Prevalence, Virulence Potential, and Growth in Cheese of Bacillus cereus Strains Isolated from Fresh and Short-Ripened Cheeses Sold on the Italian Market
Abstract
:1. Introduction
2. Materials and Methods
2.1. B. cereus Prevalence in Cheese
2.2. Identification of B. cereus by MALDI-TOF MS
2.3. RAPD-PCR
2.4. Detection of HBL, PC-PLC, and Proteases
2.5. Detection of Toxin-Encoding Genes
2.6. Biofilm Formation
2.7. Chemical Physical Characterization of Cheese Samples
2.8. Determination of Growth Ability of B. cereus Strains at Different Temperatures
2.9. Harvesting of Dormant Spores
2.10. Growth Potential of B. cereus on Cheese
2.11. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- RamaRao, N.; Tran, S.-L.; Marin, M.; Vidic, J. Advanced Methods for Detection of Bacillus cereus and Its Pathogenic Factors. Sensors 2020, 20, 2667. [Google Scholar] [CrossRef]
- Jovanovic, J.; Ornelis, V.F.M.; Madder, A.; Rajkovic, A. Bacillus cereus food intoxication and toxicoinfection. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3719–3761. [Google Scholar] [CrossRef]
- Tuipulotu, D.E.; Mathur, A.; Ngo, C.; Man, S.M. Bacillus cereus: Epidemiology, Virulence Factors, and Host–Pathogen Interactions. Trends Microbiol. 2021, 29, 458–471. [Google Scholar] [CrossRef]
- Rajkovic, A.; Smigic, N.; Devlieghere, F. Contemporary strategies in combating microbial contamination in food chain. Int. J. Food Microbiol. 2010, 141 (Suppl. 1), S29–S42. [Google Scholar] [CrossRef] [PubMed]
- Wirtanen, G.; Husmark, U.; Mattila-Sandholm, T. Microbial Evaluation of the Biotransfer Potential from Surfaces with Bacillus Biofilms after Rinsing and Cleaning Procedures in Closed Food-Processing Systems. J. Food Prot. 1996, 59, 727–733. [Google Scholar] [CrossRef]
- Kumari, S.; Sarkar, P.K. Bacillus cereus hazard and control in industrial dairy processing environment. Food Control. 2016, 69, 20–29. [Google Scholar] [CrossRef]
- Yıbar, A.; Çetİnkaya, F.; Soyutemİz, E.; Yaman, G. Prevalence, enterotoxin production and antibiotic resistance of Bacillus cereus isolated from milk and cheese. Kafkas Univ. Vet. Fak. Derg. 2017, 23, 635–642. [Google Scholar]
- Zhang, Y.; Chen, J.; Feng, C.; Zhan, L.; Zhang, J.; Li, Y.; Yang, Y.; Chen, H.; Zhang, Z.; Zhang, Y.; et al. Quantitative Prevalence, Phenotypic and Genotypic Characteristics of Bacillus cereus Isolated from Retail Infant Foods in China. Foodborne Pathog. Dis. 2017, 14, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Shimojima, Y.; Kodo, Y.; Soeda, K.; Koike, H.; Kanda, M.; Hayashi, H.; Nishino, Y.; Fukui, R.; Kuroda, S.; Hirai, A.; et al. Prevalence of Cereulide-Producing Bacillus cereus in Pasteurized Milk. J. Food Hyg. Soc. Jpn. 2020, 61, 178–182. [Google Scholar] [CrossRef]
- Osama, R.; Ahmed, M.; Abdulmawjood, A.; Al-Ashmawy, M. Prevalence and Antimicrobial Resistance of Bacillus cereus in Milk and Dairy Products. Mansoura Vet. Med. J. 2020, 21, 11–18. [Google Scholar] [CrossRef]
- Tirloni, E.; Ghelardi, E.; Celandroni, F.; Bernardi, C.; Casati, R.; Rosshaug, P.S.; Stella, S. Bacillus cereus in fresh ricotta: Comparison of growth and Haemolysin BL production after artificial contamination during production or post processing. Food Control. 2017, 79, 272–278. [Google Scholar] [CrossRef]
- Tirloni, E.; Ghelardi, E.; Celandroni, F.; Bernardi, C.; Stella, S. Effect of dairy product environment on the growth of Bacillus cereus. J. Dairy Sci. 2017, 100, 7026–7034. [Google Scholar] [CrossRef] [PubMed]
- ISO 7932:2004; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Presumptive Bacillus Cereus—Colony-Count Technique at 30 Degrees. International Organization for Standardization (ISO): Geneva, Switzerland, 2004.
