A Strategy for the Recovery of Raw Ewe’s Milk Microbiodiversity to Develop Natural Starter Cultures for Traditional Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Milk Sampling and Starter Culture Preparation
2.3. Starter Culture Characterisation
2.3.1. Acidification Ability
2.3.2. Microbial Composition
2.3.3. Molecular Fingerprint
2.4. Microbial Counts
2.5. Statistical Analysis
3. Results
3.1. Starter Culture Preparation
3.2. Starter Culture Microbial Characterisation
3.3. Starter Culture Propagation and Technological Performances
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Capozzi, V.; Fragasso, M.; Romaniello, R.; Berbegal, C.; Russo, P.; Spano, G. Spontaneous food fermentations and potential risks for human health. Fermentation 2017, 3, 49. [Google Scholar] [CrossRef]
- Chessa, L.; Paba, A.; Daga, E.; Caredda, M.; Comunian, R. Optimization of scotta as growth medium to preserve biodiversity and maximise bacterial cells concentration of natural starter cultures for Pecorino Romano PDO cheese. FEMS Microbiol. Lett. 2020, 367, fnaa110. [Google Scholar] [CrossRef] [PubMed]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Mancini, L.; Fox, P.F. Pros and cons for using non-starter lactic acid bacteria (NSLAB) as secondary/adjunct starters for cheese ripening. Trends Food Sci. Technol. 2015, 45, 167–178. [Google Scholar] [CrossRef]
- Di Cagno, R.; De Pasquale, I.; De Angelis, M.; Buchin, S.; Calasso, M.; Fox, P.F.; Gobbetti, M. Manufacture of Italian Caciotta-type cheeses with adjuncts and attenuated adjuncts of selected non-starter lactobacilli. Int. Dairy J. 2011, 21, 254–260. [Google Scholar] [CrossRef]
- Parente, E.; Cogan, T.M.; Powell, I. Starter Cultures: General Aspects; Academic Press: Cambridge, MA, USA, 2017; pp. 201–226. [Google Scholar]
- De Pasquale, I.; Di Cagno, R.; Buchin, S.; De Angelis, M.; Gobbetti, M. Use of autochthonous mesophilic lactic acid bacteria as starter cultures for making Pecorino Crotonese cheese: Effect on compositional, microbiological and biochemical attributes. Food Res. Int. 2019, 116, 1344–1356. [Google Scholar] [CrossRef]
- Carminati, D.; Giraffa, G.; Quiberoni, A.; Binetti, A.; Suárez, V.; Reinheimer, J. Advances and Trends in Starter Cultures for Dairy Fermentations. In Biotechnology of Lactic Acid Bacteria: Novel Applications; Mozzi, F., Raya, R.R., Vignolo, G.M., Eds.; Wiley Online Library: Hoboken, NJ, USA, 2010; pp. 177–192. [Google Scholar]
- Bassi, D.; Puglisi, E.; Cocconcelli, P.S. Comparing natural and selected starter cultures in meat and cheese fermentations. Curr. Opin. Food Sci. 2015, 2, 118–122. [Google Scholar] [CrossRef]
- Morandi, S.; Battelli, G.; Silvetti, T.; Goss, A.; Cologna, N.; Brasca, M. How the biodiversity loss in natural whey culture is affecting ripened cheese quality? The case of Trentingrana cheese. LWT 2019, 115, 108480. [Google Scholar] [CrossRef]
- Gatti, M.; Bottari, B.; Lazzi, C.; Neviani, E.; Mucchetti, G. Invited review: Microbial evolution in raw-milk, long-ripened cheeses produced using undefined natural whey starters. J. Dairy Sci. 2014, 97, 573–591. [Google Scholar] [CrossRef] [Green Version]
- Rukke, E.O.; Sørhaug, T.; Stepaniak, L. Heat Treatment of Milk: Thermization of Milk. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Leeuwendaal, N.K.; Stanton, C.; O’Toole, P.W.; Beresford, T.P. Fermented Foods, Health and the Gut Microbiome. Nutrients 2022, 14, 1527. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Altieri, C.; Corbo, M.R.; Sinigaglia, M.; Ouoba, L.I. Characterization of lactic acid bacteria isolated from Italian Bella di Cerignola table olives: Selection of potential multifunctional starter cultures. J. Food Sci. 2010, 75, M536–M544. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; De Cesare, A.; Hilbert, F.; Lindqvist, R.; et al. Update of the list of qualified presumption of safety (QPS) recommended microbiological agents intentionally added to food or feed as notified to EFSA 17: Suitability of taxonomic units notified to EFSA until September 2022. EFSA J. 2023, 21, e07746. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Microorganisms & Microbial-Derived Ingredients Used in Food. Available online: https://www.fda.gov/food/generally-recognized-safe-gras/microorganisms-microbial-derived-ingredients-used-food-partial-list (accessed on 9 February 2023).
