Nisin E Is a Novel Nisin Variant Produced by Multiple Streptococcus equinus Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Isolation, Bacteriocin Activity Screening, and Speciation of Isolates
2.2. Strain Speciation and Genomic Comparison
2.3. Streptococcus Equinus Pangenome Analysis
2.4. Nisin Variant Cross-Immunity Assay
2.5. Promoter Prediction and Transcription Start Site Mapping
3. Results
3.1. Isolation of Two Bacteriocin-Producing Streptococcus equinus Strains
3.2. Nisin E Is a Novel Variant Unique to Streptococcus equinus
3.3. A Predicted Streptococcus-Specific Promoter for Expression of nisP
3.4. Spectrum of Inhibition of Nisin E Producers and Cross-Immunity to Other Nisin Producers
3.5. Nisin E Immunity Genes Are Spread throughout the Streptococcus equinus Pangenome
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Interagency Coordination Group on Antimicrobial Resistance (IACG). No Time to Wait: Securing the Future from Drug-Resistant Infections; World Health Organization: Geneva, Switzerland, 2019. Available online: https://www.who.int/publications/i/item/no-time-to-wait-securing-the-future-from-drug-resistant-infections (accessed on 29 December 2022).
- Arnison, P.G.; Bibb, M.J.; Bierbaum, G.; Bowers, A.A.; Bugni, T.S.; Bulaj, G.; Camarero, J.A.; Campopiano, D.J.; Challis, G.L.; Clardy, J.; et al. Ribosomally synthesized and post-translationally modified peptide natural products: Overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 2013, 30, 108–160. [Google Scholar] [CrossRef] [PubMed]
- Hegarty, J.W.; Guinane, C.M.; Ross, R.P.; Hill, C.; Cotter, P.D. Bacteriocin production: A relatively unharnessed probiotic trait? F1000Research 2016, 5, 2587. [Google Scholar] [CrossRef]
- Alvarez-Sieiro, P.; Montalbán-López, M.; Mu, D.; Kuipers, O.P. Bacteriocins of lactic acid bacteria: Extending the family. Appl. Microbiol. Biotechnol. 2016, 100, 2939–2951. [Google Scholar] [CrossRef]
- Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins—A viable alternative to antibiotics? Nat. Rev. Microbiol. 2013, 11, 95–105. [Google Scholar]
- Xie, L.; van der Donk, W.A. Post-translational modifications during lantibiotic biosynthesis. Current Opin. Chem. Biol. 2004, 8, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.A. The inhibiting effect of streptococcus lactis on lactobacillus bulgaricus. J. Bacteriol. 1928, 16, 321–325. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gundert-Remy, U.; et al. Safety of nisin (E 234) as a food additive in the light of new toxicological data and the proposed extension of use. EFSA J. 2017, 15, e05063. [Google Scholar]
- Gross, E.; Morell, J.L. Structure of nisin. J. Am. Chem. Soc. 1971, 93, 4634–4635. [Google Scholar] [CrossRef]
- Shin, J.; Gwak, J.; Kamarajan, P.; Fenno, J.; Rickard, A.; Kapila, Y. Biomedical applications of nisin. J. Appl. Microbiol. 2015, 120, 1449–1465. [Google Scholar] [CrossRef]
- Zhao, X.; Kuipers, O.P. Synthesis of silver-nisin nanoparticles with low cytotoxicity as antimicrobials against biofilm-forming pathogens. Colloids Surf. B: Biointerfaces 2021, 206, 111965. [Google Scholar] [CrossRef] [PubMed]