- Celandroni, F.; Vecchione, A.; Cara, A.; Mazzantini, D.; Lupetti, A.; Ghelardi, E. Identification of Bacillus species: Implication on the quality of probiotic formulations. PLoS ONE 2019, 14, e0217021. [Google Scholar] [CrossRef] [PubMed]
- Calvigioni, M.; Cara, A.; Celandroni, F.; Mazzantini, D.; Panattoni, A.; Tirloni, E.; Bernardi, C.; Pinotti, L.; Stella, S.; Ghelardi, E. Characterization of a Bacillus cereus strain associated with a large feed-related outbreak of severe infection in pigs. J. Appl. Microbiol. 2022, 133, 1078–1088. [Google Scholar] [CrossRef]
- Celandroni, F.; Ghelardi, E.; Pastore, M.; Lupetti, A.; Kolstã¸, A.-B.; Senesi, S. Characterization of the chemotaxis fliY and cheA genes in Bacillus cereus. FEMS Microbiol. Lett. 2000, 190, 247–253. [Google Scholar] [CrossRef]
- Senesi, S.; Ghelardi, E. Production, Secretion and Biological Activity of Bacillus cereus Enterotoxins. Toxins 2010, 2, 1690–1703. [Google Scholar] [CrossRef]
- Beecher, D.J.; Wong, A.C. Improved purification and characterization of hemolysin BL, a hemolytic dermonecrotic vascular permeability factor from Bacillus cereus. Infect. Immun. 1994, 62, 980–986. [Google Scholar] [CrossRef] [Green Version]
- Celandroni, F.; Salvetti, S.; Gueye, S.A.; Mazzantini, D.; Lupetti, A.; Senesi, S.; Ghelardi, E. Identification and Pathogenic Potential of Clinical Bacillus and Paenibacillus Isolates. PLoS ONE 2016, 11, e0152831. [Google Scholar] [CrossRef]
- Bradley, R.L.; Vanderwarn, M.A. Determination of Moisture in Cheese and Cheese Products. J. AOAC Int. 2001, 84, 570–592. [Google Scholar] [CrossRef] [Green Version]
- Pearson, D. Laboratory Techniques in Food Analysis; Butterworths &, Co. Publishers: London, UK, 1973; pp. 201–202. [Google Scholar]
- Tormo, M.; Izco, J. Alternative reversed-phase high-performance liquid chromatography method to analyse organic acids in dairy products. J. Chromatogr. 2004, 1033, 305–310. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMEA). ICH Topic Q 2 (R1). Validation of Analytical Procedures: Note for Guidance on Validation of Analytical Procedures: Text and Methodology. (CPMP/ICH/381/95). 1995. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf (accessed on 17 February 2023).
- Adams, M.R.; Moss, M.O. Food Microbiology, 2nd ed.; Royal Society of Chemistry: London, UK, 2000. [Google Scholar]
- Choma, C.; Clavel, T.; Dominguez, H.; Razafindramboa, N.; Soumille, H.; Nguyen-The, C.; Schmitt, P. Effect of temperature on growth characteristics of Bacillus cereus TZ415. Int. J. Food Microbiol. 2000, 55, 73–77. [Google Scholar] [CrossRef]
- de Sarrau, B.; Clavel, T.; Clerté, C.; Carlin, F.; Giniès, C.; Nguyen-The, C. Influence of Anaerobiosis and Low Temperature on Bacillus cereus Growth, Metabolism, and Membrane Properties. Appl. Environ. Microbiol. 2012, 78, 1715–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinebretière, M.-H.; Thompson, F.L.; Sorokin, A.; Normand, P.; Dawyndt, P.; Ehling-Schulz, M.; Svensson, B.; Sanchis, V.; Nguyen-The, C.; Heyndrickx, M.; et al. Ecological diversification in the Bacillus cereus group. Environ. Microbiol. 2008, 10, 851–865. [Google Scholar] [CrossRef] [PubMed]
- Senesi, S.; Cercignani, G.; Freer, G.; Batoni, G.; Barnini, S.; Ota, F. Structural and stereospecific requirements for the nucleoside-triggered germination of Bacillus cereus spores. Microbiology 1991, 137, 399–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO 15214:1998; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 Degree. International Organization for Standardization (ISO): Geneva, Switzerland, 1998.
