Nanoparticle Coatings on Glass Surfaces to Prevent Pseudomonas fluorescens AR 11 Biofilm Formation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Characterization of Hybrid Nanoparticles
2.3. Glass Surface Functionalization
- Pumping down stage: the reactor chamber was closed and the pressure was set at 0.15 mbar through the vacuum pump (Leybold SC5D oil-free);
- Gas supply stage: the reactor chamber was fed with pure oxygen gas for 1 min and the pressure was set at 0.5 mbar;
- Plasma activation: oxygen plasma was ignited by applying 20 W and the plasma was kept active for 2 min;
- Flushing stage: the chamber was flushed with oxygen gas for 10 s;
- Venting stage: the chamber internal pressure was restored at room pressure.
2.4. Sample Wetting Analysis
2.5. Microorganism and Culture Conditions
2.6. Biofilm Growth Conditions
2.7. Biofilm Imaging and Morphology Analysis
- Biomass (μm3/μm2): defined as the volume of biomass per unit area and estimated as the volume of all voxels that contain biomass divided by the substratum area; COMSTAT2 counts as biomass all voxels above a given threshold;
- Average thickness (biomass) (µm): considering only the area covered by the biomass;
- Average thickness (entire area) (µm): considering the entire area of the stack;
- Maximum thickness (μm): evaluated as the highest point of the biofilm over the substratum;
- Roughness coefficient, Ra (nondimensional): measuring the variability in height of the biofilm [46];
- Surface area (μm2): calculated as the area summation of all biomass voxel surfaces exposed to the background and area occupied in the layer (μm2): considering biomass pixels in each layer (confocal slice).
3. Results and Discussion
3.1. Properties of Hybrid Nanoparticles
3.2. Surface Wetting Analysis
3.3. Biofilm Morphology on Different Functionalized Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stoodley, P. Biofilms: Flow disrupts communication. Nat. Microbiol. 2016, 1, 15012. [Google Scholar] [CrossRef]
- Hall-Stoodley, L.; Stoodley, P. Developmental regulation of microbial biofilms. Curr. Opin. Biotechnol. 2002, 13, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Zabiegaj, D.; Hajirasouliha, F.; Duilio, A.; Guido, S.; Caserta, S.; Kostoglou, M.; Petala, M.; Karapantsios, T.; Trybala, A. Wetting/spreading on porous media and on deformable, soluble structured substrates as a model system for studying the effect of morphology on biofilms wetting and for assessing anti-biofilm methods. Curr. Opin. Colloid Interface Sci. 2021, 53, 101426. [Google Scholar] [CrossRef]
- Rusconi, R.; Lecuyer, S.; Guglielmini, L.; Stone, H.A. Laminar flow around corners triggers the formation of biofilm streamers. J. R. Soc. Interface 2010, 7, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- Noirot-Gros, M.-F.; Forrester, S.; Malato, G.; Larsen, P.E.; Noirot, P. CRISPR interference to interrogate genes that control biofilm formation in Pseudomonas fluorescens. Sci. Rep. 2019, 9, 15954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiteley, M.; Bangera, M.G.; Bumgarner, R.E.; Parsek, M.R.; Teitzel, G.M.; Lory, S.; Greenberg, E.P. Gene expression in Pseudomonas aeruginosa biofilms. Nature 2001, 413, 860–864. [Google Scholar] [CrossRef]
