Effects of Dispersant on the Petroleum Hydrocarbon Biodegradation and Microbial Communities in Seawater from the Baltic Sea and Norwegian Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seawater Sampling
2.2. Crude Oil and Dispersants
2.3. WAF and CE-WAF Preparation
2.4. Microcosm Setup
2.5. Chemical Analysis
2.6. DNA Extraction
2.7. Real-Time Quantitative PCR
2.8. 16 S rDNA Amplicon Preparation for Sequencing
2.9. Sequence Data Analyses
2.10. Statistical Analysis
3. Results
3.1. Oil Behavior in WAF and CE-WAF Preparations
3.2. Assessment of Biodegradation Rates
3.3. Abundance of Hydrocarbon Degradation Related Genes Measured by qPCR
3.4. Seawater Bacterial Communities in the Presence of Oil and Dispersant
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- HELCOM. HELCOM Assessment on maritime activities in the Baltic Sea 2018. In Baltic Sea Environment Proceedings No. 152; Helsinki Commission: Helsinki, Finland, 2018. [Google Scholar]
- Lehto, H.; Venäläinen, P.; Hietala, K. Growth Outlook of Seaborne Transport between Finland and Foreign Countries up to 2030; Finnish Maritime Administration Publications: Helsinki, Finland, 2006. [Google Scholar]
- Lessard, R.R.; De Marco, G. The Significance of Oil Spill Dispersants. Spill Sci. Technol. Bull. 2000, 6, 59–68. [Google Scholar] [CrossRef]
- Chapman, H.; Purnell, K.; Law, R.J.; Kirby, M.F. The use of chemical dispersants to combat oil spills at sea: A review of practice and research needs in Europe. Mar. Pollut. Bull. 2007, 54, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Allen, T. National Incident Commander’s Report: MC252 Deepwater Horizon; National Incident Command: Washington, DC, USA, 2010. [Google Scholar]
- Brakstad, O.G.; Nordtug, T.; Throne-Holst, M. Biodegradation of dispersed Macondo oil in seawater at low temperature and different oil droplet sizes. Mar. Pollut. Bull. 2015, 93, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Prince, R.C.; McFarlin, K.M.; Butler, J.D.; Febbo, E.J.; Wang, F.C.Y.; Nedwed, T.J. The primary biodegradation of dispersed crude oil in the sea. Chemosphere 2013, 90, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Techtmann, S.M.; Zhuang, M.; Campo, P.; Holder, E.; Elk, M.; Hazen, T.C.; Santo Domingo, J.W. Corexit 9500 enhances oil biodegradation and changes active bacterial community structure of oil-Enriched microcosms. Appl. Environ. Microbiol. 2017, 83, 3462. [Google Scholar] [CrossRef] [Green Version]
- Kleindienst, S.; Seidel, M.; Ziervogel, K.; Grim, S.; Loftis, K.; Harrison, S.; Joye, S.B. Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc. Natl. Acad. Sci. USA 2015, 112, 14900–14905. [Google Scholar] [CrossRef] [Green Version]
- Hackbusch, S.; Noirungsee, N.; Viamonte, J.; Sun, X.; Bubenheim, P.; Kostka, J.E.; Liese, A. Influence of pressure and dispersant on oil biodegradation by a newly isolated Rhodococcus strain from deep-sea sediments of the gulf of Mexico. Mar. Pollut. Bull. 2020, 150, 110683. [Google Scholar] [CrossRef]
