Transcriptomic and Proteomic Analysis of Gardnerella vaginalis Responding to Acidic pH and Hydrogen Peroxide Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Growth Conditions
2.2. Growth Curve Test
2.3. cDNA Library Preparation and Sequencing
2.4. RNA-Sequencing Data Analysis
2.5. Quantitative PCR
2.6. Relative Analysis of the TMT-Marked Proteins
3. Results
3.1. Acidic pH and Hydrogen Peroxide Significantly Inhibit G. vaginalis Growth
3.2. Genes Related to Biofilm Formation and Epithelial Adhesion Were Downregulated during Stress
3.3. The Proteomics Data Are Consistent with the Transcriptomic Data
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Song, X.; Wei, W.; Zhong, H.; Dai, J.; Lan, Z.; Li, F.; Yu, X.; Feng, Q.; Wang, Z.; et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat. Commun. 2017, 8, 875. [Google Scholar] [CrossRef] [Green Version]
- Anahtar, M.N.; Gootenberg, D.B.; Mitchell, C.M.; Kwon, D.S. Cervicovaginal Microbiota and Reproductive Health: The Virtue of Simplicity. Cell Host Microbe 2018, 23, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Taylor, B.D.; Darville, T.; Haggerty, C.L. Does Bacterial Vaginosis Cause Pelvic Inflammatory Disease? Sex. Transm. Dis. 2013, 40, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Turovskiy, Y.; Sutyak Noll, K.; Chikindas, M.L. The aetiology of bacterial vaginosis. J. Appl. Microbiol. 2011, 110, 1105–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.; Jorgensen, J.S.; Lamont, R.F. The contribution of bacteriophages to the aetiology and treatment of the bacterial vaginosis syndrome. Fac. Rev. 2022, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Peebles, K.; Velloza, J.; Balkus, J.E.; McClelland, R.S.; Barnabas, R.V. High Global Burden and Costs of Bacterial Vaginosis: A Systematic Review and Meta-Analysis. Sex. Transm. Dis. 2019, 46, 304–311. [Google Scholar] [CrossRef]
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O.; et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4680–4687. [Google Scholar] [CrossRef] [Green Version]
- Workowski, K.A.; Bolan, G.A.; Centers for Disease Control & Prevention. Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm. Rep. 2015, 64, 1–137. [Google Scholar]
- Abou Chacra, L.; Fenollar, F.; Diop, K. Bacterial Vaginosis: What Do We Currently Know? Front. Cell. Infect. Microbiol. 2021, 11, 672429. [Google Scholar] [CrossRef]
- Lev-Sagie, A.; Goldman-Wohl, D.; Cohen, Y.; Dori-Bachash, M.; Leshem, A.; Mor, U.; Strahilevitz, J.; Moses, A.E.; Shapiro, H.; Yagel, S.; et al. Vaginal microbiome transplantation in women with intractable bacterial vaginosis. Nat. Med. 2019, 25, 1500–1504. [Google Scholar] [CrossRef]
- Cohen, C.R.; Wierzbicki, M.R.; French, A.L.; Morris, S.; Newmann, S.; Reno, H.; Green, L.; Miller, S.; Powell, J.; Parks, T.; et al. Randomized Trial of Lactin-V to Prevent Recurrence of Bacterial Vaginosis. N. Engl. J. Med. 2020, 382, 1906–1915. [Google Scholar] [CrossRef] [PubMed]
