The Pleiotropic Effects of Carbohydrate-Mediated Growth Rate Modifications in Bifidobacterium longum NCC 2705
Abstract
:1. Introduction
2. Materials and Methods
2.1. B. longum NCC 2705 Cultivation
2.2. Growth Data Analysis
2.3. Microscopic Observations
2.4. RNA Isolation and Sequencing
2.5. Transcriptome Analysis
2.6. Acetate, Lactate, Ethanol and Formate Quantifications
2.7. Flow Cytometry Analysis
2.8. Translationally Blocked Acidification Assay
2.9. Loss of Metabolic Activity upon Exposure to Low pH
3. Results
3.1. The Distinct Growth Attributes of B. longum NCC 2705 Cultured on Glucose or Galactose as Sole Carbon Source
3.2. Glucose or Galactose Dependent Central Carbon Metabolism Fluxes Modifications
3.3. Expanded Carbohydrate Utilization Capacity in Galactose-Grown B. longum NCC 2705
3.4. The Potential Implication or AraQ and MalR1 Lac-I Regulators
3.5. Galactose-Grown B. longum NCC 2705 Cells Are More Acid-Stress Resistant
4. Conclusions & Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avershina, E.; Storrø, O.; Øien, T.; Johnsen, R.; Wilson, R.; Egeland, T.; Rudi, K. Bifidobacterial Succession and Correlation Networks in a Large Unselected Cohort of Mothers and Their Children. Appl. Environ. Microbiol. 2013, 79, 497–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalliomäki, M.; Kirjavainen, P.; Eerola, E.; Kero, P.; Salminen, S.; Isolauri, E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J. Allergy Clin. Immunol. 2001, 107, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, K.E.; Sitarik, A.R.; Havstad, S.; Lin, D.L.; LeVan, S.; Fadrosh, D.; Panzer, A.R.; LaMere, B.; Rackaityte, E.; Lukacs, N.W.; et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 2016, 22, 1187–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taft, D.H.; Liu, J.; Maldonado-Gomez, M.X.; Akre, S.; Huda, M.N.; Ahmad, S.M.; Stephensen, C.B.; Mills, D.A. Bifidobacterial Dominance of the Gut in Early Life and Acquisition of Antimicrobial Resistance. mSphere 2018, 3, e00441-18. [Google Scholar] [CrossRef] [Green Version]
- Kalliomäki, M.; Collado, M.C.; Salminen, S.; Isolauri, E. Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr. 2008, 87, 534–538. [Google Scholar] [CrossRef] [Green Version]
- Schell, M.A.; Karmirantzou, M.; Snel, B.; Vilanova, D.; Berger, B.; Pessi, G.; Zwahlen, M.-C.; Desiere, F.; Bork, P.; Delley, M.; et al. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci. USA 2002, 99, 14422–14427. [Google Scholar] [CrossRef] [Green Version]
- Tarracchini, C.; Milani, C.; Lugli, G.A.; Mancabelli, L.; Fontana, F.; Alessandri, G.; Longhi, G.; Anzalone, R.; Viappiani, A.; Turroni, F.; et al. Phylogenomic disentangling of the Bifidobacterium longum subsp. infantis taxon. Microb. Genom. 2021, 7, 000609. [Google Scholar] [CrossRef]
- Ayechu-Muruzabal, V.; van Stigt, A.H.; Mank, M.; Willemsen, L.E.M.; Stahl, B.; Garssen, J.; Land, B.V. Diversity of Human Milk Oligosaccharides and Effects on Early Life Immune Development. Front. Pediatr. 2018, 6, 239. [Google Scholar] [CrossRef] [Green Version]
- Duboux, S.; Ngom-Bru, C.; De Bruyn, F.; Bogicevic, B. Phylogenetic, Functional and Safety Features of 1950s B. infantis Strains. Microorganisms 2022, 10, 203. [Google Scholar] [CrossRef]
- Garrido, D.; Dallas, D.C.; Mills, D.A. Consumption of human milk glycoconjugates by infant-associated bifidobacteria: Mechanisms and implications. Microbiology 2013, 159, 649–664. [Google Scholar] [CrossRef]