- Gut, I.M.; Blanke, S.R.; van der Donk, W.A. Mechanism of Inhibition of Bacillus anthracis Spore Outgrowth by the Lantibiotic Nisin. ACS Chem. Biol. 2011, 6, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Field, D.; Cotter, P.D.; Ross, R.P.; Hill, C. Bioengineering of the model lantibiotic nisin. Bioengineered 2015, 6, 187–192. [Google Scholar] [CrossRef]
- Field, D.; Begley, M.; O’Connor, P.M.; Daly, K.M.; Hugenholtz, F.; Cotter, P.D.; Hill, C.; Ross, R. Bioengineered Nisin A Derivatives with Enhanced Activity against Both Gram Positive and Gram Negative Pathogens. PLoS ONE 2012, 7, e46884. [Google Scholar] [CrossRef]
- Healy, B.; Field, D.; O’Connor, P.M.; Hill, C.; Cotter, P.D.; Ross, R.P. Intensive Mutagenesis of the Nisin Hinge Leads to the Rational Design of Enhanced Derivatives. PLoS ONE 2013, 8, e79563. [Google Scholar] [CrossRef] [PubMed]
- Mulders, J.W.M.; Boerrigter, I.J.; Rollema, H.S.; Siezen, R.J.; de Vos, W.M. Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur. J. Biochem. 1991, 201, 581–584. [Google Scholar] [CrossRef] [PubMed]
- De Kwaadsteniet, M.; Ten Doeschate, K.; Dicks, L.M.T. Characterization of the structural gene encoding nisin F, a new lantibiotic produced by a Lactococcus lactis subsp. lactis isolate from freshwater catfish (Clarias gariepinus). Appl. Environ. Microbiol. 2008, 74, 547–549. [Google Scholar] [CrossRef]
- Fukao, M.; Obita, T.; Yoneyama, F.; Kohda, D.; Zendo, T.; Nakayama, J.; Sonomoto, K. Complete Covalent Structure of Nisin Q, New Natural Nisin Variant, Containing Post-Translationally Modified Amino Acids. Biosci. Biotechnol. Biochem. 2008, 72, 1750–1755. [Google Scholar] [CrossRef]
- Zendo, T.; Ohashi, C.; Maeno, S.; Piao, X.; Salminen, S.; Sonomoto, K.; Endo, A. Kunkecin A, a New Nisin Variant Bacteriocin Produced by the Fructophilic Lactic Acid Bacterium, Apilactobacillus kunkeei FF30-6 Isolated From Honey Bees. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef]
- O’Sullivan, J.N.; O’Connor, P.M.; Rea, M.C.; O’Sullivan, O.; Walsh, C.J.; Healy, B.; Mathur, H.; Field, D.; Hill, C.; Ross, R.P. Nisin J, a Novel Natural Nisin Variant, Is Produced by Staphylococcus capitis Sourced from the Human Skin Microbiota. J. Bacteriol. 2020, 202. [Google Scholar] [CrossRef]
- Hatziioanou, D.; Gherghisan-Filip, C.; Saalbach, G.; Horn, N.; Wegmann, U.; Duncan, S.H.; Flint, H.J.; Mayer, M.J.; Narbad, A. Discovery of a novel lantibiotic nisin O from Blautia obeum A2-162, isolated from the human gastrointestinal tract. Microbiology 2017, 163, 1292–1305. [Google Scholar] [CrossRef] [PubMed]
- Wirawan, R.E.; Klesse, N.A.; Jack, R.W.; Tagg, J.R. Molecular and Genetic Characterization of a Novel Nisin Variant Produced by Streptococcus uberis. Appl. Environ. Microbiol. 2006, 72, 1148–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, P.M.; O’Shea, E.F.; Guinane, C.M.; O’Sullivan, O.; Cotter, P.D.; Ross, R.P.; Hill, C. Nisin H Is a New Nisin Variant Produced by the Gut-Derived Strain Streptococcus hyointestinalis DPC6484. Appl. Environ. Microbiol. 2015, 81, 3953–3960. [Google Scholar] [CrossRef]
