CRISPR/Cas9-Mediated Multi-Locus Promoter Engineering in ery Cluster to Improve Erythromycin Production in Saccharopolyspora erythraea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Media and Cultivation Conditions
2.2. Fluorescence Detection and Microscopy
2.3. Construction of eGFP Expressing Strains
2.4. CRISPR-Mediated Genome Editing
2.5. Evaluation of CRISPR Editing Efficiency
2.6. Real-Time Quantitative PCR Analysis
2.7. Fermentation and Determination of Erythromycin Production
2.8. Liquid Chromatography Mass Spectrometry (LC-MS) Analysis
3. Results
3.1. Characterization of Native ery Promoters of Key Limiting Genes
3.2. CRISPR/Cas9-Mediated Promoter Engineering in ery Cluster
3.3. Improving Erythromycin Production by Promoter Engineering of Multiple ery Genes
3.4. Transcriptional Analysis of Key ery Genes in the Engineered Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mironov, V.A.; Sergienko, O.V.; Nastasiak, I.N.; Danilenko, V.N. Biogenesis and regulation of biosynthesis of erythromycins in Saccharopolyspora erythraea: A review. Prikl. Biokhim. Mikrobiol. 2004, 40, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Yang, D.; Ha, S.H.; Lee, S.Y. Metabolic Engineering of Microorganisms for the Production of Natural Compounds. Adv. Biosys. 2018, 2, 1700190. [Google Scholar] [CrossRef] [Green Version]
- Bu, Q.T.; Li, Y.P.; Xie, H.; Li, J.F.; Lv, Z.Y.; Su, Y.T.; Li, Y.Q. Rational engineering strategies for achieving high-yield, high-quality and high-stability of natural product production in actinomycetes. Metab. Eng. 2021, 67, 198–215. [Google Scholar] [CrossRef] [PubMed]
- Yun, K.; Zhang, Y.; Li, S.; Wang, Y.; Tu, R.; Liu, H.; Wang, M. Droplet-Microfluidic-Based Promoter Engineering and Expression Fine-Tuning for Improved Erythromycin Production in Saccharopolyspora erythraea NRRL 23338. Front. Bioeng. Biotechnol. 2022, 10, 864977. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Yan, Q.; Jones, J.A.; Tang, Y.J.; Fong, S.S.; Koffas, M.A.G. Metabolic Burden: Cornerstones in Synthetic Biology and Metabolic Engineering Applications. Trends Biotechnol. 2016, 34, 652–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blazeck, J.; Alper, H.S. Promoter engineering: Recent advances in controlling transcription at the most fundamental level. Biotechnol. J. 2013, 8, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Cobb, R.E.; Wang, Y.; Zhao, H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol. 2015, 4, 723–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wei, W.P.; Ye, B.C. High GC Content Cas9-Mediated Genome-Editing and Biosynthetic Gene Cluster Activation in Saccharopolyspora erythraea. ACS Synth. Biol. 2018, 7, 1338–1348. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, C.Y.; Wei, W.P.; You, D.; Yin, B.C.; Ye, B.C. A CRISPR-Cas9 Strategy for Activating the Saccharopolyspora erythraea Erythromycin Biosynthetic Gene Cluster with Knock-in Bidirectional Promoters. ACS Synth. Biol. 2019, 8, 1134–1143. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, D.; Zhu, J.; Liu, H.; Liang, S.; Luo, Y. Efficient Multiplex Genome Editing in Streptomyces via Engineered CRISPR-Cas12a Systems. Front. Bioeng. Biotechnol. 2020, 8, 726. [Google Scholar] [CrossRef]
