Influence of Cellulase or Lactiplantibacillus plantarum on the Ensiling Performance and Bacterial Community in Mixed Silage of Alfalfa and Leymus chinensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Silage
2.2. Chemical Component and Fermentation Characteristics Analyses
2.3. DNA Extraction, PCR and Sequencing
2.4. Microbial Community Analysis
2.5. Statistical Analyses
3. Results
3.1. Characteristics of Fresh Material
3.2. Dynamics of Fermentation Characteristics of Mixed Silage
3.3. Chemical Composition of Mixed Silage
3.4. The Microbial Community of Mixed Silages during Ensiling
3.5. Relationships between Fermentation Parameters and Bacterial Community
3.6. Bacterial Metabolic Functions Shift during Ensiling
4. Discussion
4.1. Chemical Characteristics of Fresh Material before Ensiling
4.2. Effects of Additives on Silage Quality during Ensiling
4.3. Effects of Additives on Microbial Community Dynamics during Ensiling
4.4. Function Shifts of Bacteria Communities in Mixed Silage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, T.; Xue, X.; Zhou, L.; Guo, J. Combating Aeolian Desertification in Northern China. Land Degrad. Dev. 2015, 26, 118–132. [Google Scholar] [CrossRef]
- Liu, S.; Wang, T. Aeolian desertification from the mid-1970s to 2005 in Otindag Sandy Land, Northern China. Environ. Geol. 2007, 51, 1057–1064. [Google Scholar] [CrossRef]
- Guo, Z.; Huang, N.; Dong, Z.; Van Pelt, R.S.; Zobeck, T.M. Wind Erosion Induced Soil Degradation in Northern China: Status, Measures and Perspective. Sustainability 2014, 6, 8951–8966. [Google Scholar] [CrossRef]
- Huang, W.; Zhao, X.; Zhao, X.; Li, Y.; Zuo, X.; Lian, J.; Luo, Y. Genetic diversity in Artemisia halodendron (Asteraceae) based on chloroplast DNA psbA–trnH region from different hydrothermal conditions in Horqin sandy land, northern China. Plant Syst. Evol. 2012, 299, 107–113. [Google Scholar] [CrossRef]
- Kaminsky, L.M.; Thompson, G.L.; Trexler, R.V.; Bell, T.H.; Kao-Kniffin, J. Medicago sativa has Reduced Biomass and Nodulation When Grown with Soil Microbiomes Conditioned to High Phosphorus Inputs. Phytobiomes J. 2018, 2, 237–248. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, S.; Yang, F.; Wang, Y.; Wang, Y. Effects of Lactic Acid Bacterial Inoculants on Fermentation Quality, Bacterial Community, and Mycotoxins of Alfalfa Silage under Vacuum or Nonvacuum Treatment. Microorganisms 2021, 9, 2614. [Google Scholar] [CrossRef]
- Kang, J.; Tang, S.; Zhong, R.; Tan, Z.; Wu, D. Alfalfa Silage Treated with Sucrose has an Improved Feed Quality and More Beneficial Bacterial Communities. Front. Microbiol. 2021, 12, 670165. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Jiang, Y.; Kim, D.H.; Cervantes, A.A.P.; Arriola, K.G.; Vyas, D.; Weinberg, Z.G.; Jeong, K.C.; Adesogan, A.T. Fate of Escherichia coli O157:H7 and bacterial diversity in corn silage contaminated with the pathogen and treated with chemical or microbial additives. J. Dairy Sci. 2017, 100, 1780–1794. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Zhao, J.; Dong, Z.; Liu, Q.; Dong, D.; Shao, T. Two novel screened microbial consortia and their application in combination with Lactobacillus plantarum for improving fermentation quality of high-moisture alfalfa. J. Appl. Microbiol. 2022, 132, 2572–2582. [Google Scholar] [CrossRef]