- Pi, Y.; Chen, B.; Bao, M.; Fan, F.; Cai, Q.; Ze, L.; Zhang, B. Microbial degradation of four crude oil by biosurfactant producing strain Rhodococcus sp. Bioresour. Technol. 2017, 232, 263–269. [Google Scholar] [CrossRef]
- Overholt, W.A.; Marks, K.P.; Romero, I.C.; Hollander, D.J.; Snell, T.W.; Kostka, J.E. Hydrocarbon degrading bacteria exhibit a species-specific response to dispersed oil while moderating ecotoxicity. Appl. Environ. Microbiol. 2016, 82, 518–527. [Google Scholar] [CrossRef] [Green Version]
- Rughöft, S.; Vogel, A.L.; Joye, S.B.; Gutierrez, T.; Kleindienst, S. Starvation-dependent inhibition of the hydrocarbon degrader Marinobacter sp. TT1 by a chemical dispersant. J. Mar. Sci. Eng. 2020, 8, 925. [Google Scholar] [CrossRef]
- Brakstad, O.G.; Davies, E.J.; Ribicic, D.; Winkler, A.; Brönner, U.; Netzer, R. Biodegradation of dispersed oil in natural seawaters from Western Greenland and a Norwegian fjord. Polar Biol. 2018, 41, 2435–2450. [Google Scholar] [CrossRef] [Green Version]
- Ribicic, D.; Netzer, R.; Winkler, A.; Brakstad, O.G. Microbial communities in seawater from an Arctic and a temperate Norwegian fjord and their potentials for biodegradation of chemically dispersed oil at low seawater temperatures. Mar. Pollut. Bull. 2018, 129, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Vergeynst, L.; Christensen, J.H.; Kjeldsen, K.U.; Meire, L.; Boone, W.; Malmquist, L.M.V.; Rysgaard, S. In situ biodegradation, photooxidation and dissolution of petroleum compounds in Arctic seawater and sea ice. Water Res. 2019, 148, 459–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viggor, S.; Juhanson, J.; Jõesaar, M.; Mitt, M.; Truu, J.; Vedler, E.; Heinaru, A. Dynamic changes in the structure of microbial communities in Baltic Sea coastal seawater microcosms modified by crude oil, shale oil or diesel fuel. Microbiol. Res. 2013, 168, 415–427. [Google Scholar] [CrossRef]
- Reunamo, A.; Riemann, L.; Leskinen, P.; Jørgensen, K.S. Dominant petroleum hydrocarbon-degrading bacteria in the Archipelago Sea in South-West Finland (Baltic Sea) belong to different taxonomic groups than hydrocarbon degraders in the oceans. Mar. Pollut. Bull. 2013, 72, 174–180. [Google Scholar] [CrossRef]
- Singer, M.M.; Aurand, D.; Bragin, G.E.; Clark, J.R.; Coelho, G.M.; Sowby, M.L.; Tjeerdema, R.S. Standardization of the preparation and quantitation of water-accommodated fractions of petroleum for toxicity testing. Mar. Pollut. Bull. 2000, 40, 1007–1016. [Google Scholar] [CrossRef]
- ISO 9377-2:2000; Water Quality—Determination of Hydrocarbon Oil Index—Part 2: Method Using Solvent Extraction and Gas Chromatograph. ISO: Geneva, Switzerland, 2000.
- ISO 28540:2011; Water Quality—Determination of 16 Polycyclic Aromatic Hydrocarbons (PAH) in Water—Method Using Gas Chromatography with Mass Spectrometric Detection (GC-MS). ISO: Geneva, Switzerland, 2011.
