I.; Zhu, X.; Kougias, P.G.; Basile, A.; Luo, G.; et al. New insights from the biogas microbiome by comprehensive genome-resolved metagenomics of nearly 1600 species originating from multiple anaerobic digesters. Biotechnol. Biofuels 2020, 13, 25. [Google Scholar] [CrossRef] [Green Version]
- Konstantinidis, K.T.; Rosselló-Móra, R.; Amann, R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017, 11, 2399–2406. [Google Scholar] [CrossRef]
- Kirchman, D.L.; Cottrell, M.T.; Lovejoy, C. The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ. Microbiol. 2010, 5, 1132–1143. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhang, L.; Liu, Y.; Li, Y. Bacterial and archaeal community structure of pan-Arctic Ocean sediments revealed by pyrosequencing. Acta Oceanol. Sin. 2017, 8, 146–152. [Google Scholar] [CrossRef]
- Cramm, M.A.; Neves, B.; Manning, C.M.; Oldenburg, T.; Archambault, P.; Chakraborty, A.; Cyr-Parent, A.; Edinger, E.N.; Jaggi, A.; Mort, A.; et al. Characterization of marine microbial communities around an Arctic seabed hydrocarbon seep at Scott Inlet, Baffin Bay. Sci. Total Environ. 2021, 762, 143961. [Google Scholar] [CrossRef] [PubMed]
- Joye, S.B.; Boetius, A.; Orcutt, B.N.; Montoya, J.P.; Schulz, H.N.; Erickson, M.J.; Lugo, S.K. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem. Geol. 2004, 205, 219–238. [Google Scholar] [CrossRef]
- Ruff, S.E.; Arnds, J.; Knittel, K.; Amann, R.; Wegener, G.; Ramette, A.; Boetius, A. microbial communities of deep-sea methane seeps at Hikurangi Continental Margin (New Zealand). PLoS ONE 2013, 8, e72627. [Google Scholar] [CrossRef]
- Zhuang, G.-C.; Xu, L.; Liang, Q.; Fan, X.; Xia, Z.; Joye, S.B.; Wang, F. Biogeochemistry, microbial activity, and diversity in surface and subsurface deep-sea sediments of South China Sea. Limnol. Oceanogr. 2019, 64, 2252–2270. [Google Scholar] [CrossRef]
- Jørgensen, B.B. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. II. Calculation from mathematical models. Geomicrobiol. J. 1978, 1, 29–47. [Google Scholar] [CrossRef]
- Fossing, H.; Jørgensen, B.B. Measurement of bacterial sulfate reduction in sediments: Evaluation of a singlestep chromium reduction method. Biogeochemistry 1989, 8, 205–222. [Google Scholar] [CrossRef]
- Kallmeyer, J.; Ferdelman, T.G.; Weber, A.; Fossing, H.; Jørgensen, B.B. A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnol. Oceanogr. Methods 2004, 2, 171–180. [Google Scholar] [CrossRef]
- Pimenov, N.V.; Bonch-Osmolovskaya, E.A. In situ activity studies in thermal environments. In Methods in Microbiology; Extremophiles; Rainey, F.A., Oren, A., Eds.; Academic Press; Elsevier: Amsterdam, The Netherlands, 2006; Volume 35, pp. 29–53. [Google Scholar]
- Bowles, M.W.; Samarkin, V.A.; Joye, S.B. Improved measurement of microbial activity in deep-sea sediments at in situ pressure and methane concentration. Limnol. Oceanogr. Methods 2011, 9, 499–506. [Google Scholar] [CrossRef]