- Yang, L.; Yuan, X.; Li, J.; Dong, Z.; Shao, T. Dynamics of microbial community and fermentation quality during ensiling of sterile and nonsterile alfalfa with or without Lactobacillus plantarum inoculant. Bioresour. Technol. 2019, 275, 280–287. [Google Scholar] [CrossRef]
- Li, Y.; Du, S.; Sun, L.; Cheng, Q.; Hao, J.; Lu, Q.; Ge, G.; Wang, Z.; Jia, Y. Effects of Lactic Acid Bacteria and Molasses Additives on Dynamic Fermentation Quality and Microbial Community of Native Grass Silage. Front. Microbiol. 2022, 13, 830121. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.U.; Hjort-Gregersen, K.; Vazifehkhoran, A.H.; Triolo, J.M. Co-ensiling of straw with sugar beet leaves increases the methane yield from straw. Bioresour. Technol. 2017, 245, 106–115. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, L.; Zhang, L.; Liu, Z.; Cheng, L.; Yang, Y.; Shen, S.; Chen, S.; Liu, G. The transcriptional factor LcDREB2 cooperates with LcSAMDC2 to contribute to salt tolerance in Leymus chinensis. Plant Cell Tissue Organ Cult. 2013, 113, 245–256. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, Z.; Na, R.S. Effects of different additives on fermentation quality and aerobic stability of Leymus chinensis silage. Grass Forage Sci. 2018, 73, 413–419. [Google Scholar] [CrossRef]
- Xue, Y.; Bai, C.; Sun, J.; Sun, L.; Chang, S.; Sun, Q.; Yu, Z.; Yin, G.; Zhao, H.; Ding, H. Effects of locations and growth stages on nutritive value and silage fermentation quality of Leymus chinensis in Eurasian steppe of northern China. Grassl. Sci. 2018, 64, 40–50. [Google Scholar] [CrossRef]
- Tian, J.; Xu, N.; Liu, B.; Huan, H.; Gu, H.; Dong, C.; Ding, C. Interaction effect of silo density and additives on the fermentation quality, microbial counts, chemical composition and in vitro degradability of rice straw silage. Bioresour. Technol. 2020, 297, 122412. [Google Scholar] [CrossRef]
- Mu, L.; Xie, Z.; Hu, L.; Chen, G.; Zhang, Z. Cellulase interacts with Lactobacillus plantarum to affect chemical composition, bacterial communities, and aerobic stability in mixed silage of high-moisture amaranth and rice straw. Bioresour. Technol. 2020, 315, 123772. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Y.; Zhao, S.; Wang, Y. Lactobacillus plantarum Inoculants Delay Spoilage of High Moisture Alfalfa Silages by Regulating Bacterial Community Composition. Front. Microbiol. 2020, 11, 1989. [Google Scholar] [CrossRef]
- Hu, Z.; Niu, H.; Tong, Q.; Chang, J.; Yu, J.; Li, S.; Zhang, S.; Ma, D. The Microbiota Dynamics of Alfalfa Silage During Ensiling and After Air Exposure, and the Metabolomics After Air Exposure Are Affected by Lactobacillus casei and Cellulase Addition. Front. Microbiol. 2020, 11, 519121. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Usman, S.; Li, F.; Bai, J.; Zhang, J.; Guo, X. Lignocellulose conversion of ensiled Caragana korshinskii Kom. facilitated by Pediococcus acidilactici and cellulases. Microb. Biotechnol. 2023, 16, 432–447. [Google Scholar] [CrossRef]