- Recupido, F.; Toscano, G.; Tatè, R.; Petala, M.; Caserta, S.; Karapantsios, T.D.; Guido, S. The role of flow in bacterial biofilm morphology and wetting properties. Colloids Surf. B Biointerfaces 2020, 192, 111047. [Google Scholar] [CrossRef]
- Zarabadi, M.P.; Paquet-Mercier, F.; Charette, S.J.; Greener, J. Hydrodynamic effects on biofilms at the biointerface using a microfluidic electrochemical cell: Case study of Pseudomonas sp. Langmuir 2017, 33, 2041–2049. [Google Scholar] [CrossRef]
- Pousti, M.; Zarabadi, M.P.; Amirdehi, M.A.; Paquet-Mercier, F.; Greener, J. Microfluidic bioanalytical flow cells for biofilm studies: A review. Analyst 2019, 144, 68–86. [Google Scholar] [CrossRef]
- Fanesi, A.; Lavayssière, M.; Breton, C.; Bernard, O.; Briandet, R.; Lopes, F. Shear stress affects the architecture and cohesion of Chlorella vulgaris biofilms. Sci. Rep. 2021, 11, 4002. [Google Scholar] [CrossRef]
- Lecuyer, S.; Rusconi, R.; Shen, Y.; Forsyth, A.; Vlamakis, H.; Kolter, R.; Stone, H.A. Shear stress increases the residence time of adhesion of Pseudomonas aeruginosa. Biophys. J. 2011, 100, 341–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [Google Scholar] [CrossRef]
- Andersson, S.; Kuttuva Rajarao, G.; Land, C.J.; Dalhammar, G. Biofilm formation and interactions of bacterial strains found in wastewater treatment systems. FEMS Microbiol. Lett. 2008, 283, 83–90. [Google Scholar] [CrossRef]
- Azeredo, J.; Azevedo, N.F.; Briandet, R.; Cerca, N.; Coenye, T.; Costa, A.R.; Desvaux, M.; Di Bonaventura, G.; Hébraud, M.; Jaglic, Z. Critical review on biofilm methods. Crit. Rev. Microbiol. 2017, 43, 313–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirillo, A.I.; Tomaiuolo, G.; Guido, S. Membrane Fouling Phenomena in Microfluidic Systems: From Technical Challenges to Scientific Opportunities. Micromachines 2021, 12, 820. [Google Scholar] [CrossRef] [PubMed]
- Mattila-Sandholm, T.; Wirtanen, G. Biofilm formation in the industry: A review. Food Rev. Int. 1992, 8, 573–603. [Google Scholar] [CrossRef]
- Bridier, A.; Sanchez-Vizuete, P.; Guilbaud, M.; Piard, J.C.; Naitali, M.; Briandet, R. Biofilm-associated persistence of food-borne pathogens. Food Microbiol. 2015, 45, 167–178. [Google Scholar] [CrossRef]
- Secchi, E.; Savorana, G.; Vitale, A.; Eberl, L.; Stocker, R.; Rusconi, R. The structural role of bacterial eDNA in the formation of biofilm streamers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113723119. [Google Scholar] [CrossRef]
- Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018, 7, 212527. [Google Scholar] [CrossRef]
- Wang, M.; Duday, D.; Scolan, E.; Perbal, S.; Prato, M.; Lasseur, C.; Hołyńska, M. Antimicrobial Surfaces for Applications on Confined Inhabited Space Stations. Adv. Mater. Interfaces 2021, 8, 2100118. [Google Scholar] [CrossRef]
