Chloroquine Inhibition of Autophagy Enhanced the Anticancer Effects of Listeria monocytogenes in Melanoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial and Cell Lines
2.2. Immunoblot Analysis
2.3. RT-PCR Analysis
2.4. Analysis of Intracellular Autophagic Vacuoles
2.5. Transmission Electron Microscopy
2.6. Cell Viability Assay
2.7. Annexin V-FITC/PI Staining
2.8. Bacterial Intracellular Growth Assays
2.9. Ethics Statement
2.10. Tumor Model and Treatment
2.11. TUNEL Staining of Tumor Tissue
2.12. Bacterial Distribution in Tumor Tissue
2.13. Statistical Analysis
3. Results
3.1. LM Induced Autophagy in B16F10 Melanoma Cells
3.2. Pharmaceutical Inhibition of the Autophagy Pathway Enhanced Cell Death Induced by LM In Vitro
3.3. Autophagy Restricted the Growth of Intracellular LM in B16F10 Cells
3.4. Blockage of Autophagy Potentiated the Antitumor Capacity of LM In Vivo
3.5. Combined Treatment of LM and CQ Enhanced B16F10 Cell Apoptosis In Vivo
3.6. Inhibition of Autophagy by CQ Enhanced LM Multiplication at the Tumor Site
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, D.; Xu, J.; Liu, X.Y.; Chen, Z.N.; Bian, H. Fighting Cancer with Viruses: Oncolytic Virus Therapy in China. Hum. Gene Ther. 2018, 29, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Pavet, V.; Portal, M.M.; Moulin, J.C.; Herbrecht, R.; Gronemeyer, H. Towards novel paradigms for cancer therapy. Oncogene 2011, 30, 1–20. [Google Scholar] [CrossRef]
- Patyar, S.; Joshi, R.; Byrav, D.S.; Prakash, A.; Medhi, B.; Das, B.K. Bacteria in cancer therapy: A novel experimental strategy. J. Biomed. Sci. 2010, 17, 21. [Google Scholar] [CrossRef] [PubMed]
- Wiemann, B.; Starnes, C.O. Coley’s toxins, tumor necrosis factor and cancer research: A historical perspective. Pharmacol. Ther. 1994, 64, 529–564. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Yang, F.; Chen, W.; Liu, S.; Qiu, L.; Chen, J. Bacteria-mediated cancer therapies: Opportunities and challenges. Biomater. Sci. 2021, 9, 5732–5744. [Google Scholar] [CrossRef]
- Soleimani, N.; Javadi, M.M. Future prospects of bacteria-mediated cancer therapies: Affliction or opportunity? Microb Pathog. 2022, 172, 105795. [Google Scholar] [CrossRef]
- Dustoor, M.M.; Fulton, A.; Croft, W.; Blazkovec, A.A. Antitumor activity of Listeria monocytogenes on a guinea pig fibrosarcoma. Infect Immun. 1979, 23, 54–60. [Google Scholar] [CrossRef]
- Zeng, H.; Xie, M.; Ding, C.; Ma, J.; Xu, D.; Wang, X.; Qiu, J.; Liu, Q. Attenuated Listeria monocytogenes as a Vaccine Vector for the Delivery of OMPW, the Outer Membrane Protein of Aeromonas hydrophila. Front Microbiol. 2020, 11, 70. [Google Scholar] [CrossRef]
- Wallecha, A.; Singh, R.; Malinina, I. Listeria monocytogenes (Lm)-LLO immunotherapies reduce the immunosuppressive activity of myeloid-derived suppressor cells and regulatory T cells in the tumor microenvironment. J. Immunother. 2013, 36, 468–476. [Google Scholar] [CrossRef]