- Reunamo, A.; Pulkinen, E.; Bomberg, M.; Jørgensen, K.S. Short-term effects of diesel oil and dispersant on marine microbial communities in the Baltic Sea surface water in coastal areas and open sea. J. Sea Res. 2022; in revision. [Google Scholar]
- Powell, S.M.; Ferguson, S.H.; Bowman, J.P.; Snape, I. Using real-time PCR to Assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. Microb. Ecol. 2006, 52, 523–532. [Google Scholar] [CrossRef]
- Cébron, A.; Norini, M.; Beguiristain, T.; Leyval, C. Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J. Microbiol. Methods 2008, 73, 148–159. [Google Scholar] [CrossRef]
- Muyzer, G.; de Waal, E.C.; Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700. [Google Scholar] [CrossRef] [Green Version]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley and Sons: New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- Parameswaran, P.; Jalili, R.; Tao, L.; Shokralla, S.; Gharizadeh, B.; Ronaghi, M.; Fire, A.Z. A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing. Nucleic Acids Res. 2007, 35, e130. [Google Scholar] [CrossRef] [Green Version]
- Parada, A.E.; Needham, D.M.; Fuhrman, J.A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 2016, 18, 1403–1414. [Google Scholar] [CrossRef] [PubMed]
- Herbold, C.W.; Pelikan, C.; Kuzyk, O.; Hausmann, B.; Angel, R.; Berry, D.; Loy, A. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schloss, P.; Westcott, S.; Ryabin, T.; Hall, J.; Hartmann, M.; Hollister, E.; Weber, C. Introducing mothur: Open-Source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [Green Version]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Dhariwal, A.; Chong, J.; Habib, S.; King, I.L.; Agellon, L.B.; Xia, J. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017, 45, W180–W188. [Google Scholar] [CrossRef]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef]
- Morales-McDevitt, M.E.; Shi, D.; Knap, A.H.; Quigg, A.; Sweet, S.T.; Sericano, J.L.; Wade, T.L. Mesocosm experiments to better understand hydrocarbon half-lives for oil and oil dispersant mixtures. PloS ONE 2020, 15, e0228554. [Google Scholar] [CrossRef] [Green Version]
- Wade, T.L.; Quinn, J.G. Incorporation, distribution and fate of saturated petroleum hydrocarbons in sediments from a controlled marine ecosystem. Mar. Environ. Res. 1980, 3, 15–33. [Google Scholar] [CrossRef]
- Lee, K.; Nedwed, T.; Prince, R.C.; Palandro, D. Lab tests on the biodegradation of chemically dispersed oil should consider the rapid dilution that occurs at sea. Mar. Pollut. Bull. 2013, 73, 314–318. [Google Scholar] [CrossRef]
- Macnaughton, S.J.; Swannell, R.; Daniel, F.; Bristow, L. Biodegradation of dispersed Forties crude and Alaskan North Slope oils in microcosms under simulated marine conditions. Spill Sci. Technol. Bull 2003, 8, 179–186. [Google Scholar]
- Trudel, K.; Belore, R.; VanHaverbeke, M.; Mullin, J. Updating the U.S. smart dispersant efficacy monitoring protocol. In Proceedings of the 32nd Arctic and Marine Oil Spill Program (AMOP) Technical Seminar, Environment Canada, Ottawa, ON, Canada, 9–11 June 2009; pp. 397–410. [Google Scholar]
- Li, Z.; Lee, K.; King, T.; Boufadel, M.C.; Venosa, A.D. Evaluating crude oil chemical dispersion efficacy in a flow-through wave tank under regular non-breaking wave and breaking wave conditions. Mar. Pollut. Bull. 2009, 58, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Wade, T.L.; Sericano, J.L.; Sweet, S.T.; Knap, A.H.; Guinasso, N.L. Spatial and temporal distribution of water column total polycyclic aromatic hydrocarbons (PAH) and total petroleum hydrocarbons (TPH) from the Deepwater Horizon (Macondo) incident. Mar. Pollut. Bull. 2016, 103, 286–293. [Google Scholar] [CrossRef]