- Aldarhami, A.; Felek, A.; Sharma, V.; Upton, M. Purification and characterization of nisin P produced by a strain of Streptococcus gallolyticus. J. Med. Microbiol. 2020, 69, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gutierrez, E.; O’Connor, P.M.; Saalbach, G.; Walsh, C.J.; Hegarty, J.W.; Guinane, C.M.; Mayer, M.J.; Narbad, A.; Cotter, P.D. First evidence of production of the lantibiotic nisin P. Sci. Rep. 2020, 10, 3738. [Google Scholar] [CrossRef]
- Lawrence, G.W.; Garcia-Gutierrez, E.; Walsh, C.J.; O’Connor, P.M.; Begley, M.; Cotter, P.D.; Guinane, C.M. Nisin G is a novel nisin variant produced by a gut-derived Streptococcus salivarius. BioRxiv 2022. Preprint. [Google Scholar] [CrossRef]
- Kleerebezem, M. Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 2004, 25, 1405–1414. [Google Scholar] [CrossRef]
- de Ruyter, P.G.; Kuipers, O.P.; Beerthuyzen, M.M.; van Alen-Boerrigter, I.; de Vos, W.M. Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J. Bacteriol. 1996, 178, 3434–3439. [Google Scholar] [CrossRef]
- Khosa, S.; AlKhatib, Z.; Smits, S.H. NSR from Streptococcus agalactiae confers resistance against nisin and is encoded by a conserved nsr operon. Biol. Chem. 2013, 394, 1543–1549. [Google Scholar] [CrossRef] [PubMed]
- Sugrue, I.; O’Connor, P.M.; Hill, C.; Stanton, C.; Ross, R.P. Actinomyces produces defensin-like bacteriocins (actifensins) with a highly degenerate structure and broad antimicrobial activity. J. Bacteriol. 2020, 202, e00529-19. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. A J. Comput. Mol. Cell Biol. 2012, 19, 455–477. [Google Scholar]
- Darling, A.E.; Mau, B.; Perna, N.T. progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement. PLoS ONE 2010, 5, e11147. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Carver, T.; Harris, S.R.; Berriman, M.; Parkhill, J.; McQuillan, J.A. Artemis: An integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012, 28, 464–469. [Google Scholar] [CrossRef]
- Lee, I.; Kim, Y.O.; Park, S.-C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef]
- van Heel, A.J.; de Jong, A.; Song, C.; Viel, J.H.; Kok, J.; Kuipers, O.P. BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 2018, 46, W278–W281. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef]
- Sievers, F.; Higgins, D.G. Clustal omega. Curr Protoc Bioinform. 2014, 48, 1.25.1–1.25.33. [Google Scholar] [CrossRef]
- McWilliam, H.; Li, W.; Uludag, M.; Squizzato, S.; Park, Y.M.; Buso, N.; Cowley, A.P.; Lopez, R. Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res. 2013, 41, W597–W600. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016, 44, W242–W245. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef] [PubMed]
- The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef] [PubMed]
- Naville, M.; Ghuillot-Gaudeffroy, A.; Marchais, A.; Gautheret, D. ARNold: A web tool for the prediction of Rho-independent transcription terminators. RNA Biol. 2011, 8, 11–13. [Google Scholar] [CrossRef] [PubMed]
- Pompilio, A.; Di Bonaventura, G.; Gherardi, G. An Overview on Streptococcus bovis/Streptococcus equinus Complex Isolates: Identification to the Species/Subspecies Level and Antibiotic Resistance. Int. J. Mol. Sci. 2019, 20, 480. [Google Scholar] [CrossRef]