- Gaziano, R.; Sabbatini, S.; Roselletti, E.; Perito, S.; Monari, C. Saccharomyces cerevisiae-Based Probiotics as Novel Antimicrobial Agents to Prevent and Treat Vaginal Infections. Front. Microbiol. 2020, 11, 718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwebke, J.R.; Muzny, C.A.; Josey, W.E. Role of Gardnerella vaginalis in the pathogenesis of bacterial vaginosis: A conceptual model. J. Infect. Dis. 2014, 210, 338–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younes, J.A.; Lievens, E.; Hummelen, R.; van der Westen, R.; Reid, G.; Petrova, M.I. Women and Their Microbes: The Unexpected Friendship. Trends Microbiol. 2018, 26, 16–32. [Google Scholar] [CrossRef]
- Yeoman, C.J.; Yildirim, S.; Thomas, S.M.; Durkin, A.S.; Torralba, M.; Sutton, G.; Buhay, C.J.; Ding, Y.; Dugan-Rocha, S.P.; Muzny, D.M.; et al. Comparative genomics of Gardnerella vaginalis strains reveals substantial differences in metabolic and virulence potential. PLoS ONE 2010, 5, e12411. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Sun, D.; Zhu, J.; Liu, W. Two-Component Signal Transduction Systems: A Major Strategy for Connecting Input Stimuli to Biofilm Formation. Front. Microbiol. 2018, 9, 3279. [Google Scholar] [CrossRef]
- Kim, J.; Cho, Y.; Jang, I.A.; Park, W. Molecular mechanism involved in the response to hydrogen peroxide stress in Acinetobacter oleivorans DR1. Appl. Microbiol. Biotechnol. 2015, 99, 10611–10626. [Google Scholar] [CrossRef]
- Vaneechoutte, M. The human vaginal microbial community. Res. Microbiol. 2017, 168, 811–825. [Google Scholar] [CrossRef]
- Strus, M.; Brzychczy-Wloch, M.; Gosiewski, T.; Kochan, P.; Heczko, P.B. The in vitro effect of hydrogen peroxide on vaginal microbial communities. FEMS Immunol. Med. Microbiol. 2006, 48, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Rees, D.C.; Johnson, E.; Lewinson, O. ABC transporters: The power to change. Nat. Rev. Mol. Cell Biol. 2009, 10, 218–227. [Google Scholar] [CrossRef] [Green Version]
- Wilkens, S. Structure and mechanism of ABC transporters. F1000Prime Rep. 2015, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.M.; Gomez, M.M.; Kalvapalle, P.; O’Brien-Gilbert, E.; Bennett, M.R.; Shamoo, Y. Using cellular fitness to map the structure and function of a major facilitator superfamily effluxer. Mol. Syst. Biol. 2017, 13, 964. [Google Scholar] [CrossRef]
- Mahey, N.; Tambat, R.; Verma, D.K.; Chandal, N.; Thakur, K.G.; Nandanwar, H. Antifungal Azoles as Tetracycline Resistance Modifiers in Staphylococcus aureus. Appl. Environ. Microbiol. 2021, 87, e00155-21. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Xie, G.; Daligault, H.; Davenport, K.; Gleasner, C.; Jacobs, L.; Kubicek-Sutherland, J.; LeCuyer, T.; Otieno, V.; Raballah, E.; et al. Genome Sequence of a Staphylococcus xylosus Clinical Isolate, Strain SMA0341-04 (UGA5), from Siaya County Referral Hospital in Siaya, Kenya. Microbiol. Resour. Announc. 2019, 8, e01625-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, Z.; Qi, X.; Hong, S.; Xu, K.; He, F.; Zhang, M.; Chen, J.; Chao, D.; Zhao, W.; Li, D.; et al. Structure and mechanism of a group-I cobalt energy coupling factor transporter. Cell Res. 2017, 27, 675–687. [Google Scholar] [CrossRef] [Green Version]
- Guzik, U.; Hupert-Kocurek, K.; Sitnik, M.; Wojcieszynska, D. Protocatechuate 3,4-dioxygenase: A wide substrate specificity enzyme isolated from Stenotrophomonas maltophilia KB2 as a useful tool in aromatic acid biodegradation. J. Mol. Microbiol. Biotechnol. 2014, 24, 150–160. [Google Scholar] [CrossRef]