- Zabel, B.E.; Gerdes, S.; Evans, K.C.; Nedveck, D.; Singles, S.K.; Volk, B.; Budinoff, C. Strain-specific strategies of 2′-fucosyllactose, 3-fucosyllactose, and difucosyllactose assimilation by Bifidobacterium longum subsp. infantis Bi-26 and ATCC 15697. Sci. Rep. 2020, 10, 15919. [Google Scholar] [CrossRef]
- LoCascio, R.G.; Desai, P.; Sela, D.A.; Weimer, B.; Mills, D.A. Broad Conservation of Milk Utilization Genes in Bifidobacterium longum subsp. infantis as Revealed by Comparative Genomic Hybridization. Appl. Environ. Microbiol. 2010, 76, 7373–7381. [Google Scholar] [CrossRef] [Green Version]
- O’Callaghan, A.; van Sinderen, D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front. Microbiol. 2016, 7, 925. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Wang, S.; Xu, B.; Guo, Y.; Zhao, J.; Liu, W.; Sun, Z.; Shao, C.; Wei, X.; Jiang, Z.; et al. Proteomics analysis of Bifidobacterium longum NCC2705 growing on glucose, fructose, mannose, xylose, ribose, and galactose. Proteomics 2011, 11, 2628–2638. [Google Scholar] [CrossRef]
- González-Rodríguez, I.; Gaspar, P.; Sánchez, B.; Gueimonde, M.; Margolles, A.; Neves, A.R. Catabolism of Glucose and Lactose in Bifidobacterium animalis subsp. lactis, Studied by 13 C Nuclear Magnetic Resonance. Appl. Environ. Microbiol. 2013, 79, 7628–7638. [Google Scholar] [CrossRef] [Green Version]
- Deutscher, J. The mechanisms of carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 2008, 11, 87–93. [Google Scholar] [CrossRef]
- Caescu, C.I.; Vidal, O.; Krzewinski, F.; Artenie, V.; Bouquelet, S. Bifidobacterium longum Requires a Fructokinase (Frk; ATP: D -Fructose 6-Phosphotransferase, EC 2.7.1.4) for Fructose Catabolism. J. Bacteriol. 2004, 186, 6515–6525. [Google Scholar] [CrossRef] [Green Version]
- Duboux, S.; Muller, J.A.; De Franceschi, F.; Mercenier, A.; Kleerebezem, M. Using fluorescent promoter-reporters to study sugar utilization control in Bifidobacterium longum NCC 2705. Sci. Rep. 2022, 12, 10477. [Google Scholar] [CrossRef]
- Trindade, M.I.; Abratt, V.R.; Reid, S.J. Induction of Sucrose Utilization Genes from Bifidobacterium lactis by Sucrose and Raffinose. Appl. Environ. Microbiol. 2003, 69, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Duboux, S.; Golliard, M.; Muller, J.A.; Bergonzelli, G.; Bolten, C.J.; Mercenier, A.; Kleerebezem, M. Carbohydrate-controlled serine protease inhibitor (serpin) production in Bifidobacterium longum subsp. longum. Sci. Rep. 2021, 11, 7236. [Google Scholar] [CrossRef]
- Nessler, S.; Fieulaine, S.; Poncet, S.; Galinier, A.; Deutscher, J.; Janin, J. HPr Kinase/Phosphorylase, the Sensor Enzyme of Catabolite Repression in Gram-Positive Bacteria: Structural Aspects of the Enzyme and the Complex with Its Protein Substrate. J. Bacteriol. 2003, 185, 4003–4010. [Google Scholar] [CrossRef] [Green Version]
- Warner, J.B.; Lolkema, J.S. CcpA-Dependent Carbon Catabolite Repression in Bacteria. Microbiol. Mol. Biol. Rev. 2003, 67, 475–490. [Google Scholar] [CrossRef] [Green Version]
- Lanigan, N.; Kelly, E.; Arzamasov, A.A.; Stanton, C.; Rodionov, D.A.; van Sinderen, D. Transcriptional control of central carbon metabolic flux in Bifidobacteria by two functionally similar, yet distinct LacI-type regulators. Sci. Rep. 2019, 9, 17851. [Google Scholar] [CrossRef] [Green Version]