- Mantovani, H.C.; Hu, H.; Worobo, R.W.; Russell, J.B. Bovicin HC5, a bacteriocin from Streptococcus bovis HC5. Microbiology 2002, 148, 3347–3352. [Google Scholar] [CrossRef]
- Xiao, H.; Chen, X.; Chen, M.; Tang, S.; Zhao, X.; Huan, L. Bovicin HJ50, a novel lantibiotic produced by Streptococcus bovis HJ50. Microbiology 2004, 150, 103–108. [Google Scholar] [CrossRef]
- Whitford, M.F.; McPherson, M.A.; Forster, R.J.; Teather, R.M. Identification of bacteriocin-like inhibitors from rumen Streptococcus spp. and isolation and characterization of bovicin 255. Appl. Environ. Microbiol. 2001, 67, 569–574. [Google Scholar] [CrossRef]
- Georgalaki, M.D.; Van den Berghe, E.; Kritikos, D.; Devreese, B.; Van Beeumen, J.; Kalantzopoulos, G.; De Vuyst, L.; Tsakalidou, E. Macedocin, a Food-Grade Lantibiotic Produced by Streptococcus macedonicus ACA-DC 198. Appl. Environ. Microbiol. 2002, 68, 5891–5903. [Google Scholar]
- Georgalaki, M.; Papadimitriou, K.; Anastasiou, R.; Pot, B.; Van Driessche, G.; Devreese, B.; Tsakalidou, E. Macedovicin, the second food-grade lantibiotic produced by Streptococcus macedonicus ACA-DC 198. Food Microbiol. 2013, 33, 124–130. [Google Scholar] [CrossRef]
- Aymeric, L.; Donnadieu, F.; Mulet, C.; du Merle, L.; Nigro, G.; Saffarian, A.; Bérard, M.; Poyart, C.; Robine, S.; Regnault, B.; et al. Colorectal cancer specific conditions promote Streptococcus gallolyticus gut colonization. Proc. Natl. Acad. Sci. USA 2017, 115, 201715112. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.; O’Connor, P.M.; Altermann, E.; Day, L.; Hill, C.; Stanton, C.; Ross, R.P. Extensive bacteriocin gene shuffling in the Streptococcus bovis/Streptococcus equinus complex reveals gallocin D with activity against vancomycin resistant enterococci. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Harrington, A.; Proutière, A.; Mull, R.W.; du Merle, L.; Dramsi, S.; Tal-Gan, Y. Secretion, Maturation, and Activity of a Quorum Sensing Peptide (GSP) Inducing Bacteriocin Transcription in Streptococcus gallolyticus. Mbio 2021, 12, e03189-20. [Google Scholar] [CrossRef]
- Chandrapati, S.; O’Sullivan, D.J. Nisin independent induction of the nisA promoter in Lactococcus lactis during growth in lactose or galactose. FEMS Microbiol. Lett. 1999, 170, 191–198. [Google Scholar]
- Chandrapati, S.; O’Sullivan, D.J. Characterization of the promoter regions involved in galactose- and nisin-mediated induction of the nisA gene in Lactococcus lactis ATCC 11454: Characterization of the nisA promoter. Mol. Microbiol. 2002, 46, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Montalban-Lopez, M.; Kuipers, O.P. Increasing the Antimicrobial Activity of Nisin-Based Lantibiotics against Gram-Negative Pathogens. Appl. Environ. Microbiol. 2018, 84, e00052-18. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; O’Sullivan, D.J. Identification of a nisI Promoter within the nisABCTIP Operon That May Enable Establishment of Nisin Immunity Prior to Induction of the Operon via Signal Transduction. J. Bacteriol. 2006, 188, 8496–8503. [Google Scholar] [CrossRef]