- Tachedjian, G.; O’Hanlon, D.E.; Ravel, J. The implausible “in vivo” role of hydrogen peroxide as an antimicrobial factor produced by vaginal microbiota. Microbiome 2018, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Zvirbliene, A.; Pleckaityte, M.; Lasickiene, R.; Kucinskaite-Kodze, I.; Zvirblis, G. Production and characterization of monoclonal antibodies against vaginolysin: Mapping of a region critical for its cytolytic activity. Toxicon 2010, 56, 19–28. [Google Scholar] [CrossRef]
- Joris, B.; Englebert, S.; Chu, C.P.; Kariyama, R.; Daneo-Moore, L.; Shockman, G.D.; Ghuysen, J.M. Modular design of the Enterococcus hirae muramidase-2 and Streptococcus faecalis autolysin. FEMS Microbiol. Lett. 1992, 70, 257–264. [Google Scholar] [CrossRef]
- Mitchell, W.J.; Tangney, M. Carbohydrate Uptake by the Phosphotransferase System and Other Mechanisums; Peter, D., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 155–175. [Google Scholar]
- Pedersen, K.; Zavialov, A.V.; Pavlov, M.Y.; Elf, J.; Gerdes, K.; Ehrenberg, M. The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell 2003, 112, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Wolber, J.M.; Urbanek, B.L.; Meints, L.M.; Piligian, B.F.; Lopez-Casillas, I.C.; Zochowski, K.M.; Woodruff, P.J.; Swarts, B.M. The trehalose-specific transporter LpqY-SugABC is required for antimicrobial and anti-biofilm activity of trehalose analogues in Mycobacterium smegmatis. Carbohydr. Res. 2017, 450, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.L.; Girerd, P.H.; Karjane, N.W.; Jefferson, K.K. Effect of biofilm phenotype on resistance of Gardnerella vaginalis to hydrogen peroxide and lactic acid. Am. J. Obstet. Gynecol. 2007, 197, 170.e1–170.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
GeneID | Log2Fold Change | p Value | P adj | Function |
---|---|---|---|---|
Upregulated | ||||
HMPREF0421_21022 | 3.99 | 2.91 × 10−206 | 3.00 × 10−204 | Sensor histidine kinase |
HMPREF0421_21024 | 3.90 | 8.07 × 10−31 | 5.63 × 10−30 | ABC transporter |
HMPREF0421_21015 | 2.52 | 6.07 × 10−62 | 1.04 × 10−60 | 3-oxoacyl-ACP reductase |
HMPREF0421_20839 | 2.47 | 0 | 0 | NADH dehydrogenase |
HMPREF0421_20219 | 2.44 | 1.04 × 10−42 | 1.11 × 10−41 | Major facilitator superfamily (MFS) transporter |
HMPREF0421_21221 | 2.22 | 0 | 0 | Sulfonate ABC transporter permease |
HMPREF0421_20844 | 2.19 | 7.77 × 10−171 | 6.12 × 10−169 | Cobalt ABC transporter |
HMPREF0421_20940 | 2.18 | 0 | 0 | Oligoribonuclease |
HMPREF0421_21136 | 2.07 | 3.65 × 10−248 | 6.12 × 10−246 | Nicotinate phosphoribosyltransferase |
HMPREF0421_20795 | 2.03 | 6.02 × 10−40 | 5.64 × 10−39 | Phosphoserine phosphatase SerB |
Downregulated | ||||
HMPREF0421_20208 | −3.01 | 0 | 0 | Hydroxyethylthiazole kinase |
HMPREF0421_21089 | −2.99 | 7.76 × 10−15 | 2.90 × 10−14 | Type IV prepilin peptidase |
HMPREF0421_20991 | −2.91 | 5.60 × 10−25 | 3.11 × 10−24 | Transferring glycosyl groups |
HMPREF0421_21002 | −2.90 | 4.39 × 10−79 | 1.09 × 10−77 | Cell division protein FtsK |