- Leitao, J.H. Listeria monocytogenes as a Vector for Cancer Immunotherapy. Vaccines 2020, 8, 439. [Google Scholar] [CrossRef]
- Musser, M.L.; Berger, E.P.; Tripp, C.D.; Clifford, C.A.; Bergman, P.J.; Johannes, C.M. Safety evaluation of the canine osteosarcoma vaccine, live Listeria vector. Vet. Comp. Oncol. 2021, 19, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.M.; Pan, Z.K.; Guirnalda, P.; Tsai, P.; Seavey, M.; Paterson, Y. Targeting tumor vasculature with novel Listeria-based vaccines directed against CD105. Cancer Immunol. Immunother. 2011, 60, 931–942. [Google Scholar] [CrossRef] [PubMed]
- Drake, C.G.; Pachynski, R.K.; Subudhi, S.K.; McNeel, D.G.; Antonarakis, E.S.; Bauer, T.M.; Lauer, P.; Brockstedt, D.; Patricia, D.; Wade, M.; et al. Safety and preliminary immunogenicity of JNJ-64041809, a live-attenuated, double-deleted Listeria monocytogenes-based immunotherapy, in metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis. 2022, 25, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Seavey, M.M.; Maciag, P.C.; Al-Rawi, N.; Sewell, D.; Paterson, Y. An anti-vascular endothelial growth factor receptor 2/fetal liver kinase-1 Listeria monocytogenes anti-angiogenesis cancer vaccine for the treatment of primary and metastatic Her-2/neu+ breast tumors in a mouse model. J. Immunol. 2009, 182, 5537–5546. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.; Chen, J.; Yao, H.; Wang, Y.; Jia, Y.; Ling, Z.; Feng, Y.; Pan, Z.; Yin, Y.; Jiao, X. Enhanced therapeutic efficacy of Listeria-based cancer vaccine with codon-optimized HPV16 E7. Hum. Vaccin. Immunother. 2021, 17, 1568–1577. [Google Scholar] [CrossRef]
- Gravekamp, C.; Paterson, Y. Harnessing Listeria monocytogenes to target tumors. Cancer Biol. Ther. 2010, 9, 257–265. [Google Scholar] [CrossRef]
- Vitiello, M.; Evangelista, M.; Di Lascio, N.; Kusmic, C.; Massa, A.; Orso, F.; Sarti, S.; Marranci, A.; Rodzik, K.; Germelli, L.; et al. Antitumoral effects of attenuated Listeria monocytogenes in a genetically engineered mouse model of melanoma. Oncogene 2019, 38, 3756–3762. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Q.; Zhang, Z.; Cheng, W.; Cao, W.; Jiang, C.; Han, C.; Li, J.; Hua, Z. Chloroquine enhanced the anticancer capacity of VNP20009 by inhibiting autophagy. Sci. Rep. 2016, 6, 29774. [Google Scholar] [CrossRef]
- Ichimiya, T.; Yamakawa, T.; Hirano, T.; Yokoyama, Y.; Hayashi, Y.; Hirayama, D.; Wagatsuma, K.; Itoi, T.; Nakase, H. Autophagy and Autophagy-Related Diseases: A Review. Int. J. Mol. Sci. 2020, 21, 8974. [Google Scholar] [CrossRef]
- Chen, C.; Gao, H.; Su, X. Autophagy-related signaling pathways are involved in cancer (Review). Exp. Ther. Med. 2021, 22, 710. [Google Scholar] [CrossRef]
- Ariosa, A.R.; Lahiri, V.; Lei, Y.; Yang, Y.; Yin, Z.; Zhang, Z.; Klionsky, D.J. A perspective on the role of autophagy in cancer. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166262. [Google Scholar] [CrossRef] [PubMed]