- Campoccia, D.; Montanaro, L.; Arciola, C.R. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 2013, 34, 8533–8554. [Google Scholar] [CrossRef] [PubMed]
- Di Somma, A.; Recupido, F.; Cirillo, A.; Romano, A.; Romanelli, A.; Caserta, S.; Guido, S.; Duilio, A. Antibiofilm Properties of Temporin-L on Pseudomonas fluorescens in Static and In-Flow Conditions. Int. J. Mol. Sci. 2020, 21, 8526. [Google Scholar] [CrossRef] [PubMed]
- Morán, D.; Gutiérrez, G.; Blanco-López, M.C.; Marefati, A.; Rayner, M.; Matos, M. Synthesis of starch nanoparticles and their applications for bioactive compound encapsulation. Appl. Sci. 2021, 11, 4547. [Google Scholar] [CrossRef]
- Yazdani-Ahmadabadi, H.; Yu, K.; Khoddami, S.; Felix, D.F.; Yeh, H.H.; Luo, H.D.; Moskalev, I.; Wang, Q.; Wang, R.; Grecov, D. Robust Nanoparticle-Derived Lubricious Antibiofilm Coating for Difficult-to-Coat Medical Devices with Intricate Geometry. ACS Nanosci. Au 2022, 3, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Geissel, F.J.; Platania, V.; Gogos, A.; Herrmann, I.K.; Belibasakis, G.N.; Chatzinikolaidou, M.; Sotiriou, G.A. Antibiofilm activity of nanosilver coatings against Staphylococcus aureus. J. Colloid Interface Sci. 2022, 608, 3141–3150. [Google Scholar] [CrossRef] [PubMed]
- Attallah, N.G.M.; Elekhnawy, E.; Negm, W.A.; Hussein, I.A.; Mokhtar, F.A.; Al-Fakhrany, O.M. In vivo and in vitro antimicrobial activity of biogenic silver nanoparticles against Staphylococcus aureus clinical isolates. Pharmaceuticals 2022, 15, 194. [Google Scholar] [CrossRef]
- Vitiello, G.; Silvestri, B.; Luciani, G. Learning from nature: Bioinspired strategies towards antimicrobial nanostructured systems. Curr. Top. Med. Chem. 2018, 18, 22–41. [Google Scholar] [CrossRef]
- Ghattavi, K.; Homaei, A.; Kamrani, E.; Kim, S.-K. Melanin pigment derived from marine organisms and its industrial applications. Dyes Pigments 2022, 201, 110214. [Google Scholar] [CrossRef]
- Avossa, J.; Pota, G.; Vitiello, G.; Macagnano, A.; Zanfardino, A.; Di Napoli, M.; Pezzella, A.; D’Errico, G.; Varcamonti, M.; Luciani, G. Multifunctional mats by antimicrobial nanoparticles decoration for bioinspired smart wound dressing solutions. Mater. Sci. Eng. C 2021, 123, 111954. [Google Scholar] [CrossRef]
- Vitiello, G.; Zanfardino, A.; Tammaro, O.; Di Napoli, M.; Caso, M.F.; Pezzella, A.; Varcamonti, M.; Silvestri, B.; D’Errico, G.; Costantini, A. Bioinspired hybrid eumelanin–TiO 2 antimicrobial nanostructures: The key role of organo–inorganic frameworks in tuning eumelanin’s biocide action mechanism through membrane interaction. RSC Adv. 2018, 8, 28275–28283. [Google Scholar] [CrossRef] [Green Version]
- Bormashenko, E.; Whyman, G.; Multanen, V.; Shulzinger, E.; Chaniel, G. Physical mechanisms of interaction of cold plasma with polymer surfaces. J. Colloid Interface Sci. 2015, 448, 175–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, M.K.; Vidal, J.E.; Song, J.-J. Microbial biofilms on medical indwelling devices. In New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms; Elsevier: Amsterdam, The Netherlands, 2020; pp. 15–28. [Google Scholar]