- Iurlina, M.O.; Saiz, A.I.; Fuselli, S.R.; Fritz, R. Prevalence of Bacillus spp. in different food products collected in Argentina. Lwt 2006, 39, 105–110. [Google Scholar] [CrossRef]
- Bonerba, E.; Di Pinto, A.; Novello, L.; Montemurro, F.; Terio, V.; Colao, V.; Ciccarese, G.; Tantillo, G.M. Detection of potentially enterotoxigenic food-related Bacillus cereus by PCR analysis. Int. J. Food Sci. Technol. 2010, 45, 1310–1315. [Google Scholar] [CrossRef]
- Spanu, C.; Scarano, C.; Spanu, V.; Pala, C.; Casti, D.; Lamon, S.; Cossu, F.; Ibba, M.; Nieddu, G.; De Santis, E.P. Occurrence and behavior of Bacillus cereus in naturally contaminated ricotta salata cheese during refrigerated storage. Food Microbiol. 2016, 58, 135–138. [Google Scholar] [CrossRef]
- Berthold-Pluta, A.; Pluta, A.; Garbowska, M.; Stefańska, I. Prevalence and Toxicity Characterization of Bacillus cereus in Food Products from Poland. Foods 2019, 8, 269. [Google Scholar] [CrossRef] [Green Version]
- Montone, A.M.I.; Capuano, F.; Mancusi, A.; Di Maro, O.; Peruzy, M.F.; Proroga, Y.T.R.; Cristiano, D. Exposure to Bacillus cereus in Water Buffalo Mozzarella Cheese. Foods 2020, 9, 1899. [Google Scholar] [CrossRef]
- Tirloni, E.; Stella, S.; Celandroni, F.; Mazzantini, D.; Bernardi, C.; Ghelardi, E. Bacillus cereus in Dairy Products and Production Plants. Foods 2022, 11, 2572. [Google Scholar] [CrossRef]
- Tirloni, E.; Stella, S.; Bernardi, C.; Mazzantini, D.; Celandroni, F.; Ghelardi, E. Identification and Pathogenic Potential of Bacillus cereus Strains Isolated from a Dairy Processing Plant Producing PDO Taleggio Cheese. Microorganisms 2020, 8, 949. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Chen, J.; Fei, P.; Feng, H.; Wang, Y.; Ali, A.; Li, S.; Jing, H.; Yang, W. Prevalence, molecular characterization, and antibiotic susceptibility of Bacillus cereus isolated from dairy products in China. J. Dairy Sci. 2020, 103, 3994–4001. [Google Scholar] [CrossRef] [PubMed]
- Amin, H.M.; Tawfick, M.M. High Risk of Potential Diarrheagenic Bacillus cereus in Diverse Food Products in Egypt. J. Food Prot. 2021, 84, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- De Santis, E.P.L.; Foddai, A.; Virdis, S.; Marongiu, P.; Pilo, A.L.; Scarano, C.; De Santis, E.P.L. Toxin gene pattern in Bacillus cereus group strains isolated from sheep ricotta cheese. Veter. Res. Commun. 2008, 32, 323–326. [Google Scholar] [CrossRef]
- Tirloni, E.; Bernardi, C.; Ghelardi, E.; Celandroni, F.; Andrighetto, C.; Rota, N.; Stella, S. Biopreservation as a potential hurdle for Bacillus cereus growth in fresh cheese. J. Dairy Sci. 2020, 103, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Burel, C.; Kala, A.; Purevdorj-Gage, L. Impact of pH on citric acid antimicrobial activity against Gram-negative bacteria. Lett. Appl. Microbiol. 2021, 72, 332–340. [Google Scholar] [CrossRef]