- Colhado Rodrigues, B.L.; Lallo, M.A.; Perez, E.C. The Controversial Role of Autophagy in Tumor Development: A Systematic Review. Immunol. Investig. 2020, 49, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Takabatake, Y.; Takahashi, A.; Isaka, Y. Chloroquine in cancer therapy: A double-edged sword of autophagy. Cancer Res. 2013, 73, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Chou, H.L.; Lin, Y.H.; Liu, W.; Wu, C.Y.; Li, R.N.; Huang, H.W.; Chou, C.H.; Chiou, S.J.; Chiu, C.C. Combination Therapy of Chloroquine and C(2)-Ceramide Enhances Cytotoxicity in Lung Cancer H460 and H1299 Cells. Cancers (Basel) 2019, 11, 370. [Google Scholar] [CrossRef]
- Py, B.F.; Lipinski, M.M.; Yuan, J. Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy 2007, 3, 117–125. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Xu, X.; Yang, D.; Wang, D.; Han, X.; Shi, Y.; Tian, M.; Ding, C.; Peng, D.; et al. Escherichia coli Type III Secretion System 2 ATPase EivC Is Involved in the Motility and Virulence of Avian Pathogenic Escherichia coli. Front. Microbiol. 2016, 7, 1387. [Google Scholar] [CrossRef]
- Jia, Y.Y.; Tan, W.J.; Duan, F.F.; Pan, Z.M.; Chen, X.; Yin, Y.L.; Jiao, X.A. A Genetically Modified attenuated Listeria Vaccine Expressing HPV16 E7 Kill Tumor Cells in Direct and Antigen-Specific Manner. Front. Cell. Infect. Microbiol. 2017, 7, 279. [Google Scholar] [CrossRef] [PubMed]
- Maes, H.; Kuchnio, A.; Peric, A.; Moens, S.; Nys, K.; De Bock, K.; Quaegebeur, A.; Schoors, S.; Georgiadou, M.; Wouters, J.; et al. Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell 2014, 26, 190–206. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Kang, R.; Zeh, H.; Klionsky, D.J.; Tang, D. Regulation and function of autophagy in pancreatic cancer. Autophagy 2021, 17, 3275–3296. [Google Scholar] [CrossRef]
- Dortet, L.; Mostowy, S.; Samba-Louaka, A.; Gouin, E.; Nahori, M.A.; Wiemer, E.A.; Dussurget, O.; Cossart, P. Recruitment of the major vault protein by InlK: A Listeria monocytogenes strategy to avoid autophagy. PLoS Pathog. 2011, 7, e1002168. [Google Scholar] [CrossRef]
- Gupta, M.; Shin, D.M.; Ramakrishna, L.; Goussetis, D.J.; Platanias, L.C.; Xiong, H.; Morse, H.C., 3rd; Ozato, K. IRF8 directs stress-induced autophagy in macrophages and promotes clearance of Listeria monocytogenes. Nat. Commun. 2015, 6, 6379. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.F.; Prajsnar, T.K.; Hill, C.J.; Tooke, A.K.; Serba, J.J.; Tonge, R.D.; Foster, S.J.; Grierson, A.J.; Ingham, P.W.; Renshaw, S.A.; et al. Neutrophils use selective autophagy receptor Sqstm1/p62 to target Staphylococcus aureus for degradation in vivo in zebrafish. Autophagy 2021, 17, 1448–1457. [Google Scholar] [CrossRef] [PubMed]
- Ichimura, Y.; Komatsu, M. Selective degradation of p62 by autophagy. Semin. Immunopathol. 2010, 32, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, M.; Ichimura, Y. Physiological significance of selective degradation of p62 by autophagy. FEBS Lett. 2010, 584, 1374–1378. [Google Scholar] [CrossRef] [PubMed]