- Kennicutt, M.; Wade, T.; Guinasso, N.; Brooks, J.; Payne, J. The Mega Borg Incident: A Comparison of Response Mitigation and Impact. In Proceedings of the 23rd Annual Offshore Technology Conference, Houston, TX, USA, 6–9 May 1991; pp. 239–247. [Google Scholar] [CrossRef]
- Lunel, T.; Rusin, J.; Bailey, N.; Halliwell, C.; Davies, L. The Net Environmental Benefit of a Successful Dispersant Operation at the Sea Empress Incident. Int. Oil Spill Conf. Proc. 1997, 185–194. [Google Scholar] [CrossRef]
- Johann, S.; Nüßer, L.; Goßen, M.; Hollert, H.; Seiler, T.B. Differences in biomarker and behavioral responses to native and chemically dispersed crude and refined fossil oils in zebrafish early life stages. Sci. Total Environ. 2020, 709, 136174. [Google Scholar] [CrossRef] [PubMed]
- Rial, D.; Vázquez, J.A.; Murado, M.A. Toxicity of spill-treating agents and oil to sea urchin embryos. Sci. Total Environ. 2014, 472, 302–308. [Google Scholar] [CrossRef]
- Rial, D.; Murado, M.A.; Beiras, R.; Vázquez, J.A. Toxicity of four spill-treating agents on bacterial growth and sea urchin embryogenesis. Chemosphere 2014, 104, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Nikolova, C.; Ijaz, U.; Magill, C.; Kleindienst, S.; Joye, S.; Gutierrez, T. Response and oil degradation activities of a northeast Atlantic bacterial community to biogenic and synthetic surfactants. Microbiome 2021, 9, 191. [Google Scholar] [CrossRef]
- Johann, S.; Esser, M.; Nüßer, L.; Altin, D.; Hollert, H.; Seiler, T. Receptor-mediated estrogenicity of native and chemically dispersed crude oil determined using adapted microscale reporter gene assays. Environ. Int. 2020, 134, 105320. [Google Scholar] [CrossRef]
- Ławniczak, Ł.; Woźniak-Karczewska, M.; Loibner, A.P.; Heipieper, H.J.; Chrzanowski, Ł. Microbial Degradation of Hydrocarbons—Basic Principles for Bioremediation: A Review. Molecules 2020, 25, 856. [Google Scholar] [CrossRef] [Green Version]
- Nõlvak, H.; Dang, N.P.; Truu, M.; Peeb, A.; Tiirik, K.; O’Sadnick, M.; Truu, J. Microbial community dynamics during biodegradation of crude oil and its response to biostimulation in Svalbard seawater at low temperature. Microorganisms 2021, 9, 2425. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, H.; Bomberg, M.; Nyyssönen, M.; Reunamo, A.; Jørgensen, K.S.; Vikman, M. Oil degradation potential of microbial communities in water and sediment of Baltic Sea coastal area. PLoS ONE 2019, 14, e0218834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.; Yu, D.; Hui, N.; Naanuri, E.; Viggor, S.; Gafarov, A.; Romantschuk, M. Distribution of archaeal communities along the coast of the Gulf of Finland and their response to oil contamination. Front. Microbiol. 2018, 9, 15. [Google Scholar] [CrossRef]
- Øksenvåg, J.H.C.; McFarlin, K.; Netzer, R.; Brakstad, O.G.; Hansen, B.H.; Størseth, T. Biodegradation of Spilled Fuel Oil in Norwegian Marine Environments—A literature Review; SINTEF Report no. OC2017 A218; SINTEF: Trondheim, Norway, 2018. [Google Scholar]
- McFarlin, K.M.; Perkins, M.J.; Field, J.A.; Leigh, M.B. Biodegradation of Crude Oil and Corexit 9500 in Arctic Seawater. Front. Microbiol. 2018, 9, 1788. [Google Scholar] [CrossRef] [Green Version]