- Khoroshkin, M.S.; Leyn, S.A.; Van Sinderen, D.; Rodionov, D.A. Transcriptional Regulation of Carbohydrate Utilization Pathways in the Bifidobacterium Genus. Front. Microbiol. 2016, 7, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Görke, B.; Stülke, J. Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients. Nat. Rev. Microbiol. 2008, 6, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Ihssen, J.; Egli, T. Specific growth rate and not cell density controls the general stress response in Escherichia coli. Microbiology 2004, 150, 1637–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berney, M.; Weilenmann, H.-U.; Ihssen, J.; Bassin, C.; Egli, T. Specific Growth Rate Determines the Sensitivity of Escherichia coli to Thermal, UVA, and Solar Disinfection. Appl. Environ. Microbiol. 2006, 72, 2586–2593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindqvist, R.; Barmark, G. Specific Growth Rate Determines the Sensitivity of Escherichia coli to Lactic Acid Stress: Implications for Predictive Microbiology. BioMed Res. Int. 2014, 2014, 471317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biselli, E.; Schink, S.J.; Gerland, U. Slower growth of Escherichia coli leads to longer survival in carbon starvation due to a decrease in the maintenance rate. Mol. Syst. Biol. 2020, 16, e9478. [Google Scholar] [CrossRef]
- Degnan, B.A.; Macfarlane, G.T. Comparison of carbohydrate substrate preferences in eight species of bifidobacteria. FEMS Microbiol. Lett. 1991, 84, 151–156. [Google Scholar] [CrossRef]
- Roy, D. Media for the isolation and enumeration of bifidobacteria in dairy products. Int. J. Food Microbiol. 2001, 69, 167–182. [Google Scholar] [CrossRef]
- Chung, M.; Adkins, R.S.; Shetty, A.C.; Sadzewicz, L.; Tallon, L.J.; Fraser, C.M.; Rasko, D.A.; Mahurkar, A.; Dunning Hotopp, J.C. FADU: A Feature Counting Tool for Prokaryotic RNA-Seq Analysis. bioRxiv 2018, 337600. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef] [Green Version]
- Maere, S.; Heymans, K.; Kuiper, M. BiNGO: A Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics 2005, 21, 3448–3449. [Google Scholar] [CrossRef] [Green Version]
- The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Parche, S.; Amon, J.; Jankovic, I.; Rezzonico, E.; Beleut, M.; Barutçu, H.; Schendel, I.; Eddy, M.P.; Burkovski, A.; Arigoni, F.; et al. Sugar Transport Systems of Bifidobacterium longum NCC2705. J. Mol. Microbiol. Biotechnol. 2006, 12, 9–19. [Google Scholar] [CrossRef]
- Novichkov, P.S.; Kazakov, A.E.; Ravcheev, D.A.; Leyn, S.A.; Kovaleva, G.Y.; Sutormin, R.A.; Kazanov, M.D.; Riehl, W.; Arkin, A.P.; Dubchak, I.; et al. RegPrecise 3.0—A resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genom. 2013, 14, 745. [Google Scholar] [CrossRef]
- Achanta, P.S.; Jaki, B.U.; McAlpine, J.B.; Friesen, J.B.; Niemitz, M.; Chen, S.-N.; Pauli, G.F. Quantum mechanical NMR full spin analysis in pharmaceutical identity testing and quality control. J. Pharm. Biomed. Anal. 2021, 192, 113601. [Google Scholar] [CrossRef]
- Tang, Y.; Friesen, J.B.; Lankin, D.C.; McAlpine, J.B.; Nikolić, D.S.; Niemitz, M.; Seigler, D.S.; Graham, J.G.; Chen, S.-N.; Pauli, G.F. Quantum Mechanics-Based Structure Analysis of Cyclic Monoterpene Glycosides from Rhodiola rosea. J. Nat. Prod. 2020, 83, 1950–1959. [Google Scholar] [CrossRef]
- Nugroho, A.D.W.; Kleerebezem, M.; Bachmann, H. A Novel Method for Long-Term Analysis of Lactic Acid and Ammonium Production in Non-growing Lactococcus lactis Reveals Pre-culture and Strain Dependence. Front. Bioeng. Biotechnol. 2020, 8, 580090. [Google Scholar] [CrossRef]