- Khota, W.; Pholsen, S.; Higgs, D.; Cai, Y. Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulase and inoculant. J. Dairy Sci. 2016, 99, 9768–9781. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Wang, S.; Zhao, J.; Dong, Z.; Li, J.; Liu, Q.; Sun, F.; Shao, T. Effect of ensiling alfalfa with citric acid residue on fermentation quality and aerobic stability. Anim. Feed. Sci. Technol. 2020, 269, 114622. [Google Scholar] [CrossRef]
- Ni, K.; Zhao, J.; Zhu, B.; Su, R.; Pan, Y.; Ma, J.; Zhou, G.; Tao, Y.; Liu, X.; Zhong, J. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresour. Technol. 2018, 265, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.S.; Ravindran, B.; Soundharrajan, I.; Awasthi, M.K.; Choi, K.C. Improved performance and microbial community dynamics in anaerobic fermentation of triticale silages at different stages. Bioresour. Technol. 2022, 345, 126485. [Google Scholar] [CrossRef] [PubMed]
- McAllister, T.A.; Dunière, L.; Drouin, P.; Xu, S.; Wang, Y.; Munns, K.; Zaheer, R. Silage review: Using molecular approaches to define the microbial ecology of silage. J. Dairy Sci. 2018, 101, 4060–4074. [Google Scholar] [CrossRef]
- Gruetzke, J.; Malorny, B.; Hammerl, J.A.; Busch, A.; Tausch, S.H.; Tomaso, H.; Deneke, C. Fishing in the Soup—Pathogen Detection in Food Safety Using Metabarcoding and Metagenomic Sequencing. Front. Microbiol. 2019, 10, 1805. [Google Scholar] [CrossRef]
- Sun, L.; Na, N.; Li, X.; Li, Z.; Wang, C.; Wu, X.; Xiao, Y.; Yin, G.; Liu, S.; Liu, Z.; et al. Impact of Packing Density on the Bacterial Community, Fermentation, and In Vitro Digestibility of Whole-Crop Barley Silage. Agriculture 2021, 11, 672. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Thomas, T.A. An automated procedure for the determination of soluble carbohydrates in herbage. J. Sci. Food Agric. 1977, 28, 639–642. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, P.; Xiao, B.; Yang, F.; Li, D.; Ge, G.; Jia, Y.; Bai, S. Effects of LAB inoculant and cellulase on the fermentation quality and chemical composition of forage soybean silage prepared with corn stover. Grassl. Sci. 2021, 67, 83–90. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and In Vitro Media. J. Dairy Sci. 1980, 33, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Tao, Y.; Zhong, J. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Benno, Y.; Ogawa, M.; Kumai, S. Effect of Applying Lactic Acid Bacteria Isolated from Forage Crops on Fermentation Characteristics and Aerobic Deterioration of Silage. J. Dairy Sci. 1999, 82, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Benno, Y.; Ogawa, M.; Ohmomo, S.; Kumai, S.; Nakase, T. Influence of Lactobacillus spp. from an Inoculant and of Weissella and Leuconostoc spp. from Forage Crops on Silage Fermentation. Appl. Environ. Microbiol. 1998, 64, 2982–2987. [Google Scholar] [CrossRef] [PubMed]
- Heinritz, S.N.; Martens, S.D.; Avila, P.; Hoedtke, S. The effect of inoculant and sucrose addition on the silage quality of tropical forage legumes with varying ensilability. Anim. Feed Sci. Technol. 2012, 174, 201–210. [Google Scholar] [CrossRef]
- Desta, S.T.; Yuan, X.; Li, J.; Shao, T. Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility of Napier grass ensiled with additives. Bioresour. Technol. 2016, 221, 447–454. [Google Scholar] [CrossRef]