- Seyfert, M.; Hunt, M.; Ahnström, M.L.; Johnson, D. Efficacy of lactic acid salts and sodium acetate on ground beef colour stability and metmyoglobin-reducing activity. Meat Sci. 2007, 75, 134–142. [Google Scholar] [CrossRef]
- Lück, E.; Jager, M. Antimicrobial Food Additives, 2nd ed.; Springer: New York, NY, USA, 1997. [Google Scholar]
- Hsiao, C.-P.; Siebert, K.J. Modeling the inhibitory effects of organic acids on bacteria. Int. J. Food Microbiol. 1999, 47, 189–201. [Google Scholar] [CrossRef]
- Samelis, J.; Sofos, J. Organic Acids. In Natural Antimicrobials for the Minimal Processing of Foods; Roller, S., Ed.; Woodhead Publishers: Sawston, UK, 2003; pp. 98–132. [Google Scholar]
- Tirloni, E.; Bernardi, C.; Celandroni, F.; Ghelardi, E.; Stella, S. Effectiveness of lactic and acetic acids on the growth of Listeria monocytogenes and Bacillus cereus in primo sale fresh cheese. Lwt 2021, 151, 112170. [Google Scholar] [CrossRef]
- Østergaard, N.B.; Eklöw, A.; Dalgaard, P. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese. Int. J. Food Microbiol. 2014, 188, 15–25. [Google Scholar] [CrossRef]
- Baker, J.M.; Griffiths, M.W. Predictive modeling of psyctirotrophic Bacillus cereus. J. Food Prot. 1993, 56, 684–688. [Google Scholar] [CrossRef] [PubMed]
Category | Product | N° Samples | N° Positive Veg.–Spores | Count Range (Logcfu/g) | Strain n° |
---|---|---|---|---|---|
Pasta filata | Mozzarella (C) | 13 | 0-0 | ||
Mozzarella (B) | 1 | 0-0 | |||
Burrata (C) | 4 | 0-0 | |||
Stracciatella (C) | 4 | 0-1 | 1.00 | 49 | |
Subtotal | 22 | 0-1 | |||
Fresh cheese | Crescenza (C) | 5 | 0-0 | ||
Stracchino (C) | 19 | 0-2 | 1.00 | 47, 65 | |
Squacquerone (C) | 4 | 0-0 | |||
Caprino (C) | 5 | 0-2 | 1.30–1.48 | 50, 73 | |
Caprino (G) | 34 | 1-0 | 1.00 | 120 | |
Primo sale (C) | 6 | 1-0 | 1.00 | 87 | |
Primo sale (G) | 1 | 0-0 | |||
Robiola (C) | 6 | 1-2 | 1.00–2.26 | 27, 43 | |
Robiola (G) | 2 | 0-0 | |||
Cottage (C) | 4 | 0-0 | |||
Fresh cheese (G) | 1 | 0-0 | |||
Subtotal | 56 | 3-6 | |||
Short ripened | Feta (S + G) | 3 | 0-0 | ||
Caciotta (C) | 3 | 0-0 | |||
Tomino (C) | 2 | 0-0 | |||
Taleggio (C) | 1 | 0-0 | |||
Quartirolo (C) | 1 | 0-1 | 1.30 | 52 | |
Pecorino (S) | 1 | 0-0 | |||
Monte Veronese (C) | 1 | 0-0 | |||
Other short ripened (C) | 1 | 0-1 | 1.00 | 75 | |
Other short ripened (C + G) | 1 | 0-0 | |||
Subtotal | 14 | 0-2 | |||
Mold ripened | Brie (C) | 4 | 0-0 | ||
Camembert (C) | 1 | 0-0 | |||
Camembert (G) | 1 | 0-0 | |||
Camembert (B) | 1 | 0-0 | |||