- Den Besten, H.M.W.; Mataragas, M.; Moezelaar, R.; Abee, T.; Zwietering, M.H. Quantification of the Effects of Salt Stress and Physiological State on Thermotolerance of Bacillus cereus ATCC 10987 and ATCC 14579. Appl. Environ. Microbiol. 2006, 72, 5884–5894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arzamasov, A.A.; Van Sinderen, D.; Rodionov, D.A. Comparative Genomics Reveals the Regulatory Complexity of Bifidobacterial Arabinose and Arabino-Oligosaccharide Utilization. Front. Microbiol. 2018, 9, 776. [Google Scholar] [CrossRef] [PubMed]
- Bruggeman, F.J.; Planqué, R.; Molenaar, D.; Teusink, B. Searching for principles of microbial physiology. FEMS Microbiol. Rev. 2020, 44, 821–844. [Google Scholar] [CrossRef] [PubMed]
- Ercan, O.; Wels, M.; Smid, E.J.; Kleerebezem, M. Molecular and Metabolic Adaptations of Lactococcus lactis at Near-Zero Growth Rates. Appl. Environ. Microbiol. 2015, 81, 320–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margolles, A.; García, L.; Sánchez, B.; Gueimonde, M.; Reyes-Gavilán, C.G.D.L. Characterisation of a Bifidobacterium strain with acquired resistance to cholate—A preliminary study. Int. J. Food Microbiol. 2003, 82, 191–198. [Google Scholar] [CrossRef]
- Tacconi, S.; Sgorbati, B.; Modesto, M.; Biavati, B.; Nissen, L.; Mattarelli, P. Carbohydrate stress-related response in Bifidobacterium pseudolongum subsp. globosum. Ann. Microbiol. 2012, 62, 1751–1756. [Google Scholar] [CrossRef]
- Yang, X.; Hang, X.; Tan, J.; Yang, H. Differences in acid tolerance between Bifidobacterium breve BB8 and its acid-resistant derivative B. breve BB8dpH, revealed by RNA-sequencing and physiological analysis. Anaerobe 2015, 33, 76–84. [Google Scholar] [CrossRef]
- Jin, J.; Qin, Q.; Guo, H.; Liu, S.; Ge, S.; Zhang, H.; Cui, J.; Ren, F. Effect of Pre-Stressing on the Acid-Stress Response in Bifidobacterium Revealed Using Proteomic and Physiological Approaches. PLoS ONE 2015, 10, e0117702. [Google Scholar] [CrossRef] [Green Version]
- Collado, M.; Sanz, Y. Induction of acid resistance in Bifidobacterium: A mechanism for improving desirable traits of potentially probiotic strains. J. Appl. Microbiol. 2007, 103, 1147–1157. [Google Scholar] [CrossRef]
- Rezzonico, E.; Lariani, S.; Barretto, C.; Cuanoud, G.; Giliberti, G.; Delley, M.; Arigoni, F.; Pessi, G. Global transcriptome analysis of the heat shock response of Bifidobacterium longum. FEMS Microbiol. Lett. 2007, 271, 136–145. [Google Scholar] [CrossRef] [Green Version]
- An, H.; Douillard, F.P.; Wang, G.; Zhai, Z.; Yang, J.; Song, S.; Cui, J.; Ren, F.; Luo, Y.; Zhang, B.; et al. Integrated Transcriptomic and Proteomic Analysis of the Bile Stress Response in a Centenarian-originated Probiotic Bifidobacterium longum BBMN68. Mol. Cell. Proteom. 2014, 13, 2558–2572. [Google Scholar] [CrossRef] [Green Version]
- McDougald, D.; Gong, L.; Srinivasan, S.; Hild, E.; Thompson, L.; Takayama, K.; Rice, S.A.; Kjelleberg, S. Defences against oxidative stress during starvation in bacteria. Antonie van Leeuwenhoek 2002, 81, 3–13. [Google Scholar] [CrossRef]
- Raina, S.; Missiakas, D.; Georgopoulos, C. The rpoE gene encoding the sigma E (sigma 24) heat shock sigma factor of Escherichia coli. EMBO J. 1995, 14, 1043–1055. [Google Scholar] [CrossRef]
- Xue, X.; Tomasch, J.; Sztajer, H.; Wagner-Döbler, I. The Delta Subunit of RNA Polymerase, RpoE, Is a Global Modulator of Streptococcus mutans Environmental Adaptation. J. Bacteriol. 2010, 192, 5081–5092. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Zhang, B.; Guo, H.; Cui, J.; Jiang, L.; Song, S.; Sun, M.; Ren, F. Mechanism Analysis of Acid Tolerance Response of Bifidobacterium longum subsp. longum BBMN 68 by Gene Expression Profile Using RNA-Sequencing. PLoS ONE 2012, 7, e50777. [Google Scholar] [CrossRef] [Green Version]