- Li, M.; Zhou, H.; Zi, X.; Cai, Y. Silage fermentation and ruminal degradation of stylo prepared with lactic acid bacteria and cellulase. Anim. Sci. J. 2017, 88, 1531–1537. [Google Scholar] [CrossRef]
- Hou, M.; Gentu, G.; Liu, T.; Jia, Y.; Cai, Y. Silage preparation and fermentation quality of natural grasses treated with lactic acid bacteria and cellulase in meadow steppe and typical steppe. Asian-Australas. J. Anim. Sci. 2017, 30, 788–796. [Google Scholar] [CrossRef]
- da Silva, E.B.; Smith, M.L.; Savage, R.M.; Polukis, S.A.; Drouin, P.; Kung, L., Jr. Effects of Lactobacillus hilgardii 4785 and Lactobacillus buchneri 40788 on the bacterial community, fermentation and aerobic stability of high-moisture corn silage. J. Appl. Microbiol. 2021, 130, 1481–1493. [Google Scholar] [CrossRef]
- Schmidt, R.J.; Hu, W.; Mills, J.A.; Kung, L., Jr. The development of lactic acid bacteria and Lactobacillus buchneri and their effects on the fermentation of alfalfa silage. J. Dairy Sci. 2009, 92, 5005–5010. [Google Scholar] [CrossRef] [Green Version]
- Mu, L.; Xie, Z.; Hu, L.; Chen, G.; Zhang, Z. Lactobacillus plantarum and molasses alter dynamic chemical composition, microbial community, and aerobic stability of mixed (amaranth and rice straw) silage. J. Sci. Food Agric. 2021, 101, 5225–5235. [Google Scholar] [CrossRef] [PubMed]
- Muck, R. Recent advances in silage microbiology. Agric. Food Sci. 2013, 22, 3–15. [Google Scholar] [CrossRef]
- Guan, H.; Yan, Y.; Li, X.; Li, X.; Shuai, Y.; Feng, G.; Ran, Q.; Cai, Y.; Li, Y.; Zhang, X. Microbial communities and natural fermentation of corn silages prepared with farm bunker-silo in Southwest China. Bioresour. Technol. 2018, 265, 282–290. [Google Scholar] [CrossRef] [PubMed]
- König, W.; Lamminen, M.; Weiss, K.; Tuomivirta, T.T.; Muñoz, S.S.; Fritze, H.; Elo, K.; Puhakka, L.; Vanhatalo, A.; Jaakkola, S. The effect of additives on the quality of white lupin-wheat silage assessed by fermentation pattern and qPCR quantification of clostridia. Grass Forage Sci. 2017, 72, 757–771. [Google Scholar] [CrossRef]
- Guo, G.; Yuan, X.; Li, L.; Wen, A.; Shao, T. Effects of fibrolytic enzymes, molasses and lactic acid bacteria on fermentation quality of mixed silage of corn and hulless-barely straw in the Tibetan Plateau. Grassl. Sci. 2014, 60, 240–246. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, R.; Wang, C.; Dong, W.; Zhang, Z.; Zhao, L.; Zhang, X. Effects of Cellulase and Lactobacillus plantarum on Fermentation Quality, Chemical Composition, and Microbial Community of Mixed Silage of Whole-Plant Corn and Peanut Vines. Appl. Biochem. Biotechnol. 2022, 194, 2465–2480. [Google Scholar] [CrossRef]
- Du, Z.; Risu, N.; Gentu, G.; Jia, Y.; Cai, Y. Dynamic changes and characterization of the protein and carbohydrate fractions of native grass grown in Inner Mongolia during ensiling and the aerobic stage. Asian-Australas. J. Anim. Sci. 2020, 33, 556–567. [Google Scholar] [CrossRef]