- Coffin, R.B.; Hamdan, L.; Smith, J.P.; Plummer, R.; Millholland, L.; Larson, R. Spatial variation in shallow sediment methane source and cycling on the Alaskan Beaufort Sea. Mar. Pet. Geol. 2013, 45, 186–197. [Google Scholar] [CrossRef]
- Niemann, H.; Lösekann, T.; de Beer, D.; Elvert, M.; Nadalig, T.; Knittel, K.; Amann, R.; Sauter, E.J.; Schluter, M.; Klages, M. Novel microbial communities of the Håkon Mosby mud volcano and their role as a methane sink. Nature 2006, 443, 854–858. [Google Scholar] [CrossRef]
- Grünke, S.; Felden, J.; Lichtschlag, A.; Girnth, A.C.; De Beer, D.; Wenzhöfer, F.; Boetius, A. Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea). Geobiology 2011, 9, 330–348. [Google Scholar] [CrossRef] [PubMed]
- Grünke, S.; Lichtschlag, A.; de Beer, D.; Felden, J.; Salman, V.; Ramette, A.; Schulz-Vogt, H.N.; Boetius, A. Mats of psychrophilic thiotrophic bacteria associated with cold seeps of the Barents Sea. Biogeosciences 2012, 9, 2947–2960. [Google Scholar] [CrossRef] [Green Version]
- Pimenov, N.V.; Savvichev, A.S.; Rusanov, I.I.; Lein, A.Y.; Ivanov, M.V. Microbiological processes of the carbon and sulfur cycle on cold methane seeps of the North Atlantic. Microbiology 2000, 69, 831–843. [Google Scholar] [PubMed]
- Jørgensen, B.B.; Weber, A.; Zopfi, J. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments. Deep Sea Res. Part I 2001, 48, 2097–2120. [Google Scholar] [CrossRef]
- Zhuang, G.-C.; Montgomery, A.; Sibert, R.J.; Rogener, M.; Samarkin, V.A.; Joye, S.B. Effects of pressure, methane concentration, sulfate reduction activity, and temperature on methane production in surface sediments of the Gulf of Mexico. Limnol. Oceanogr. 2018, 63, 2080–2092. [Google Scholar] [CrossRef]
- Savvichev, A.S.; Kadnikov, V.V.; Kravchishina, M.D.; Galkin, S.V.; Novigatskii, A.N.; Sigalevich, P.A.; Merkel, A.Y.; Ravin, N.V.; Pimenov, N.V.; Flint, M.V. Methane as an organic matter source and the trophic basis of a Laptev Sea cold seep microbial community. Geomicrobiology 2017, 35, 411–423. [Google Scholar] [CrossRef]
- Lein, A.Y.; Rusanov, I.I.; Savvichev, A.S.; Pimenov, N.V.; Miller, Y.M.; Ivanov, M.V.; Pavlova, G.A. Biogeochemical processes of the sulfur and carbon cycles in the Kara Sea. Geochem. Int. 1996, 34, 925–941. [Google Scholar]
- Savvichev, A.S.; Rusanov, I.I.; Pimenov, N.V.; Zakharova, E.E.; Veslopolova, E.F.; Lein, A.Y.; Crane, K.; Ivanov, M.V. Microbial processes of the carbon and sulfur cycles in the Chukchi Sea. Microbiology 2007, 76, 603–613. [Google Scholar] [CrossRef]
- Begmatov, S.; Savvichev, A.S.; Kadnikov, V.V.; Beletsky, A.V.; Rusanov, I.I.; Klyuvitkin, A.A.; Novichkova, E.A.; Mardanov, A.V.; Pimenov, N.V. Microbial communities involved in methane, sulfur, and nitrogen cycling in the sediments of the Barents Sea. Microorganisms 2021, 9, 2362. [Google Scholar] [CrossRef]
- Samylina, O.S.; Rusanov, I.I.; Tarnovetskii, I.Y.; Yakushev, E.V.; Grinko, A.A.; Zakharova, E.E.; Merkel, A.Y.; Kanapatskiy, T.A.; Semiletov, I.P.; Pimenov, N.V. On the possibility of aerobic methane production by pelagic microbial communities of the Laptev Sea. Microbiology 2021, 90, 145–157. [Google Scholar] [CrossRef]