- Paba, A.; Chessa, L.; Cabizza, R.; Daga, E.; Urgeghe, P.P.; Testa, M.C.; Comunian, R. Zoom on starter lactic acid bacteria development into oxytetracycline spiked ovine milk during the early acidification phase. Int. Dairy J. 2019, 96, 15–20. [Google Scholar] [CrossRef]
- Odamaki, T.; Yonezawa, S.; Kitahara, M.; Sugahara, Y.; Xiao, J.-Z.; Yaeshima, T.; Iwatsuki, K.; Ohkuma, M. Novel multiplex polymerase chain reaction primer set for identification of Lactococcus species. Lett. Appl. Microbiol. 2011, 52, 491–496. [Google Scholar] [CrossRef]
- Cremonesi, P.; Vanoni, L.; Morandi, S.; Silvetti, T.; Castiglioni, B.; Brasca, M. Development of a pentaplex PCR assay for the simultaneous detection of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, L. helveticus, L. fermentum in whey starter for Grana Padano cheese. Int. J. Food Microbiol. 2011, 146, 207–211. [Google Scholar] [CrossRef]
- Chagnaud, P.; Machinis, K.; Coutte, L.c.A.; Marecat, A.; Mercenier, A. Rapid PCR-based procedure to identify lactic acid bacteria: Application to six common Lactobacillus species. J. Microbiol. Methods 2001, 44, 139–148. [Google Scholar] [CrossRef]
- Ward, L.J.; Timmins, M.J. Differentiation of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus by polymerase chain reaction. Lett. Appl. Microbiol. 1999, 29, 90–92. [Google Scholar] [CrossRef]
- Torriani, S.; Felis, G.E.; Dellaglio, F. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microbiol. 2001, 67, 3450–3454. [Google Scholar] [CrossRef] [Green Version]
- Ke, D.; Picard, F.J.; Martineau, F.; Menard, C.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Development of a PCR assay for rapid detection of enterococci. J. Clin. Microbiol. 1999, 37, 3497–3503. [Google Scholar] [CrossRef] [Green Version]
- Jackson, C.R.; Fedorka-Cray, P.J.; Barrett, J.B. Use of a Genus- and Species-Specific Multiplex PCR for Identification of Enterococci. J. Clin. Microbiol. 2004, 42, 3558–3565. [Google Scholar] [CrossRef] [Green Version]
- Papadelli, M.; Manolopoulou, E.; Kalantzopoulos, G.; Tsakalidou, E. Rapid detection and identification of Streptococcus macedonicus by species-specific PCR and DNA hybridisation. Int. J. Food Microbiol. 2003, 81, 231–239. [Google Scholar] [CrossRef]
- Chessa, L.; Paba, A.; Daga, E.; Comunian, R. Effect of growth media on natural starter culture composition and performance evaluated with a polyphasic approach. Int. J. Dairy Technol. 2019, 72, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Isolini, D.; Grand, M.; Glâttli, H. Selektivmedien zum Nachweis von obligat und fakultativ heterofermen- tativen Laklobazillen. Schweiz Milchw Forsch. 1990, 19, 57–59. [Google Scholar]
- Bottazzi, V.; Ledda, A.; Arrizza, S. Bacteries fermentant les citrates et gonflement du fromage “Pecorino Romano”. Le Lait 1971, 51, 328–331. [Google Scholar] [CrossRef] [Green Version]