- Mu, L.; Wang, Q.; Cao, X.; Zhang, Z. Effects of fatty acid salts on fermentation characteristics, bacterial diversity and aerobic stability of mixed silage prepared with alfalfa, rice straw and wheat bran. J. Sci. Food Agric. 2022, 102, 1475–1487. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Jiang, Y.; Cervantes, A.A.P.; Kim, D.H.; de Oliveira, A.S.; Vyas, D.; Weinberg, Z.G.; Jeong, K.C.; Adesogan, A.T. Bacterial Diversity and Composition of Alfalfa Silage as Analyzed by Illumina MiSeq Sequencing: Effects of Escherichia Coli O157:H7 and Silage Additives. J. Dairy Sci. 2018, 101, 2048–2059. [Google Scholar] [CrossRef]
- Ilyas, N.; Yang, Y.; Zhang, C.; Singh, R.P.; Yu, Q.; Yuan, Y.; You, X.; Li, Y. Temporal dynamics and variation in the alfalfa root nodule and rhizosphere microbial communities of coastal sand and lawn soil. J. Plant Interact. 2022, 17, 173–182. [Google Scholar] [CrossRef]
- Ren, H.; Wang, C.; Fan, W.; Zhang, B.; Li, Z.; Li, D. Effects of Formic or Acetic Acid on the Storage Quality of Mixed Air-Dried Corn Stover and Cabbage Waste, and Microbial Community Analysis. Food Technol. Biotechnol. 2018, 56, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Muck, R.E. Silage microbiology and its control through additives. Rev. Bras. Zootec. 2010, 39, 183–191. [Google Scholar] [CrossRef]
- Yuan, X.; Yang, X.; Wang, W.; Li, J.; Dong, Z.; Zhao, J.; Shao, T. The effects of natamycin and hexanoic acid on the bacterial community, mycotoxins concentrations, fermentation profiles, and aerobic stability of high moisture whole-crop corn silage. Anim. Feed. Sci. Technol. 2022, 286, 115250. [Google Scholar] [CrossRef]
- Bai, J.; Xu, D.; Xie, D.; Wang, M.; Li, Z.; Guo, X. Effects of antibacterial peptide-producing Bacillus subtilis and Lactobacillus buchneri on fermentation, aerobic stability, and microbial community of alfalfa silage. Bioresour. Technol. 2020, 315, 123881. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zhao, J.; Dong, Z.; Shao, T. Effect of storage time on the fermentation quality, bacterial community structure and metabolic profiles of napiergrass (Pennisetum purpureum Schum.) silage. Arch. Microbiol. 2021, 204, 22. [Google Scholar] [CrossRef]
- Kilstrup, M.; Hammer, K.; Ruhdal Jensen, P.; Martinussen, J. Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiol. Rev. 2005, 29, 555–590. [Google Scholar] [CrossRef]
- Wang, S.; Shao, T.; Li, J.; Zhao, J.; Dong, Z. Fermentation Profiles, Bacterial Community Compositions, and Their Predicted Functional Characteristics of Grass Silage in Response to Epiphytic Microbiota on Legume Forages. Front. Microbiol. 2022, 13, 830888. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Ding, Z.; Ke, W.; Xu, D.; Wang, M.; Huang, W.; Zhang, Y.; Liu, F.; Guo, X. Different lactic acid bacteria and their combinations regulated the fermentation process of ensiled alfalfa: Ensiling characteristics, dynamics of bacterial community and their functional shifts. Microb. Biotechnol. 2021, 14, 1171–1182. [Google Scholar] [CrossRef]
- Pessione, A.; Lamberti, C.; Pessione, E. Proteomics as a tool for studying energy metabolism in lactic acid bacteria. Mol. Biosyst. 2010, 6, 1419–1430. [Google Scholar] [CrossRef]
- Helm, J.; Wendlandt, K.-D.; Rogge, G.; Kappelmeyer, U. Characterizing a stable methane-utilizing mixed culture used in the synthesis of a high-quality biopolymer in an open system. J. Appl. Microbiol. 2006, 101, 387–395. [Google Scholar] [CrossRef]