Other mold ripened (C) | 4 | 0-0 | |||
Other mold ripened (G) | 2 | 0-1 | 1.30 | 77 | |
Subtotal | 13 | 0-1 | |||
Ricotta | Ricotta (C) | 13 | 0-0 | ||
Ricotta (S) | 1 | 0-0 | |||
Ricotta (G) | 1 | 0-0 | |||
Subtotal | 15 | 0-0 | |||
Mascarpone (C) | 2 | 0-0 | |||
Total | 122 | 3-10 |
Strain | HBL | PC-PLC | Proteases | sph | nheA | nheB | nheC | entFM | bcet | cytK | plcA |
---|---|---|---|---|---|---|---|---|---|---|---|
27 | − | + | + | − | + | + | + | − | + | − | + |
43 | − | + | + | + | + | + | + | + | + | − | + |
47 | − | + | + | + | + | + | + | + | + | − | + |
49 | + | + | + | + | − | − | − | − | + | − | − |
50 | − | + | + | + | + | + | + | + | + | − | + |
52 | + | − | + | + | + | + | + | + | + | + | + |
65 | + | + | + | + | + | + | + | + | + | + | + |
73 | − | + | + | − | + | − | + | − | + | − | − |
75 | + | + | + | + | + | + | + | + | + | + | + |
77 | + | + | + | + | + | + | + | + | + | + | + |
87 | − | + | + | + | + | + | + | + | + | − | + |
120 | − | + | + | − | + | − | + | − | − | − | − |
Strain | T (°C) | Day | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ||
52 | 5 | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − |
7 | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | |
10 | − | − | − | − | − | − | − | − | − | + | + | + | + | + | + | |
15 | − | − | + | + | + | + | + | + | + | + | + | + | + | + | + | |
65 | 5 | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − |
7 | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | |
10 | − | − | − | − | − | − | − | − | − | + | + | + | + | + | + | |
15 | − | − | + | + | + | + | + | + | + | + | + | + | + | + | + | |
75 | 5 | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − |
7 | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | |
10 | − | − | − | − | − | − | − | − | − | + | + | + | + | + | + | |
15 | − | − | + | + | + | + | + | + | + | + | + | + | + | + | + | |
77 | 5 | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − |
7 | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | |
10 | − | − | − | − | − | − | − | − | − | + | + | + | + | + | + | |
15 | − | − | + | + | + | + | + | + | + | + | + | + | + | + | + | |
87 | 5 | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − |
7 | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | |
10 | − | − | − | − | − | − | − | − | − | + | + | + | + | + | + | |
15 | − | − | + | + | + | + | + | + | + | + | + | + | + | + | + |
Product Typology | Moisture % | Salt conc. % | Aw | pH | Citric Acid (mg/kg) | Lactic Acid (mg/kg) | Acetic Acid (mg/kg) |
---|---|---|---|---|---|---|---|
Burrata (C) | 61.9–69.3 | 0.22–0.98 | 0.972–0.992 | 5.35–6.28 | n.d.–585 | 1273–11,232 | n.d.–871 |
Mozzarella (C) | 59.1–74.6 | 0.32–0.99 | 0.975–0.991 | 5.77–6.76 | <LoQ–5347 | <LoQ-5946 | n.d.–274 |