- Kleerebezem, M.; Bachmann, H.; van Pelt-KleinJan, E.; Douwenga, S.; Smid, E.J.; Teusink, B.; van Mastrigt, O. Lifestyle, metabolism and environmental adaptation in Lactococcus lactis. FEMS Microbiol. Rev. 2020, 44, 804–820. [Google Scholar] [CrossRef]
- Ercan, O.; Besten, H.M.W.D.; Smid, E.J.; Kleerebezem, M. The growth-survival trade-off is hard-wired in the Lactococcus lactis gene regulation network. Environ. Microbiol. Rep. 2022, 14, 632–636. [Google Scholar] [CrossRef]
- Sánchez, B.; Noriega, L.; Ruas-Madiedo, P.; Reyes-Gavilan, C.D.L.; Margolles, A. Acquired resistance to bile increases fructose-6-phosphate phosphoketolase activity in Bifidobacterium. FEMS Microbiol. Lett. 2004, 235, 35–41. [Google Scholar] [CrossRef]
- Helmann, J.D. The extracytoplasmic function (ECF) sigma factors. Adv. Microb. Physiol. 2002, 46, 47–110. [Google Scholar] [CrossRef] [PubMed]
- Hecker, M.; Völker, U. General stress response of Bacillus subtilis and other bacteria. Adv. Microb. Physiol. 2001, 44, 35–91. [Google Scholar] [CrossRef] [PubMed]
- Zuo, F.; Yu, R.; Xiao, M.; Khaskheli, G.B.; Sun, X.; Ma, H.; Ren, F.; Zhang, B.; Chen, S. Transcriptomic analysis of Bifidobacterium longum subsp. longum BBMN68 in response to oxidative shock. Sci. Rep. 2018, 8, 17085. [Google Scholar] [CrossRef]
- Palframan, R.J.; Gibson, G.R.; Rastall, R.A. Carbohydrate preferences of Bifidobacterium species isolated from the human gut. Curr. Issues Intest. Microbiol. 2003, 4, 71–75. [Google Scholar]
- Foroni, E.; Serafini, F.; Amidani, D.; Turroni, F.; He, F.; Bottacini, F.; Motherway, M.O.; Viappiani, A.; Zhang, Z.; Rivetti, C.; et al. Genetic analysis and morphological identification of pilus-like structures in members of the genus Bifidobacterium. In Microbial Cell Factories; BioMed Central: London, UK, 2011; p. S16. [Google Scholar]
- Serafini, F.; Turroni, F.; Ruas-Madiedo, P.; Lugli, G.A.; Milani, C.; Duranti, S.; Zamboni, N.; Bottacini, F.; van Sinderen, D.; Margolles, A.; et al. Kefir fermented milk and kefiran promote growth of Bifidobacterium bifidum PRL2010 and modulate its gene expression. Int. J. Food Microbiol. 2014, 178, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Turroni, F.; Serafini, F.; Mangifesta, M.; Arioli, S.; Mora, D.; van Sinderen, D.; Ventura, M. Expression of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in response to environmental gut conditions. FEMS Microbiol. Lett. 2014, 357, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Kien, C.L. Digestion, Absorption, and Fermentation of Carbohydrates in the Newborn. Clin. Perinatol. 1996, 23, 211–228. [Google Scholar] [CrossRef] [PubMed]
GLUCOSE | GALACTOSE | |||
---|---|---|---|---|
OD-Based | CFU-Based | OD-Based | CFU-Based | |
MAX CELL DENSITY ± SEM (OD600; CFU/ML) | 5.87 ± 0.12 | 2.80 × 108 ± 1.86 × 107 | 3.80 ± 0.06 | 7.80 × 108 ± 1.22 × 108 |
AVERAGE MAX GROWTH RATE μ ± SEM (1/H) | 0.67 ± 0.05 | - | 0.35 ± 0.05 | - |
ESTIMATED AVERAGE DOUBLING TIME (1/H) | - | 1.05 | - | 2.06 |
AVERAGE ± SEM CFU:OD | 5.93 × 107 ± 1.81 × 107 | 2.54 × 108 ± 4.28 × 107 | ||
AVERAGE CELL LENGTH ± SEM (μM) | 2.47 ± 0.06 | 1.57 ± 0.03 | ||
MAX ACIDIFICATION SLOPE (1/H) | −0.57 ± 0.07 | −0.39 ± 0.03 | ||
AVERAGE FINAL PH ± SEM | 4.51 ± 0.04 | 4.50 ± 0.05 |