- Cheigh, C.-I.; Park, H.; Choi, H.-J.; Pyun, Y.-R. Enhanced nisin production by increasing genes involved in nisin Z biosynthesis in Lactococcus lactis subsp. lactis A164. Biotechnol. Lett. 2005, 27, 155–160. [Google Scholar] [CrossRef]
- Furtmann, F.; Porta, N.; Hoang, D.T.; Reiners, J.; Schumacher, J.; Gottstein, J.; Gohlke, H.; Smits, S.H. Characterization of the nucleotide-binding domain NsrF from the BceAB-type ABC-transporter NsrFP from the human pathogen Streptococcus agalactiae. Sci. Rep. 2020, 10, 15208. [Google Scholar]
- Simões, P.M.; Lemriss, H.; Dumont, Y.; Lemriss, S.; Rasigade, J.-P.; Assant-Trouillet, S.; Ibrahimi, A.; El Kabbaj, S.; Butin, M.; Laurent, F. Single-Molecule Sequencing (PacBio) of the Staphylococcus capitis NRCS-A Clone Reveals the Basis of Multidrug Resistance and Adaptation to the Neonatal Intensive Care Unit Environment. Front. Microbiol. 2016, 7, 1991. [Google Scholar] [CrossRef]
- Wels, M.; Siezen, R.; van Hijum, S.; Kelly, W.J.; Bachmann, H. Comparative Genome Analysis of Lactococcus lactis Indicates Niche Adaptation and Resolves Genotype/Phenotype Disparity. Front. Microbiol. 2019, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Van Gijtenbeek, L.A.; Eckhardt, T.H.; Herrera-Dominguez, L.; Brockmann, E.; Jensen, K.; Geppel, A.; Nielsen, K.F.; Vindeloev, J.; Neves, A.R.; Oregaard, G. Gene-Trait Matching and Prevalence of Nisin Tolerance Systems in Lactococus lactis. Front. Bioeng. Biotechnol. 2021, 9, 622835. [Google Scholar] [PubMed]
- Mierau, I.; Kleerebezem, M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl. Microbiol. Biotechnol. 2005, 68, 705–717. [Google Scholar] [CrossRef] [PubMed]
Organism | Strain | Nisin Variant | Temp. | O2 | Medium |
---|---|---|---|---|---|
Lactococcus lactis ssp. lactis | ATCC11454 | A | 30 | Aerobic | M17, 0.5% glucose |
Lactococcus lactis | NZ9800 pCI372-nisA | A | 30 | Aerobic | M17, 0.5% glucose, 10 µg·mL−1 Chloramphenicol |
Lactococcus lactis | NZ9800 pCI372-nisZ | Z | 30 | Aerobic | M17, 0.5% glucose, 10 µg·mL−1 Chloramphenicol |
Lactococcus lactis | NZ9800 pCI372-nisF | F | 30 | Aerobic | M17, 0.5% glucose, 10 µg·mL−1 Chloramphenicol |
Lactococcus lactis | NZ9800 pCI372-nisQ | Q | 30 | Aerobic | M17, 0.5% glucose, 10 µg·mL−1 Chloramphenicol |
Staphylococcus capitis | APC2923 | J | 37 | Aerobic | BHI |
Streptococcus uberis | 42 | U | 37 | Aerobic | BHI |
Streptococcus equinus | APC4007 | E | 37 | Aerobic | BHI |
Streptococcus equinus | APC4008 | E | 37 | Aerobic | BHI |
Streptococcus hyointestinalis | DPC6484 | H | 37 | Anaerobic | BHI |
Streptococcus agalactiae | DPC7040 | P | 37 | Aerobic | BHI |
Organism | Strain | Temp | O2 | Media | Inhibition | |
---|---|---|---|---|---|---|
4007 | 4008 | |||||
Bacillus cereus | NCIMB700577 | 37 | Aerobic | BHI | − | − |
Bacillus subtilis | S249 | 37 | Aerobic | BHI | − | − |
Bacillus thuringiensis | DPC6341 | 37 | Aerobic | BHI | − | − |
Bacillus firmis | DPC6349 | 37 | Aerobic | BHI | +++ | +++ |
Clostridioides difficile | DPC6534 | 37 | Anaerobic | RCM | + | + |
Clostridioides sporogenes | LMG10143 | 37 | Anaerobic | RCM | + | + |
Enterococcus faecium | NCDO0942 | 37 | Aerobic | BHI | − | − |
Enterococcus faecium (VRE) | APC1026 | 37 | Aerobic | BHI | − | − |