- Lv, T.; Li, Z.; Xu, L.; Zhang, Y.; Chen, H.; Gao, Y. Chloroquine in combination with aptamer-modified nanocomplexes for tumor vessel normalization and efficient erlotinib/Survivin shRNA co-delivery to overcome drug resistance in EGFR-mutated non-small cell lung cancer. Acta Biomater. 2018, 76, 257–274. [Google Scholar] [CrossRef]
- Jiang, P.D.; Zhao, Y.L.; Deng, X.Q.; Mao, Y.Q.; Shi, W.; Tang, Q.Q.; Li, Z.G.; Zheng, Y.Z.; Yang, S.Y.; Wei, Y.Q. Antitumor and antimetastatic activities of chloroquine diphosphate in a murine model of breast cancer. Biomed. Pharmacother. 2010, 64, 609–614. [Google Scholar] [CrossRef]
- Zamame Ramirez, J.A.; Romagnoli, G.G.; Falasco, B.F.; Gorgulho, C.M.; Sanzochi Fogolin, C.; Dos Santos, D.C.; Junior, J.P.A.; Lotze, M.T.; Ureshino, R.P.; Kaneno, R. Blocking drug-induced autophagy with chloroquine in HCT-116 colon cancer cells enhances DC maturation and T cell responses induced by tumor cell lysate. Int. Immunopharmacol. 2020, 84, 106495. [Google Scholar] [CrossRef] [PubMed]
- Shahabi, V.; Reyes-Reyes, M.; Wallecha, A.; Rivera, S.; Paterson, Y.; Maciag, P. Development of a Listeria monocytogenes based vaccine against prostate cancer. Cancer Immunol. Immunother. 2008, 57, 1301–1313. [Google Scholar] [CrossRef]
Target Gene | Primer | Sequence (5′ to 3′) | Product Size (bp) |
---|---|---|---|
β-actin | β-actin-F | CCACGAAACTACCTTCAACTCC | 132 |
β-actin-R | GTGATCTCCTTCTGCATCCTGT | ||
Atg3 | ATG3-F | CTGGCGGTGAAGATGCTATT | 201 |
ATG3-R | GTGGCAGATGAGGGTGATTT | ||
Atg5 | ATG5-F | TGGGCCATCAATCGGAAACTC | 129 |
ATG5-R | TGCAGCCACAGGACGAAACAG | ||
Beclin-1 | Beclin-1-F | AATGACTTTTTTCCTTAGGGGG | 142 |
Beclin-1-R | GTGGCTTTTGTGGATTTTTTCT | ||
p62 | P62-F | GCACACCAAGCTCGCATTC | 124 |
P62-R | ACCCGAAGTGTCCGTGTTTC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Zhao, Y.; Ding, K.; He, L.; Liao, C.; Li, J.; Chen, S.; Shang, K.; Chen, J.; Yu, C.; et al. Chloroquine Inhibition of Autophagy Enhanced the Anticancer Effects of Listeria monocytogenes in Melanoma. Microorganisms 2023, 11, 408. https://doi.org/10.3390/microorganisms11020408
Yu Z, Zhao Y, Ding K, He L, Liao C, Li J, Chen S, Shang K, Chen J, Yu C, et al. Chloroquine Inhibition of Autophagy Enhanced the Anticancer Effects of Listeria monocytogenes in Melanoma. Microorganisms. 2023; 11(2):408. https://doi.org/10.3390/microorganisms11020408
Chicago/Turabian StyleYu, Zuhua, Yingying Zhao, Ke Ding, Lei He, Chengshui Liao, Jing Li, Songbiao Chen, Ke Shang, Jian Chen, Chuan Yu, and et al. 2023. "Chloroquine Inhibition of Autophagy Enhanced the Anticancer Effects of Listeria monocytogenes in Melanoma" Microorganisms 11, no. 2: 408. https://doi.org/10.3390/microorganisms11020408
APA StyleYu, Z., Zhao, Y., Ding, K., He, L., Liao, C., Li, J., Chen, S., Shang, K., Chen, J., Yu, C., Zhang, C., Li, Y., Wang, S., & Jia, Y. (2023). Chloroquine Inhibition of Autophagy Enhanced the Anticancer Effects of Listeria monocytogenes in Melanoma. Microorganisms, 11(2), 408. https://doi.org/10.3390/microorganisms11020408