- Zhang, Y.; Yun, K.; Huang, H.; Tu, R.; Hua, E.; Wang, M. Antisense RNA Interference-Enhanced CRISPR/Cas9 Base Editing Method for Improving Base Editing Efficiency in Streptomyces lividans 66. ACS Synth. Biol. 2021, 10, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Oliynyk, M.; Samborskyy, M.; Lester, J.B.; Mironenko, T.; Scott, N.; Dickens, S.; Haydock, S.F.; Leadlay, P.F. Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat. Biotechnol. 2007, 25, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Kieser, T.; Bibb, M.J.; Buttner, M.J.; Chater, K.F.; Hopwood, D.A. Practical Streptomyces Genetics; The John Innes Foundation Press: Norwich, UK, 2000; pp. 249–250. [Google Scholar]
- Xie, S.; Shen, B.; Zhang, C.; Huang, X.; Zhang, Y. sgRNAcas9: A software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS ONE 2014, 9, e100448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Klucar, L.; Stano, M.; Hajduk, M. phiSITE: Database of gene regulation in bacteriophages. Nucleic Acids Res. 2010, 38, D366–D370. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Wang, J.; Xiang, S.; Feng, X.; Yang, K. An engineered strong promoter for streptomycetes. Appl. Environ. Microbiol. 2013, 79, 4484–4492. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Li, Y.; Guan, H.; Zhang, J.; Tan, H. Enhancement of neomycin production by engineering the entire biosynthetic gene cluster and feeding key precursors in Streptomyces fradiae CGMCC 4.576. Appl. Microbiol. Biotechnol. 2019, 103, 2263–2275. [Google Scholar] [CrossRef]
- Li, D.; Tian, Y.; Liu, X.; Wang, W.; Li, Y.; Tan, H.; Zhang, J. Reconstitution of a mini-gene cluster combined with ribosome engineering led to effective enhancement of salinomycin production in Streptomyces albus. Microb. Biotechnol. 2021, 14, 2356–2368. [Google Scholar] [CrossRef]
- Zhuo, Y.; Zhang, W.; Chen, D.; Gao, H.; Tao, J.; Liu, M.; Gou, Z.; Zhou, X.; Ye, B.C.; Zhang, Q.; et al. Reverse biological engineering of hrdB to enhance the production of avermectins in an industrial strain of Streptomyces avermitilis. Proc. Natl. Acad. Sci. USA 2010, 107, 11250–11254. [Google Scholar] [CrossRef] [Green Version]
- Peano, C.; Talà, A.; Corti, G.; Pasanisi, D.; Durante, M.; Mita, G.; Bicciato, S.; De Bellis, G.; Alifano, P. Comparative genomics and transcriptional profiles of Saccharopolyspora erythraea NRRL 2338 and a classically improved erythromycin over-producing strain. Microb. Cell Fact. 2012, 11, 32. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Y.; Chang, X.; Yu, W.B.; Li, H.; Ye, Z.Q.; Yu, H.; Liu, B.H.; Zhang, Y.; Zhang, S.L.; Ye, B.C. Systems perspectives on erythromycin biosynthesis by comparative genomic and transcriptomic analyses of S. erythraea E3 and NRRL23338 strains. BMC Genom. 2013, 14, 523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Ning, X.; Zhao, Q.; Kang, Q.; Bai, L. Improved PKS Gene Expression With Strong Endogenous Promoter Resulted in Geldanamycin Yield Increase. Biotechnol. J. 2017, 12, 1700321. [Google Scholar] [CrossRef] [PubMed]
- Vitayakritsirikul, V.; Jaemsaeng, R.; Lohmaneeratana, K.; Thanapipatsiri, A.; Daduang, R.; Chuawong, P.; Thamchaipenet, A. Improvement of chloramphenicol production in Streptomyces venezuelae ATCC 10712 by overexpression of the aroB and aroK genes catalysing steps in the shikimate pathway. Antonie Van Leeuwenhoek 2016, 109, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.X.; Tian, W.Z.; Cheng, L.; Xu, Y.Q.; Wang, X.W.; Qin, J.Y.; Yu, B. Enhanced epsilon-Poly-L-Lysine Production by the Synergistic Effect of epsilon-Poly-L-Lysine Synthetase Overexpression and Citrate in Streptomyces albulus. Front. Bioeng. Biotechnol. 2020, 8, 288. [Google Scholar] [CrossRef] [Green Version]