Item | AF | LC | Mixture |
---|---|---|---|
Chemical composition | |||
Dry matter (g kg−1 FM) | 227.65 ± 1.95 | 505.85 ± 3.25 | 335.19 ± 3.62 |
Crude protein (g kg−1 DM) | 253.90 ± 2.03 | 111.35 ± 1.76 | 196.03 ± 3.51 |
Neutral detergent fiber (g kg−1 DM) | 415.04 ± 1.94 | 678.25 ± 6.21 | 510.72 ± 6.34 |
Acid detergent fiber (g kg−1 DM) | 312.33 ± 2.57 | 383.30 ± 4.57 | 335.71 ± 2.07 |
Hemicellulose (g kg−1 DM) | 102.71 ± 1.85 | 294.95 ± 3.10 | 175.00 ± 4.27 |
Water-soluble carbohydrate (g kg−1 DM) | 61.02 ± 0.69 | 46.72 ± 1.62 | 48.70 ± 0.27 |
Microbial population | |||
Lactic acid bacteria (log10 cfu g−1 FM) | 3.87 ± 0.10 | 4.29 ± 0.06 | 3.74 ± 0.07 |
Aerobic bacteria (log10 cfu g−1 FM) | 6.06 ± 0.82 | 4.29 ± 0.02 | 4.71 ± 0.05 |
Coliform bacteria (log cfu g−1 FM) | 4.50 ± 0.17 | 4.32 ± 0.14 | 4.36 ± 0.08 |
Yeast (log10 cfu g−1 FM) | 3.49 ± 0.17 | 3.53 ± 0.07 | 3.26 ± 0.14 |
Molds (log10 cfu g−1 FM) | ND | ND | ND |
Item | Treatment | Ensiling Days | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | 5 | 7 | 30 | T | D | T × D | |||
pH | CON | 5.36 a | 5.26 a | 5.21 a | 5.06 a | 4.90 a | 0.03 | <0.01 | <0.01 | <0.01 |
LP | 5.20 b | 4.97 c | 4.87 b | 4.80 b | 4.75 b | |||||
CE | 5.15 bc | 5.05 b | 4.82 bc | 4.76 bc | 4.66 c | |||||
LPCE | 5.12 c | 4.95 c | 4.80 c | 4.74 c | 4.60 d | |||||
Lactic acid (g kg−1 DM) | CON | 5.68 b | 11.06 b | 13.86 b | 21.95 c | 25.86 d | 1.19 | <0.01 | <0.01 | <0.01 |
LP | 7.57 a | 16.50 a | 27.42 a | 26.29 b | 28.56 c | |||||
CE | 8.06 a | 11.22 b | 27.98 a | 30.06 a | 29.58 b | |||||
LPCE | 7.86 a | 16.78 a | 28.73 a | 28.83 a | 33.39 a | |||||
Acetic acid (g kg−1 DM) | CON | 3.43 c | 4.13 c | 5.23 a | 5.61 a | 13.16 a | 0.33 | <0.01 | <0.01 | <0.01 |
LP | 4.02 b | 4.63 a | 4.96 c | 5.36 b | 10.33 b | |||||
CE | 4.10 b | 4.58 a | 5.09 b | 5.25 b | 9.49 c | |||||
LPCE | 4.54 a | 4.42 b | 5.07 bc | 5.33 b | 8.54 d | |||||
Propionic acid (g kg−1 DM) | CON | ND | ND | ND | ND | ND | ||||
LP | ND | ND | ND | ND | ND | |||||
CE | ND | ND | ND | ND | ND | |||||
LPCE | ND | ND | ND | ND | ND | |||||
Butyric acid (g kg−1 DM) | CON | ND | ND | ND | ND | ND | ||||
LP | ND | ND | ND | ND | ND | |||||
CE | ND | ND | ND | ND | ND | |||||
LPCE | ND | ND | ND | ND | ND | |||||
NH3-N (g kg–1 TN) | CON | 21.17 a | 23.52 a | 24.42 a | 28.02 a | 40.43 a | 0.73 | <0.01 | <0.01 | <0.01 |
LP | 18.05 c | 18.58 c | 21.29 b | 24.42 c | 33.26 b | |||||
CE | 17.45 c | 18.44 c | 22.19 b | 25.07 b c | 31.20 c | |||||
LPCE | 19.15 b | 21.42 b | 23.62 a | 25.78 b | 27.71 d | |||||
WSC (g kg−1 DM) | CON | 43.81 a | 34.43 ab | 27.23 a | 16.93 a | 6.83 d | 1.63 | <0.01 | <0.01 | <0.01 |
LP | 38.29 c | 36.24 a | 17.83 b | 14.24 b | 7.47 c | |||||
CE | 38.47 c | 32.38 b | 15.25 c | 15.39 ab | 9.10 a | |||||
LPCE | 41.66 c | 36.42 a | 15.90 c | 14.20 b | 8.33 b | |||||
DM (g kg−1 FM) | CON | 324.40 a | 321.64 a | 318.26 ab | 317.45 b | 309.94 b | 0.61 | <0.01 | <0.01 | 0.68 |
LP | 324.93 a | 322.15 a | 321.30 a | 320.80 a | 316.29 a | |||||
CE | 323.05 a | 321.09 a | 317.18 b | 314.91 c | 310.89 ab | |||||
LPCE | 321.74 a | 320.42 a | 317.96 ab | 315.55 bc | 311.15 ab |