Locus Tag | Gene Name | LOG2FC | FDR Q-Value | Function | |
---|---|---|---|---|---|
ARAQ Regulated Loci | BL0141 | malE | 0.728 | 0.007 | Maltose/maltodextrin ABC transp., substrate binding protein |
BL0272 | araA | 1.218 | 0.006 | L-arabinose isomerase | |
BL0273 | araD | ND | NA | L-ribulose-5-phosphate 4-epimerase | |
BL0274 | araB | 1.932 | 0.003 | Ribulokinase | |
BL0275 | araQ | −1.106 | 0.037 | Transc. regulator of central carb. metabolism, LacI family | |
BL0715 | tal | 0.705 | 0.006 | Transaldolase | |
BL0716 | tkt | 0.526 | 0.011 | Transketolase | |
BL0988 | pyk | 0.387 | 0.057 | Pyruvate kinase | |
BL0999 | glgB | 0.697 | 0.002 | GH13 glycosyl hydrolase | |
BL1000 | - | 1.388 | 0.091 | Response regulator of two-component system | |
BL1001 | - | 0.368 | 0.391 | histidine kinase sensor of two-component system | |
BL1022 | eno | 0.031 | 0.928 | Enolase | |
BL1308 | ldh | −0.085 | 0.785 | L-lactate dehydrogenase | |
BL1359 | galM | 2.006 | 0.002 | Aldose 1-epimerase | |
BL1363 | gap | 0.912 | 0.000 | NAD-dependent glyceraldehyde-3-phosphate dehydrogenase | |
BL1531 | - | 1.185 | 0.000 | Regulator of polyketide synthase expression | |
BL1532 | - | 1.581 | 0.000 | hypothetical protein | |
BL1533 | - | −3.372 | 0.000 | Biotin-protein ligase | |
BL1570 | malQ1 | 0.168 | 0.590 | 4-alpha-glucanotransferase | |
MALR1 REGULATED LOCI | BL0279 | pgi | 2.079 | 0.000 | Glucose-6-phosphate isomerase |
BL0597 | glgP | −0.065 | 0.841 | Glycogen phosphorylase | |
BL0142 | malR1 | 0.370 | 0.252 | Transcr. regulator of maltose/maltodextrin utilization, LacI family | |
BL0141 | malE | 0.728 | 0.007 | Maltose/maltodextrin ABC transp., substrate binding protein | |
BL1630 | pgm | 1.006 | 0.001 | Phosphoglucomutase (EC 5.4.2.2) | |
BL1631 | glcP | −0.930 | 0.001 | D-Glucose-proton symporter | |
BL0527 | malQ | −1.834 | 0.000 | 4-alpha-glucanotransferase (amylomaltase) | |
BL0528 | malR2 | −0.349 | 0.664 | Transcr. regulator of maltose/maltodextrin utilization, LacI family | |
BL0529 | aglA | −0.925 | 0.063 | Alpha-glucosidase | |
BL0143 | malF | 0.713 | 0.222 | Maltose/maltodextrin ABC transporter | |
BL0144 | malG | 0.699 | 0.263 | Maltose/maltodextrin ABC transporter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duboux, S.; Pruvost, S.; Joyce, C.; Bogicevic, B.; Muller, J.A.; Mercenier, A.; Kleerebezem, M. The Pleiotropic Effects of Carbohydrate-Mediated Growth Rate Modifications in Bifidobacterium longum NCC 2705. Microorganisms 2023, 11, 588. https://doi.org/10.3390/microorganisms11030588
Duboux S, Pruvost S, Joyce C, Bogicevic B, Muller JA, Mercenier A, Kleerebezem M. The Pleiotropic Effects of Carbohydrate-Mediated Growth Rate Modifications in Bifidobacterium longum NCC 2705. Microorganisms. 2023; 11(3):588. https://doi.org/10.3390/microorganisms11030588
Chicago/Turabian StyleDuboux, Stéphane, Solenn Pruvost, Christopher Joyce, Biljana Bogicevic, Jeroen André Muller, Annick Mercenier, and Michiel Kleerebezem. 2023. "The Pleiotropic Effects of Carbohydrate-Mediated Growth Rate Modifications in Bifidobacterium longum NCC 2705" Microorganisms 11, no. 3: 588. https://doi.org/10.3390/microorganisms11030588
APA StyleDuboux, S., Pruvost, S., Joyce, C., Bogicevic, B., Muller, J. A., Mercenier, A., & Kleerebezem, M. (2023). The Pleiotropic Effects of Carbohydrate-Mediated Growth Rate Modifications in Bifidobacterium longum NCC 2705. Microorganisms, 11(3), 588. https://doi.org/10.3390/microorganisms11030588