- Dubinsky, E.; Conrad, M.; Chakraborty, R.; Bill, M.; Borglin, S.; Hollibaugh, J.; Andersen, G. Succession of Hydrocarbon-Degrading Bacteria in the Aftermath of the Deepwater Horizon Oil Spill in the Gulf of Mexico. Environ. Sci. Technol. 2013, 47, 10860–10867. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.P.; Villela, H.D.M.; Santos, H.F. Multi-domain probiotic consortium as an alternative to chemical remediation of oil spills at coral reefs and adjacent sites. Microbiome 2021, 9, 118. [Google Scholar] [CrossRef]
Sampling Location (Code) | Sea Area | Coordinates | Background Information | Date |
---|---|---|---|---|
Tvärminne (GoF) | Gulf of Finland, Baltic Sea | 59.8420° N, 23.2018° E | Coastal area, platform (High oil concentration experiment) Coastal area, sampling through ice (Low oil concentration experiment) Coastal area, sampling through ice (Control experiment) | 15 May 2017 12 March 2018 7 January 2019 |
UBS6 (GoB) | Gulf of Bothnia, Baltic Sea | 61.5344° N, 20.5433° E | Open sea area, annual monitoring cruise of RV Aranda | 8 June 2017 |
Narvik (NS) | Norwegian Sea, North Atlantic | 68.4421° N, 17.3892° E | Coastal area | 11 June 2018 |
Seawater | Treatments and Dilutions | ||
---|---|---|---|
CE-WAF | WAF | Control | |
GoF high | Undiluted | Undiluted | Only seawater |
GoB | 1:1000 | 1:1 | Only seawater |
GoF low | 1:50 | 1:1 | Only seawater |
NS | 1:50 | 1:1 | Only seawater |
Gene | Primer | Primer Sequence | Reference |
---|---|---|---|
16S rDNA | Eub338(f) | 5′-ACT CCT ACG GGA GGC AGC AG-′3 | [25] |
Eub518® | 5′-ATT ACC GCG GCT GCT GG-′3 | [26] | |
Gram-positive PAH-RHDɑ | PAH-RHDɑ GN F | 5′-GAG ATG CAT ACC ACG TKG GTT GGA-3′ | [24] |
PAH-RHDɑ GN R | 5′-AGC TGT TGT TCG GGA AGA YWG TGC MGT T-3′ | ||
Gram-negative PAH-RHDɑ | PAH-RHDɑ GP F | 5′-CGG CGC CGA CAA YTT YGT NGG-3′ | |
PAH-RHDɑ GP R | 5′-GGG GAA CAC GGT GCC RTG DAT RAA-3′ | ||
AlkB | AlkB F | 5′-AACTACMTCGARCAYTACGG-3′ | [23] |
AlkB R | 5′-TGAMGATGTGGTYRCTGTTCC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonteri, O.; Reunamo, A.; Nousiainen, A.; Koskinen, L.; Nuutinen, J.; Truu, J.; Jørgensen, K.S. Effects of Dispersant on the Petroleum Hydrocarbon Biodegradation and Microbial Communities in Seawater from the Baltic Sea and Norwegian Sea. Microorganisms 2023, 11, 882. https://doi.org/10.3390/microorganisms11040882
Tonteri O, Reunamo A, Nousiainen A, Koskinen L, Nuutinen J, Truu J, Jørgensen KS. Effects of Dispersant on the Petroleum Hydrocarbon Biodegradation and Microbial Communities in Seawater from the Baltic Sea and Norwegian Sea. Microorganisms. 2023; 11(4):882. https://doi.org/10.3390/microorganisms11040882
Chicago/Turabian StyleTonteri, Ossi, Anna Reunamo, Aura Nousiainen, Laura Koskinen, Jari Nuutinen, Jaak Truu, and Kirsten S. Jørgensen. 2023. "Effects of Dispersant on the Petroleum Hydrocarbon Biodegradation and Microbial Communities in Seawater from the Baltic Sea and Norwegian Sea" Microorganisms 11, no. 4: 882. https://doi.org/10.3390/microorganisms11040882
APA StyleTonteri, O., Reunamo, A., Nousiainen, A., Koskinen, L., Nuutinen, J., Truu, J., & Jørgensen, K. S. (2023). Effects of Dispersant on the Petroleum Hydrocarbon Biodegradation and Microbial Communities in Seawater from the Baltic Sea and Norwegian Sea. Microorganisms, 11(4), 882. https://doi.org/10.3390/microorganisms11040882