Item | CP (g kg−1 DM) | NDF (g kg−1 DM) | ADF (g kg−1 DM) | Hemicellulose (g kg−1 DM) |
---|---|---|---|---|
CON | 167.78 d | 589.61 a | 418.26 a | 171.35 ab |
LP | 176.61 b | 590.55 a | 413.12 a | 177.42 a |
CE | 171.88 c | 572.14 b | 411.62 a | 160.52 bc |
LPCE | 178.49 a | 555.07 c | 406.79 a | 148.27 c |
SEM | 4.40 | 4.52 | 2.29 | 3.75 |
p-value | <0.01 | <0.01 | 0.43 | <0.01 |
Ensiling Days | Treatment | Item | |||||
---|---|---|---|---|---|---|---|
Sequence | OTUS | Chao1 | Simpson | Shannon | Coverage | ||
FM | AF | 69,419 | 103 | 109 c | 0.35 e | 1.15 f | 0.9998 |
LC | 83,855 | 283 | 288 ab | 0.69 bcd | 3.11 de | 0.9997 | |
1 | CON | 81,978 | 216 | 222 bc | 0.68 bcd | 2.84 e | 0.9996 |
LP | 83,941 | 321 | 325 ab | 0.75 abcd | 3.91 bcde | 0.9996 | |
CE | 84,979 | 277 | 285 ab | 0.67 cd | 3.20 cde | 0.9995 | |
LPCE | 82,972 | 248 | 257 ab | 0.66 d | 3.10 de | 0.9995 | |
3 | CON | 84,418 | 256 | 259 ab | 0.85 abcd | 4.01 acbde | 0.9996 |
LP | 86,787 | 253 | 259 ab | 0.76 abcd | 3.44 bcde | 0.9995 | |
CE | 84,885 | 333 | 341 ab | 0.92 a | 4.98 ab | 0.9995 | |
LPCE | 86,227 | 245 | 250 bc | 0.85 abcd | 4.08 abcde | 0.9996 | |
5 | CON | 75,157 | 400 | 403 a | 0.92 a | 5.43 a | 0.9997 |
LP | 83,317 | 272 | 276 ab | 0.84 abcd | 3.84 bcde | 0.9996 | |
CE | 82,243 | 285 | 291 ab | 0.90 ab | 4.59 abcd | 0.9996 | |
LPCE | 85,172 | 249 | 255 ab | 0.81 abcd | 3.83 bcde | 0.9995 | |
7 | CON | 82,408 | 226 | 230 bc | 0.87 abcd | 4.17 abcde | 0.9997 |
LP | 81,531 | 227 | 230 bc | 0.80 abcd | 3.67 bcde | 0.9997 | |
CE | 83,040 | 292 | 298 ab | 0.89 abc | 4.66 abc | 0.9996 | |
LPCE | 84,444 | 231 | 237 bc | 0.80 abcd | 3.60 bcde | 0.9996 | |
30 | CON | 86,293 | 240 | 245 bc | 0.90 ab | 4.29 abcde | 0.9996 |
LP | 86,188 | 221 | 224 bc | 0.65 d | 2.88 e | 0.9997 | |
CE | 63,037 | 255 | 258 ab | 0.83 abcd | 3.96 abcde | 0.9997 | |
LPCE | 70,956 | 306 | 311 ab | 0.75 abcd | 3.57 bcde | 0.9995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, Q.; Wang, Z.; Liu, W.; Liu, M.; Ge, G.; Jia, Y.; Du, S. Influence of Cellulase or Lactiplantibacillus plantarum on the Ensiling Performance and Bacterial Community in Mixed Silage of Alfalfa and Leymus chinensis. Microorganisms 2023, 11, 426. https://doi.org/10.3390/microorganisms11020426
Si Q, Wang Z, Liu W, Liu M, Ge G, Jia Y, Du S. Influence of Cellulase or Lactiplantibacillus plantarum on the Ensiling Performance and Bacterial Community in Mixed Silage of Alfalfa and Leymus chinensis. Microorganisms. 2023; 11(2):426. https://doi.org/10.3390/microorganisms11020426
Chicago/Turabian StyleSi, Qiang, Zhijun Wang, Wei Liu, Mingjian Liu, Gentu Ge, Yushan Jia, and Shuai Du. 2023. "Influence of Cellulase or Lactiplantibacillus plantarum on the Ensiling Performance and Bacterial Community in Mixed Silage of Alfalfa and Leymus chinensis" Microorganisms 11, no. 2: 426. https://doi.org/10.3390/microorganisms11020426
APA StyleSi, Q., Wang, Z., Liu, W., Liu, M., Ge, G., Jia, Y., & Du, S. (2023). Influence of Cellulase or Lactiplantibacillus plantarum on the Ensiling Performance and Bacterial Community in Mixed Silage of Alfalfa and Leymus chinensis. Microorganisms, 11(2), 426. https://doi.org/10.3390/microorganisms11020426