Mozzarella (B) | 71.0 | 1.06 | 0.981 | 5.37 | 1111 | 16,469 | 654 |
Stracciatella (C) | 63.8–66.4 | 0.32–0.72 | 0.974–0.992 | 4.77–6.58 | <LoQ–1142 | 566–4840 | 205–535 |
Caprino (C) | 58.4–71.6 | 0.80–0.92 | 0.968–0.983 | 4.18–4.98 | n.d.–596 | 5170–10,156 | 320–593 |
Caprino (G) | 59.3–68.4 | 0.45–1.00 | 0.980–0.981 | 4.34–4.35 | n.d.–312 | 6758–7823 | 368–927 |
Cottage (C) | 79.5–82.4 | 0.55–0.85 | 0.977–0.992 | 4.11–4.57 | <LoQ–1557 | 4471–5999 | n.d.–529 |
Crescenza (C) | 55.8–62.1 | 0.79–1.14 | 0.965–0.984 | 5.17–5.43 | n.d.–2026 | 6431–11,449 | n.d.–887 |
Stracchino (C) | 54.3–72.3 | 0.35–1.32 | 0.938–0.985 | 5.02–5.50 | n.d.–458 | 6549–12,454 | n.d.–1142 |
Primosale (C) | 40.6–70.2 | 0.36–1.34 | 0.970–0.983 | 5.05–6.51 | n.d.–2200 | 2001–9566 | n.d.–655 |
Primosale (G) | 43.2 | 0.94 | 0.974 | 5.59 | <LoQ | 11,531 | 871 |
Robiola (C) | 54.3–65.9 | 0.63–1.22 | 0.964–0.992 | 4.45–5.74 | 156–523 | 3074–7790 | n.d.–424 |
Robiola (G) | 66.3–67.1 | 0.82–0.90 | 0.972–0.985 | 4.28–4.37 | <LoQ | 5052–7243 | n.d.–450 |
Squacquerone (C) | 57.3–70.1 | 0.68–0.89 | 0.954–0.978 | 5.27–5.45 | <LoQ–400 | 5687–8271 | <LoQ |
Other fresh cheese (G) | 67.4 | 0.91 | 0.975 | 4.42 | 347 | 8119 | 523 |
Caciotta (C) | 45.9–49.3 | 1.54–1.85 | 0.962–0.967 | 5.43–5.47 | <LoQ | 9052–9437 | 156–491 |
Feta (S + G) | 52.3–57.4 | 1.55–2.97 | 0.948–0.969 | 4.06–4.86 | <LoQ–1491 | 15,281–20,409 | n.d.–343 |
Monte Veronese (C) | 41.8 | 1.32 | 0.969 | 5.55 | 251 | 13,632 | 521 |
Pecorino (S) | 35.5 | 1.43 | 0.958 | 5.73 | <LoQ | 11,240 | 397 |
Quartirolo (C) | 64.7 | 2.00 | 0.969 | 4.27 | <LoQ | 16,074 | 844 |
Taleggio (C) | 49.5 | 1.48 | 0.970 | 5.78 | <LoQ | 7056 | 1703 |
Tomino (C) | 46.2–49.8 | 0.98–1.32 | 0.984–0.990 | 6.43–6.49 | 331–3404 | 635–2159 | 274–1334 |
Other short-ripened cheese (C) | 48.4 | 1.47 | 0.977 | 6.00 | <LoQ | 1753 | 2042 |
Other short-ripened cheese (C + G) | 51.5 | 1.42 | 0.975 | 5.74 | <LoQ | 2864 | 2598 |
Brie (C) | 40.3–50.0 | 1.50–2.14 | 0.902–0.979 | 6.03–6.83 | n.d.–398 | 490–2007 | n.d.–1193 |
Camembert (C) | 52.7 | 1.58 | 0.982 | 6.88 | 295 | 2654 | 2440 |
Camembert (G) | 50.8 | 1.49 | 0.981 | 6.20 | <LoQ | 2366 | 1438 |
Camembert (B) | 53.2 | 2.05 | 0.979 | 5.64 | n.d. | 278 | n.d. |
Other mold ripened cheese (C) | 39.8–49.5 | 1.43–1.81 | 0.970–0.986 | 6.31–7.16 | <LoQ–172 | 1206–1443 | 196–1529 |
Other mold ripened cheese (G) | 53.2–58.8 | 1.501.93 | 0.979–0.982 | 5.32–6.85 | 930–2541 | <LoQ–77 | 690–1119 |
Ricotta (C) | 68.6–82.2 | 0.23–0.48 | 0.967–0.986 | 5.94–6.95 | <LoQ–3978 | 334–15,237 | n.d.–1352 |
Ricotta (S) | 76.3 | 0.23 | 0.984 | 6.18 | 1319 | <LoQ | 377 |