Enterococcus faecium (VRE) | APC1032 | 37 | Aerobic | BHI | − | − |
Enterococcus faecium (VRE) | APC1033 | 37 | Aerobic | BHI | − | − |
Enterococcus faecium (VRE) | APC1039 | 37 | Aerobic | BHI | − | − |
Enterococcus faecium (VRE) | APC1044 | 37 | Aerobic | BHI | − | − |
Enterococcus faecium (VRE) | APC1055 | 37 | Aerobic | BHI | − | − |
Lactococcus lactis | HP | 30 | Aerobic | GM17 | + | + |
Lactococcus lactis * | ATCC11454 | 30 | Aerobic | GM17 | − | − |
Lactobacillus delbrueckii ssp. bulgaricus | LMG6901 | 37 | Anaerobic | MRS | +++ | +++ |
Lactobacillus delbrueckii ssp. lactis | DPC5387 | 37 | Anaerobic | MRS | +++ | +++ |
Lactobacillus helveticus | DPC5358 | 37 | Anaerobic | MRS | + | + |
Ligilactobacillus salivarius | DPC6502 | 37 | Anaerobic | MRS | + | + |
Listeria innocua | DPC1768 | 37 | Aerobic | BHI | − | − |
Listeria monocytogenes | DPC3572 | 37 | Aerobic | BHI | − | − |
Listeria monocytogenes | L028 | 37 | Aerobic | BHI | − | − |
Staphylococcus aureus | 32679 | 37 | Aerobic | BHI | − | − |
Staphylococcus aureus | C5M | 37 | Aerobic | BHI | − | − |
Staphylococcus aureus | 47.9 | 37 | Aerobic | BHI | − | − |
Staphylococcus aureus | DPC5243 | 37 | Aerobic | BHI | − | − |
Staphylococcus aureus | DPC7673 | 37 | Aerobic | BHI | − | − |
Staphylococcus aureus | R693 | 37 | Aerobic | BHI | − | − |
Staphylococcus aureus (MRSA) | DPC5646 | 37 | Aerobic | BHI | − | − |
Staphylococcus epidermidis | DSM3095 | 37 | Aerobic | BHI | − | − |
Staphylococcus intermedius | DSM20373 | 37 | Aerobic | BHI | + | + |
Streptococcus agalactiae | 35 | 37 | Aerobic | BHI | − | − |
Streptococcus agalactiae | 119 | 37 | Aerobic | BHI | − | − |
Streptococcus agalactiae | APC1055 | 37 | Aerobic | BHI | − | − |
Streptococcus agalactiae | ATCC13813 | 37 | Aerobic | BHI | − | − |
Streptococcus pneumoniae | APC3850 | 37 | Aerobic | BHI | − | − |
Streptococcus pneumoniae | APC3857 | 37 | Aerobic | BHI | − | − |
Streptococcus pyogenes | DPC6992 | 37 | Aerobic | BHI | − | − |
Streptococcus uberis | ATCC5344 | 37 | Aerobic | BHI | − | − |
Streptococcus uberis | LL383 | 37 | Aerobic | BHI | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugrue, I.; Hill, D.; O’Connor, P.M.; Day, L.; Stanton, C.; Hill, C.; Ross, R.P. Nisin E Is a Novel Nisin Variant Produced by Multiple Streptococcus equinus Strains. Microorganisms 2023, 11, 427. https://doi.org/10.3390/microorganisms11020427
Sugrue I, Hill D, O’Connor PM, Day L, Stanton C, Hill C, Ross RP. Nisin E Is a Novel Nisin Variant Produced by Multiple Streptococcus equinus Strains. Microorganisms. 2023; 11(2):427. https://doi.org/10.3390/microorganisms11020427
Chicago/Turabian StyleSugrue, Ivan, Daragh Hill, Paula M. O’Connor, Li Day, Catherine Stanton, Colin Hill, and R. Paul Ross. 2023. "Nisin E Is a Novel Nisin Variant Produced by Multiple Streptococcus equinus Strains" Microorganisms 11, no. 2: 427. https://doi.org/10.3390/microorganisms11020427
APA StyleSugrue, I., Hill, D., O’Connor, P. M., Day, L., Stanton, C., Hill, C., & Ross, R. P. (2023). Nisin E Is a Novel Nisin Variant Produced by Multiple Streptococcus equinus Strains. Microorganisms, 11(2), 427. https://doi.org/10.3390/microorganisms11020427