- Chessa, L.; Paba, A.; Daga, E.; Dupré, I.; Comunian, R. Biodiversity and Safety Assessment of Half-Century Preserved Natural Starter Cultures for Pecorino Romano PDO Cheese. Microorganisms 2021, 9, 1363. [Google Scholar] [CrossRef] [PubMed]
- Chessa, L.; Paba, A.; Daga, E.; Dupré, I.; Piga, C.; Di Salvo, R.; Mura, M.; Addis, M.; Comunian, R. Autochthonous Natural Starter Cultures: A Chance to Preserve Biodiversity and Quality of Pecorino Romano PDO Cheese. Sustainability 2021, 13, 8214. [Google Scholar] [CrossRef]
- Freire, P.; Zambrano, A.; Zamora, A.; Castillo, M. Thermal Denaturation of Milk Whey Proteins: A Comprehensive Review on Rapid Quantification Methods Being Studied, Developed and Implemented. Dairy 2022, 3, 500–512. [Google Scholar] [CrossRef]
- Ercolini, D.; Russo, F.; Ferrocino, I.; Villani, F. Molecular identification of mesophilic and psychrotrophic bacteria from raw cow’s milk. Food Microbiol. 2009, 26, 228–231. [Google Scholar] [CrossRef]
- Garneau, J.E.; Moineau, S. Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb. Cell Factories 2011, 10 (Suppl. 1), S20. [Google Scholar] [CrossRef] [Green Version]
- Marcó, M.B.; Moineau, S.; Quiberoni, A. Bacteriophages and dairy fermentations. Bacteriophage 2012, 2, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Comunian, R.; Ferrocino, I.; Paba, A.; Daga, E.; Campus, M.; Di Salvo, R.; Cauli, E.; Piras, F.; Zurru, R.; Cocolin, L. Evolution of microbiota during spontaneous and inoculated Tonda di Cagliari table olives fermentation and impact on sensory characteristics. LWT 2017, 84, 64–72. [Google Scholar] [CrossRef]
- Paba, A.; Chessa, L.; Daga, E.; Campus, M.; Bulla, M.; Angioni, A.; Sedda, P.; Comunian, R. Do Best-Selected Strains Perform Table Olive Fermentation Better than Undefined Biodiverse Starters? A Comparative Study. Foods 2020, 9, 135. [Google Scholar] [CrossRef] [Green Version]
- Gorsek, A.; Pecar, D. Propagation of Natural Starter Culture in Whey: Optimization and Kinetic Study. Chem. Eng. Trans. 2016, 49, 481–486. [Google Scholar] [CrossRef]
- Bodor, A.; Bounedjoum, N.; Vincze, G.E.; Kis, Á.E.; Laczi, K.; Bende, G.; Szilágyi, Á.; Kovács, T.; Perei, K.; Rákhely, G. Challenges of unculturable bacteria: Environmental perspectives. Rev. Environ. Sci. Bio Technol. 2020, 19, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Vartoukian, S.R.; Palmer, R.M.; Wade, W.G. Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol. Lett. 2010, 309, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Marantos, A.; Mitarai, N.; Sneppen, K. From kill the winner to eliminate the winner in open phage-bacteria systems. PLoS Comput. Biol. 2022, 18, e1010400. [Google Scholar] [CrossRef]
Target Bacteria | Target Gene | Primer | Primer Sequence (5′–3′) | Annealing (°C) | Size (bp) | Reference |
---|---|---|---|---|---|---|