Ricotta (G) | 77.6 | 0.23 | 0.978 | 6.83 | <LoQ | 1348 | <LoQ |
Mascarpone (C) | 44.0–52.6 | 0.10–0.12 | 0.972–0.986 | 6.30–6.66 | n.d. | 407–1180 | n.d. |
Product Typology | Moisture % | Salt conc. % | Aw | pH | Lactic Acid (mg/kg) | Citric Acid (mg/kg) | Acetic Acid (mg/kg) |
---|---|---|---|---|---|---|---|
Pasta filata | 66.5 B ± 3.5 | 0.61 C ± 0.25 | 0.982 A ± 0.007 | 6.00 C ± 0.51 | 2783 B ± 4047 | 693 ± 1162 | 208 B ± 246 |
Fresh cheeses | 63.4 B ± 7.8 | 0.86 B ± 0.21 | 0.975 A ± 0.010 | 5.11 E ± 0.62 | 7112 A ± 2399 | 406 ± 44 | 277 B ± 315 |
Short ripened | 49.6 C ± 7.0 | 1.68 A ± 0.54 | 0.968 B ± 0.011 | 5.40 D ± 0.76 | 9586 A ± 6157 | 537 ± 899 | 806 A ± 798 |
Mold ripened | 48.9 C ± 5.4 | 1.66 A ± 0.25 | 0.971 B ± 0.021 | 6.31 B ± 0.50 | 1790 B ± 1371 | 103 ± 133 | 1022 A ± 1082 |
Ricotta | 76.8 A ± 3.8 | 0.32 D ±0.09 | 0.978 A ± 0.006 | 6.56 A ± 0.30 | 2817 B ± 4481 | 957 ± 1043 | 240 B ± 397 |
Mascarpone | 48.3 C ± 6.0 | 0.11 D ± 0.01 | 0.979 A ± 0.010 | 6.48 B ± 0.25 | 203 B ± 288 | 1537 ± 504 | 0 |
pH | Day | 0 | 2 | 4 | 7 | 11 |
---|---|---|---|---|---|---|
15 °C | mean | 6.36 | 6.28 | 6.18 | 5.52 | - |
std | 0.01 | 0.01 | 0.09 | 0.09 | - | |
10 °C | mean | 6.36 | - | 6.29 | 5.96 | 5.72 |
std | 0.01 | - | 0.01 | 0.06 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirloni, E.; Bernardi, C.; Celandroni, F.; Mazzantini, D.; Massimino, M.; Stella, S.; Ghelardi, E. Prevalence, Virulence Potential, and Growth in Cheese of Bacillus cereus Strains Isolated from Fresh and Short-Ripened Cheeses Sold on the Italian Market. Microorganisms 2023, 11, 521. https://doi.org/10.3390/microorganisms11020521
Tirloni E, Bernardi C, Celandroni F, Mazzantini D, Massimino M, Stella S, Ghelardi E. Prevalence, Virulence Potential, and Growth in Cheese of Bacillus cereus Strains Isolated from Fresh and Short-Ripened Cheeses Sold on the Italian Market. Microorganisms. 2023; 11(2):521. https://doi.org/10.3390/microorganisms11020521
Chicago/Turabian StyleTirloni, Erica, Cristian Bernardi, Francesco Celandroni, Diletta Mazzantini, Mariacristina Massimino, Simone Stella, and Emilia Ghelardi. 2023. "Prevalence, Virulence Potential, and Growth in Cheese of Bacillus cereus Strains Isolated from Fresh and Short-Ripened Cheeses Sold on the Italian Market" Microorganisms 11, no. 2: 521. https://doi.org/10.3390/microorganisms11020521
APA StyleTirloni, E., Bernardi, C., Celandroni, F., Mazzantini, D., Massimino, M., Stella, S., & Ghelardi, E. (2023). Prevalence, Virulence Potential, and Growth in Cheese of Bacillus cereus Strains Isolated from Fresh and Short-Ripened Cheeses Sold on the Italian Market. Microorganisms, 11(2), 521. https://doi.org/10.3390/microorganisms11020521