- Zea, L.; Nisar, Z.; Rubin, P.; Cortesão, M.; Luo, J.; McBride, S.A.; Moeller, R.; Klaus, D.; Müller, D.; Varanasi, K.K. Design of a spaceflight biofilm experiment. Acta Astronaut. 2018, 148, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Zea, L.; McLean, R.J.C.; Rook, T.A.; Angle, G.; Carter, D.L.; Delegard, A.; Denvir, A.; Gerlach, R.; Gorti, S.; McIlwaine, D. Potential biofilm control strategies for extended spaceflight missions. Biofilm 2020, 2, 100026. [Google Scholar] [CrossRef] [PubMed]
- Marra, D.; Karapantsios, T.; Caserta, S.; Secchi, E.; Holynska, M.; Labarthe, S.; Polizzi, B.; Ortega, S.; Kostoglou, M.; Lasseur, C.; et al. Migration of surface-associated microbial communities in spaceflight habitats. Biofilm 2023, 100109. [Google Scholar] [CrossRef]
- Pezzella, A.; Vogna, D.; Prota, G. Atropoisomeric melanin intermediates by oxidation of the melanogenic precursor 5, 6-dihydroxyindole-2-carboxylic acid under biomimetic conditions. Tetrahedron 2002, 58, 3681–3687. [Google Scholar] [CrossRef]
- Pota, G.; Zanfardino, A.; Di Napoli, M.; Cavasso, D.; Varcamonti, M.; D’Errico, G.; Pezzella, A.; Luciani, G.; Vitiello, G. Bioinspired antibacterial PVA/Melanin-TiO2 hybrid nanoparticles: The role of poly-vinyl-alcohol on their self-assembly and biocide activity. Colloids Surf. B Biointerfaces 2021, 202, 111671. [Google Scholar] [CrossRef]
- Vitiello, G.; Venezia, V.; Verrillo, M.; Nuzzo, A.; Houston, J.; Cimino, S.; D’Errico, G.; Aronne, A.; Paduano, L.; Piccolo, A. Hybrid humic acid/titanium dioxide nanomaterials as highly effective antimicrobial agents against gram (−) pathogens and antibiotic contaminants in wastewater. Environ. Res. 2021, 193, 110562. [Google Scholar] [CrossRef]
- Venezia, V.; Verrillo, M.; Gallucci, N.; Di Girolamo, R.; Luciani, G.; D’Errico, G.; Paduano, L.; Piccolo, A.; Vitiello, G. Exploiting bioderived humic acids: A molecular combination with ZnO nanoparticles leads to nanostructured hybrid interfaces with enhanced pro-oxidant and antibacterial activity. J. Environ. Chem. Eng. 2023, 11, 108973. [Google Scholar] [CrossRef]
- ASTM D5142-90; Standard Test Methods for Proximate Analysis of the Analysis Sample of Coal and Coke by Instrumental Procedures. ASTM International: West Conshohocken, PA, USA, 1998.
- Marra, D.; Recupido, F.; Di Somma, A.; Canè, C.; Acquesta, A.; Toscano, G.; Monetta, T.; Duilio, A.; Caserta, S. Design of nanostructured coating to prevent biofilm formation on surfaces. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Rome, Italy, 2022; p. 012003. [Google Scholar]
- Marra, D.; Recupido, F.; Toscano, G.; Caserta, S. Bacterial Motility in Biofilm under Shear Flow. Chem. Eng. Trans. 2022, 93, 325–330. [Google Scholar]
- Kampouraki, Z.C.; Petala, M.; Boumpakis, A.; Skordaris, G.; Michailidis, N.; Deliyanni, E.; Kostoglou, M.; Karapantsios, T.D. Wetting and Imbibition Characteristics of Pseudomonas fluorescens Biofilms Grown on Stainless Steel. Langmuir 2022, 38, 9810–9821. [Google Scholar] [CrossRef]