- Sapart, C.J.; Shakhova, N.; Semiletov, I.; Jansen, J.; Szidat, S.; Kosmach, D.; Dudarev, O.; van der Veen, C.; Egger, M.; Sergienko, V.; et al. The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis. Biogeosciences 2017, 14, 2283–2292. [Google Scholar] [CrossRef]
- Steinbach, J.; Holmstrand, H.; Scherbakova, K.; Kosmach, D.; Bruchrt, V.; Shakhova, N.; Salyuk, A.; Sapart, C.; Chernikh, D.; Noormets, R.; et al. Source apportionment of methane escaping the subsea permafrost system in the outer Eurasian Arctic Shelf. Proc. Nanl. Acad. Sci. USA 2021, 118(10), e2019672118. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, W.; Seifert, R.; Nauhaus, K.; Treude, T.; Thiel, V.; Blumenberg, M.; Knittel, K.; Gieseke, A.; Peterknecht, K.; Pape, T.; et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 2002, 5583, 1013–1015. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Ma, A.; Qi, H.; Zhuang, X.; Zhuang, G. Anaerobic oxidation of methane: An “active” microbial process. Microbiol. Open 2015, 1, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Timmers, P.H.; Suarez-Zuluaga, D.A.; van Rossem, M.; Diender, M.; Stams, A.J.; Plugge, C.M. Anaerobic oxidation of me-thane associated with sulfate reduction in a natural freshwater gas source. ISME J. 2016, 10, 1400–1412. [Google Scholar] [CrossRef]
- Stokke, R.; Roalkvam, I.; Lanzen, A.; Haflidason, H.; Steen, I.H. Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ. Microbiol. 2012, 14, 1333–1346. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, M.; Wang, H.; Chen, H.; Cao, L.; Zhong, Z.; Li, C. Metagenome sequencing and 768 microbial genomes from cold seep in South China Sea. Sci. Data 2022, 9, 480. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, C.; Peng, Y.; Zhang, H.X.; Shi, L.D.; Wei, G.; Hubert, C.R.J.; Wang, Y.; Greening, C. Phylogenetically and catabolically diverse diazotrophs reside in deep-sea cold seep sediments. Nat. Commun. 2022, 13, 4885. [Google Scholar] [CrossRef]
- Vigneron, A.; Cruaud, P.; Pignet, P.; Caprais, J.C.; Cambon-Bonavita, M.A.; Godfroy, A.; Toffin, L. Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California). ISME J. 2013, 7, 1595–1608. [Google Scholar] [CrossRef] [Green Version]
- Vigneron, A.; Alsop, E.B.; Cruaud, P.; Philibert, G.; King, B.; Baksmaty, L.; Lavallee, D.; Lomans, B.P.; Kyprides, N.C.; Head, I.M.; et al. Comparative metagenomics of hydrocarbon and methane seeps of the Gulf of Mexico. Sci. Rep. 2017, 7, 16015. [Google Scholar] [CrossRef] [Green Version]
- Vigneron, A.; Alsop, E.B.; Cruaud, P.; Philibert, G.; King, B.; Baksmaty, L.; Lavallee, D.; Lomans, B.P.; Eloe-Fadrosh, E.; Kyprides, N.; et al. Contrasting pathways for anaerobic methane oxidation in Gulf of Mexico cold seep sediments. Msystems 2019, 4, e00091-18. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Wang, R.; Jiang, Q.; Zhang, Y.; Peng, X. Anaerobic methane oxidation coupled to denitrification is an important potential methane sink in deep-sea cold seeps. Sci. Total Environ. 2020, 748, 142459. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Summers, Z.M.; Christman, G.D.; Yoshimura, K.M.; Biddle, J.F. Metagenomic views of microbial dynamics influenced by hydrocarbon seepage in sediments of the Gulf of Mexico. Sci. Rep. 2020, 10, 5772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castelle, C.J.; Banfield, J.F. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 2018, 172, 1181–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattarai, S.; Cassarini, C.; Lens, P.N.L. Physiology and distribution of archaeal methanotrophs that couple anaerobic oxidation of methane with sulfate reduction. Microbiol. Mol. Biol. Rev. 2019, 83, e00074-18. [Google Scholar] [CrossRef] [PubMed]
- Iasakov, T.R.; Kanapatskiy, T.A.; Toshchakov, S.V.; Korzhenkov, A.A.; Ulyanova, M.O.; Pimenov, N.V. The Baltic Sea methane pockmark microbiome: The new insights into the patterns of relative abundance and ANME niche separation. Mar. Environ. Res. 2022, 176, 105533. [Google Scholar] [CrossRef] [PubMed]
- Treude, T.; Knittel, K.; Blumenberg, M.; Seifert, R.; Boetius, A. Subsurface microbial methanotrophic mats in the Black Sea. Appl. Environ. Microbiol. 2005, 71, 6375–6378. [Google Scholar] [CrossRef] [Green Version]
- Gründger, F.; Carrier, V.; Svenning, M.M.; Panieri, G.; Vonnahme, T.R.; Klasek, S.; Niemannet, H. Methane-fuelled biofilms predominantly composed of methanotrophic ANME-1 in Arctic gas hydrate-related sediments. Sci. Rep. 2019, 9, 9725. [Google Scholar] [CrossRef] [Green Version]
- Kevorkian, R.T.; Callahan, S.; Winstead, R.; Lloyd, K.G. ANME-1 archaea may drive methane accumulation and removal in estuarine sediments. Environ. Microbiol. Rep. 2021, 13, 185–194. [Google Scholar] [CrossRef]
Sample | chao1 | shannon_e |
---|---|---|
st. 6027 0–1 cm | 960.5 | 5.04 |
st. 6027 3–5 cm | 915.7 | 5.13 |
st. 6027 5–8 cm | 791.1 | 5.12 |
st. 6027 8–14 cm | 553.9 | 3.66 |
st. 6027 14–18 cm | 695.8 | 4.38 |
st. 6045 0–1 cm | 810.2 | 4.40 |
st. 6045 1–3 cm | 871.6 | 4.73 |
st. 6045 3–7 cm | 582.0 | 4.11 |
st. 6045 7–12 cm | 557.6 | 3.90 |
st. 6045 12–18 cm | 514.6 | 3.88 |
st. 6045 18–23 cm | 711.7 | 4.78 |
st. 6045 23–26 cm | 660.3 | 4.58 |
st. 6053 0–3 cm | 1057.6 | 4.67 |
st. 6053 3–6 cm | 1224.9 | 5.57 |
st. 6053 6–10 cm | 1248.3 | 5.76 |
st. 6053 10–16 cm | 994.0 | 5.29 |
st. 6053 16–23 cm | 848.4 | 4.93 |
st. 6053 23–27 cm | 755.4 | 4.78 |
Station | Horizon | δ13Corg | δ13C-CH4 |
---|---|---|---|
6027 | 0–1 | −27.7 | * |
Sep | 1–3 | −27.0 | * |
3–5 | −27.3 | * | |
5–8 | −28.7 | * | |
8–14 | −30.7 | * | |
14–18 | −28.0 | * | |
Average | −28.2 | ||
6045 | 0–1 | −29.8 | * |
Seep | 1–3 | −30.2 | * |
3–7 | −27.8 | −77.8 | |
7–12 | −30.5 | −81.5 | |
12–18 | −28.4 | −98.9 | |
18–23 | −28.7 | −80.5 | |
23–27 | −31.8 | −77.6 | |
Average | −29.6 | −83.3 | |
6053 | 0–3 | −26.4 | * |
Reference | 3–6 | −27.8 | * |
6–10 | −26.1 | * | |
10–16 | −27.2 | * | |
16–23 | −27.0 | * | |
23–27 | −25.9 | * | |
Average | −26.7 |
Study Area | [CH4] µmol dm−3 | MG nmol dm−3 day−1 | MO (AOM) nmol dm−3 day−1 | SR µmol dm−3 day−1 | δ13C-Corg ‰ | References |