Lactococcus lactis | 16S rRNA | LcLspp-F | GTTGTATTAGCTAGTTGGTGAGGTAAA | 55 | 387 | [17] |
Lc-R | GTTGAGCCACTGCCTTTTAC | |||||
Lactobacillus delbrueckii subsp lactis | dppE | Lac-LACTIS-F733 | TGCCAAGCTCTACTCCGTTT | 58 | 217 | [18] |
Lac-LACTIS-R949 | GTCAAGCGGCATAGTGTCAA | |||||
Lactobacillus bulgaricus | lacZ | Lac-BULG-F391 | GGAAGACTCCGTTTTGGTCA | 58 | 395 | [18] |
Lac-BULG-R785 | AGTTCAAGTCTGCCCCATTG | |||||
Lactobacillus helveticus | prtH | Lac-HELV-F73 | GGCGGGGAAAGAGGTAACTA | 58 | 509 | [18] |
Lac-HELV-R581 | TGACGCAAACTTAATGAACCA | |||||
Streptococcus thermophilus | lacZ | Str-THER-F2116 | GCTTGTGTTCTGAGGGAAGC | 58 | 577 | [18] |
Str-THER-R2693 | CTTTCTTCTGCACCGTATCCA | |||||
Limosilactobacillus fermentum | arcD | Lac-FER-F753 | CCAGATCAGCCAACTTCACA | 58 | 310 | [18] |
Lac-FER-R1062 | GGCAAACTTCAAGAGGACCA | |||||
Lactobacillus reuteri | 16S rRNA | REUT1 | TGAATTGACGATGGATCACCAGTG | 65 | 1000 | [19] |
LOWLAC | CGACGACCATGAACCACCTGT | |||||
Lacticaseibacillus paracasei | 16S rRNA | Y2 | CCCACTGCTGCCTCCCGTAGGAGT | 55 | 290 | [20] |
PARA | CACCGAGATTCAACATGG | |||||
Lactiplantibacillus plantarum | recA | planF | CCGTTTATGCGGAACACCTA | 56 | 318 | [21] |
pREV | TCGGGATTACCAAACATCAC | |||||
Enterococcus spp. | tuf | ENT1 | TACTGACAAACCATTCATGATG | 59 | 112 | [22] |
ENT2 | AACTTCGTCACCAACGCGAAC | |||||
Enterococcus faecium | sodA | FM1 | GAAAAAACAATAGAAGAATTAT | 55 | 215 | [23] |
FM2 | TGCTTTTTTGAATTCTTCTTTA | |||||
Enterococcus faecalis | sodA | FL1 | ACTTATGTGACTAACTTAACC | 55 | 360 | [23] |
FL2 | TAATGGTGAATCTTGGTTTGG | |||||
Streprococcus gallolyticus subsp. macedonicus | 16S rRNA | 16MAC | TAGTGTTTAACACATGTTAGAGA | 57 | 350 | [24] |
BSR534/18 | ATTACCGCGGCTGCTGGC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chessa, L.; Paba, A.; Dupré, I.; Daga, E.; Fozzi, M.C.; Comunian, R. A Strategy for the Recovery of Raw Ewe’s Milk Microbiodiversity to Develop Natural Starter Cultures for Traditional Foods. Microorganisms 2023, 11, 823. https://doi.org/10.3390/microorganisms11040823
Chessa L, Paba A, Dupré I, Daga E, Fozzi MC, Comunian R. A Strategy for the Recovery of Raw Ewe’s Milk Microbiodiversity to Develop Natural Starter Cultures for Traditional Foods. Microorganisms. 2023; 11(4):823. https://doi.org/10.3390/microorganisms11040823
Chicago/Turabian StyleChessa, Luigi, Antonio Paba, Ilaria Dupré, Elisabetta Daga, Maria Carmen Fozzi, and Roberta Comunian. 2023. "A Strategy for the Recovery of Raw Ewe’s Milk Microbiodiversity to Develop Natural Starter Cultures for Traditional Foods" Microorganisms 11, no. 4: 823. https://doi.org/10.3390/microorganisms11040823
APA StyleChessa, L., Paba, A., Dupré, I., Daga, E., Fozzi, M. C., & Comunian, R. (2023). A Strategy for the Recovery of Raw Ewe’s Milk Microbiodiversity to Develop Natural Starter Cultures for Traditional Foods. Microorganisms, 11(4), 823. https://doi.org/10.3390/microorganisms11040823