- Castigliano, M.; Recupido, F.; Petala, M.; Kostoglou, M.; Caserta, S.; Karapantsios, T.D. Wetting of Dehydrated Hydrophilic Pseudomonas fluorescens Biofilms under the Action of External Body Forces. Langmuir 2021, 37, 10890–10901. [Google Scholar] [CrossRef] [PubMed]
- Vorregaard, M. Comstat2—A Modern 3D Image Analysis Environment for Biofilms. Master’s Thesis, Technical University of Denmark, Lyngby, Denmark, 2008. [Google Scholar]
- Nowicki, B. Multiparameter representation of surface roughness. Wear 1985, 102, 161–176. [Google Scholar] [CrossRef]
- Vuoso, D.C.; D’Angelo, S.; Ferraro, R.; Caserta, S.; Guido, S.; Cammarota, M.; Porcelli, M.; Cacciapuoti, G. Annurca apple polyphenol extract promotes mesenchymal-to-epithelial transition and inhibits migration in triple-negative breast cancer cells through ROS/JNK signaling. Sci. Rep. 2020, 10, 15921. [Google Scholar] [CrossRef] [PubMed]
P. fluorescens AR11 | Bare Glass | Melanin/ZnO | TiO2 | Melanin/TiO2 | ||||
---|---|---|---|---|---|---|---|---|
Live | Dead | Live | Dead | Live | Dead | Live | Dead | |
Biomass (µm3/µm2) | 2.91 ± 0.78 | 5.99 ± 1.30 | 6.42 ± 2.81 | 10.37 ± 2.71 | 0.48 ± 0.68 | 8.81 ± 0.80 | 0.14 ± 0.01 | 1.63 ± 0.37 |
Mean thickness (Biomass) (µm) | 6.42 ± 1.20 | 8.60 ± 0.94 | 10.67 ± 3.85 | 12.98 ± 3.17 | 4.40 ± 2.17 | 11.15 ± 2.01 | 3.36 ± 0.60 | 5.50 ± 1.25 |
Mean thickness (Area) (µm) | 4.94 ± 1.31 | 7.70 ± 1.37 | 9.55 ± 4.68 | 12.40 ± 3.35 | 2.94 ± 4.15 | 10.71 ± 2.45 | 0.24 ± 0.03 | 3.36 ± 1.05 |
Maximum thickness (µm) | 20.70 ± 4.18 | 23.75 ± 6.24 | 24.26 ± 3.22 | 25.20 ± 3.56 | 5.86 ± 4.64 | 24.08 ± 1.14 | 6.54 ± 0.52 | 8.71 ± 1.88 |
Roughness (–) | 0.74 ± 0.28 | 0.49 ± 0.18 | 0.65 ± 0.36 | 0.42 ± 0.23 | 0.67 ± 0.37 | 0.37 ± 0.01 | 1.88 ± 0.03 | 0.85 ± 0.22 |
Surface Area (105 µm2) | 2.90 ± 0.71 | 3.66 ± 0.33 | 4.86 ± 1.27 | 5.08 ± 1.72 | 0.62 ± 0.87 | 4.67 ± 0.31 | 0.21 ± 0.02 | 1.81 ± 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marra, D.; Perna, I.; Pota, G.; Vitiello, G.; Pezzella, A.; Toscano, G.; Luciani, G.; Caserta, S. Nanoparticle Coatings on Glass Surfaces to Prevent Pseudomonas fluorescens AR 11 Biofilm Formation. Microorganisms 2023, 11, 621. https://doi.org/10.3390/microorganisms11030621
Marra D, Perna I, Pota G, Vitiello G, Pezzella A, Toscano G, Luciani G, Caserta S. Nanoparticle Coatings on Glass Surfaces to Prevent Pseudomonas fluorescens AR 11 Biofilm Formation. Microorganisms. 2023; 11(3):621. https://doi.org/10.3390/microorganisms11030621
Chicago/Turabian StyleMarra, Daniele, Irene Perna, Giulio Pota, Giuseppe Vitiello, Alessandro Pezzella, Giuseppe Toscano, Giuseppina Luciani, and Sergio Caserta. 2023. "Nanoparticle Coatings on Glass Surfaces to Prevent Pseudomonas fluorescens AR 11 Biofilm Formation" Microorganisms 11, no. 3: 621. https://doi.org/10.3390/microorganisms11030621
APA StyleMarra, D., Perna, I., Pota, G., Vitiello, G., Pezzella, A., Toscano, G., Luciani, G., & Caserta, S. (2023). Nanoparticle Coatings on Glass Surfaces to Prevent Pseudomonas fluorescens AR 11 Biofilm Formation. Microorganisms, 11(3), 621. https://doi.org/10.3390/microorganisms11030621