---|---|---|---|---|---|---|
HMMV (Barens Sea) | More 3000 | 6 ÷ 45 | 2.0 ÷ 75.8 × 103 | 5.9 ÷ 394 | [3,46] | |
Vestnesa Ridge pockmarks | More 3000 | 2.2 ÷ 75 | 7.2 ÷ 38 × 103 | 0.6 ÷ 512 | [46] | |
Black Sea sediment P817 | 80 ÷ 150 | 400 ÷ 700 × 103 | 1400 ÷ 2100 | [47], cited from [35] | ||
Hikurangi margin, Beggiatoa site 315 (New Zealand) | 15 ÷ 360 | 100 ÷ 500 × 103 | 100 ÷ 1200 | [35] | ||
Gulf of Mexico cold seeps | To 2000 | To 500 × 103 | To 5800 | −26 ÷ −23 | [34] | |
Gulf of Mexico Low seepage control | To 8.0 | To 1.5 × 103 | To 7.8 | −25 | [34] | |
Sediments of South China Sea | 2 ÷ 10 | 2 ÷ 29.6 | 0.4 ÷ 1.4 × 103 | 0.01 ÷ 0.6 | [48] | |
Laptev Sea methane seep | 220 ÷ 539 | 20 ÷ 55 | 0.8 ÷ 4.2 × 103 | 0.4 ÷ 48 | −32.4 ÷ −29.2 | [49] |
Laptev Sea Low seepage control | 0.1 ÷ 2.6 | 2 ÷ 8 | 22 ÷ 75 | 0.02 ÷ 0.8 | −28.5–−26÷ 5 | [49] |
Kara Sea sediments Yamal sector | 3.5 ÷ 20.5 | 0.8 ÷ 9.0 | 9.2 ÷ 103 | 0.46 ÷ 2.21 | −27.5 ÷ −22.5 | [18] |
Northern part of the Kara Sea | 0.02 ÷ 0.3 | 2.2 ÷ 7.5 | 0.2 ÷ 15 | 0.4 ÷ 2.2 | −25.7 ÷ −21.5 | [50] |
Chukshi Sea sediments | 0.18 ÷ 1.45 | 0.04 ÷ 0.85 | 15 ÷ 140 | 0.08 ÷ 1.8 | −24.2 ÷ −21.7 | [51] |
Northern part of the Barents Sea | 0.2 ÷ 9.5 | 21 ÷ 230 | 0.3 ÷ 2.8 | [52] | ||
Laptev Sea methane seeps | 14 ÷ 37 | 0.4 ÷ 5.0 | 0.55 ÷ 1.2 × 103 | 1.5 ÷ 6.0 | −31.8 ÷ −27.8 | Present work |
Laptev Sea Low seepage control | 0.15 ÷ 1.8 | 0.4 ÷ 12.0 | 30 ÷ 130 | 0.3 ÷ 1.0 | −27.8 ÷ −25.9 | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savvichev, A.S.; Rusanov, I.I.; Kadnikov, V.V.; Beletsky, A.V.; Zakcharova, E.E.; Samylina, O.S.; Sigalevich, P.A.; Semiletov, I.P.; Ravin, N.V.; Pimenov, N.V. Biogeochemical Activity of Methane-Related Microbial Communities in Bottom Sediments of Cold Seeps of the Laptev Sea. Microorganisms 2023, 11, 250. https://doi.org/10.3390/microorganisms11020250
Savvichev AS, Rusanov II, Kadnikov VV, Beletsky AV, Zakcharova EE, Samylina OS, Sigalevich PA, Semiletov IP, Ravin NV, Pimenov NV. Biogeochemical Activity of Methane-Related Microbial Communities in Bottom Sediments of Cold Seeps of the Laptev Sea. Microorganisms. 2023; 11(2):250. https://doi.org/10.3390/microorganisms11020250
Chicago/Turabian StyleSavvichev, Alexander S., Igor I. Rusanov, Vitaly V. Kadnikov, Alexey V. Beletsky, Elena E. Zakcharova, Olga S. Samylina, Pavel A. Sigalevich, Igor P. Semiletov, Nikolai V. Ravin, and Nikolay V. Pimenov. 2023. "Biogeochemical Activity of Methane-Related Microbial Communities in Bottom Sediments of Cold Seeps of the Laptev Sea" Microorganisms 11, no. 2: 250. https://doi.org/10.3390/microorganisms11020250
APA StyleSavvichev, A. S., Rusanov, I. I., Kadnikov, V. V., Beletsky, A. V., Zakcharova, E. E., Samylina, O. S., Sigalevich, P. A., Semiletov, I. P., Ravin, N. V., & Pimenov, N. V. (2023). Biogeochemical Activity of Methane-Related Microbial Communities in Bottom Sediments of Cold Seeps of the Laptev Sea. Microorganisms, 11(2), 250. https://doi.org/10.3390/microorganisms11020250