HMPREF0421_21216 | −2.45 | 1.91 × 10−119 | 9.13 × 10−118 | Ribonuclease HII |
HMPREF0421_20331 | −2.40 | 4.83 × 10−258 | 7.35 × 10−57 | Serine/threonine protein kinase |
HMPREF0421_20297 | −2.33 | 8.19 × 10−91 | 2.49 × 10−89 | Shikimate kinase |
HMPREF0421_20303 | −2.23 | 5.91 × 10−212 | 6.60 × 10−210 | Actinobacterial surface-anchored domain protein |
HMPREF0421_20209 | −2.11 | 5.75 × 10−224 | 8.56 × 10−222 | Thiamine biosynthetic process |
Novel C3 | −2.05 | 8.18 × 10−16 | 3.14 × 10−15 | Transcription regulator |
GeneID | Log2Fold Change | p Value | Function |
---|---|---|---|
Upregulated | |||
HMPREF0421_20219 | 2.69 | 0.000234 | Major facilitator superfamily (MFS) transporter |
HMPREF0421_20371 | 2.39 | 0.001399 | CDP-diacylglycerol-glycerol-3-Phosphate 3-phosphatidyltransferase |
HMPREF0421_20787 | 1.50 | 0.008551 | Prevent-host-death family antitoxin |
HMPREF0421_20066 | 1.43 | 0.020726 | Vaginolysin |
HMPREF0421_20542 | 1.43 | 0.000758 | CHAP domain protein (lytic ability) |
HMPREF0421_20467 | 1.42 | 0.006055 | Cell division protein FtsI |
HMPREF0421_21025 | 1.32 | 0.002046 | ABC transporter ATP-binding protein |
HMPREF0421_20164 | 1.24 | 0.005587 | Heat shock protein HtpX |
HMPREF0421_20745 | 1.22 | 0.002437 | Methylenetetrahydrofolate reductase |
HMPREF0421_21364 | 1.21 | 0.004129 | Response regulator |
Downregulated | |||
HMPREF0421_20893 | 0.65 | 0.000724 | PTS system transporter subunit IIC |
HMPREF0421_20297 | 0.73 | 0.032017 | Shikimate kinase |
HMPREF0421_20633 | 0.74 | 0.000496 | Formate acetyltransferase |
HMPREF0421_20235 | 0.76 | 0.009039 | Sugar ABC transporter membrane protein |
HMPREF0421_20979 | 0.76 | 0.001612 | TM2 domain-containing protein |
HMPREF0421_20098 | 0.78 | 0.001898 | Sugar ABC transporter membrane protein |
HMPREF0421_20232 | 0.81 | 0.003311 | Maltose-binding protein |
HMPREF0421_20422 | 0.81 | 0.025688 | Exopolyphosphatase |
HMPREF0421_20575 | 0.82 | 0.000581 | Phosphate acetyltransferase |
HMPREF0421_21052 | 0.83 | 0.022516 | RelE-family TA system toxin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Lu, M.; Qiu, Y.; Zhu, X.; Wang, H.; Huang, Y.; Dong, H.; Gu, L. Transcriptomic and Proteomic Analysis of Gardnerella vaginalis Responding to Acidic pH and Hydrogen Peroxide Stress. Microorganisms 2023, 11, 695. https://doi.org/10.3390/microorganisms11030695
Zhang K, Lu M, Qiu Y, Zhu X, Wang H, Huang Y, Dong H, Gu L. Transcriptomic and Proteomic Analysis of Gardnerella vaginalis Responding to Acidic pH and Hydrogen Peroxide Stress. Microorganisms. 2023; 11(3):695. https://doi.org/10.3390/microorganisms11030695
Chicago/Turabian StyleZhang, Kundi, Mengyao Lu, Yuxin Qiu, Xiaoxuan Zhu, Hongwei Wang, Yan Huang, Hongjie Dong, and Lichuan Gu. 2023. "Transcriptomic and Proteomic Analysis of Gardnerella vaginalis Responding to Acidic pH and Hydrogen Peroxide Stress" Microorganisms 11, no. 3: 695. https://doi.org/10.3390/microorganisms11030695
APA StyleZhang, K., Lu, M., Qiu, Y., Zhu, X., Wang, H., Huang, Y., Dong, H., & Gu, L. (2023). Transcriptomic and Proteomic Analysis of Gardnerella vaginalis Responding to Acidic pH and Hydrogen Peroxide Stress. Microorganisms, 11(3), 695. https://doi.org/10.3390/microorganisms11030695