- Pasini, M.; Fernández-Castané, A.; Jaramillo, A.; de Mas, C.; Caminal, G.; Ferrer, P. Using promoter libraries to reduce metabolic burden due to plasmid-encoded proteins in recombinant Escherichia coli. N. Biotechnol. 2016, 33, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Reeves, A.R.; Brikun, I.A.; Cernota, W.H.; Leach, B.I.; Gonzalez, M.C.; Weber, J.M. Effects of methylmalonyl-CoA mutase gene knockouts on erythromycin production in carbohydrate-based and oil-based fermentations of Saccharopolyspora erythraea. J. Ind. Microbiol. Biotechnol. 2006, 33, 600–609. [Google Scholar] [CrossRef]
- Reeves, A.R.; Brikun, I.A.; Cernota, W.H.; Leach, B.I.; Gonzalez, M.C.; Weber, J.M. Engineering of the methylmalonyl-CoA metabolite node of Saccharopolyspora erythraea for increased erythromycin production. Metab. Eng. 2007, 9, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Li, X.B.; Chen, J.; Andersen, J.M.; Chu, J.; Jensen, P.R. Cofactor Engineering redirects secondary metabolism and enhances erythromycin production in Saccharopolyspora erythraea. ACS Synth. Biol. 2020, 9, 655–670. [Google Scholar] [CrossRef]
- Liu, Y.; Khan, S.; Wu, P.; Li, B.; Liu, L.; Ni, J.; Zhang, H.; Chen, K.; Wu, H.; Zhang, B. Uncovering and Engineering a Mini-Regulatory Network of the TetR-Family Regulator SACE_0303 for Yield Improvement of Erythromycin in Saccharopolyspora erythraea. Front. Bioeng. Biotechnol. 2021, 9, 692901. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Y.; Yuan, L.; Mao, Y.; Wang, W.; Zhu, L.; Wu, P.; Fu, C.; Müller, R.; Weaver, D.T.; et al. Inactivation of SACE_3446, a TetR family transcriptional regulator, stimulates erythromycin production in Saccharopolyspora erythraea. Synth. Syst. Biotechnol. 2016, 1, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; You, D.; Yao, L.L.; Chu, X.; Ye, B.C. Phosphate regulator PhoP directly and indirectly controls transcription of the erythromycin biosynthesis genes in Saccharopolyspora erythraea. Microb. Cell Fact. 2019, 18, 206. [Google Scholar] [CrossRef] [PubMed]
- Bru¨nker, P.; Minas, W.; Kallio, P.T.; Bailey, J.E. Genetic engineering of an industrial strain of Saccharopolyspora erythraea for stable expression of the Vitreoscilla haemoglobin gene (vhb). Microbiology 1998, 144, 2441–2448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, E.; Hu, Z.; Ou, S.; Volchegursky, Y.; Hutchinson, C.R.; McDaniel, R. Rapid engineering of polyketide overproduction by gene transfer to industrially optimized strains. J. Ind. Microbiol. Biotechnol. 2003, 30, 480–488. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wang, Y.; Zhang, Y.; Wang, M. CRISPR/Cas9-Mediated Multi-Locus Promoter Engineering in ery Cluster to Improve Erythromycin Production in Saccharopolyspora erythraea. Microorganisms 2023, 11, 623. https://doi.org/10.3390/microorganisms11030623
Zhang X, Wang Y, Zhang Y, Wang M. CRISPR/Cas9-Mediated Multi-Locus Promoter Engineering in ery Cluster to Improve Erythromycin Production in Saccharopolyspora erythraea. Microorganisms. 2023; 11(3):623. https://doi.org/10.3390/microorganisms11030623
Chicago/Turabian StyleZhang, Xuemei, Yan Wang, Yue Zhang, and Meng Wang. 2023. "CRISPR/Cas9-Mediated Multi-Locus Promoter Engineering in ery Cluster to Improve Erythromycin Production in Saccharopolyspora erythraea" Microorganisms 11, no. 3: 623. https://doi.org/10.3390/microorganisms11030623
APA StyleZhang, X., Wang, Y., Zhang, Y., & Wang, M. (2023). CRISPR/Cas9-Mediated Multi-Locus Promoter Engineering in ery Cluster to Improve Erythromycin Production in Saccharopolyspora erythraea. Microorganisms, 11(3), 623. https://doi.org/10.3390/microorganisms11030623