Eukaryotic Community Structure and Interspecific Interactions in a Stratified Acidic Pit Lake Water in Anhui Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sample Collection
2.2. Microbiome Analyses with Eukaryotic Amplicon Libraries
2.2.1. Total Community DNA Extraction and Sequencing
2.2.2. Initial Bioinformatic Analyses of 18S rRNA Gene Sequence
2.3. Statistical Analysis
2.4. Co-Occurrence Networks Analysis
3. Results
3.1. Environmental Gradients Caused by Stratification of Pit Lakes
3.2. Structure of Microbial Eukaryotic Communities
3.3. Co-Occurrence Networks of Eukaryote Communities
3.4. Relationships between Eukaryote Communities and Environmental Factors
4. Discussion
4.1. Spatial Heterogeneity and Ecological Role of Eukaryotic Communities
4.2. Network Analysis Reveals Co-Occurrence Patterns in Eukaryotes
4.3. Response of Fungi and Green Algae to Environmental Gradients
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kefeni, K.K.; Msagati, T.A.M.; Mamba, B.B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Huang, L.N.; Kuang, J.L.; Shu, W.S. Microbial Ecology and Evolution in the Acid Mine Drainage Model System. Trends Microbiol. 2016, 24, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Kuang, J.L.; Huang, L.N.; He, Z.L.; Chen, L.X.; Hua, Z.S.; Jia, P.; Li, S.J.; Liu, J.; Li, J.T.; Zhou, J.Z.; et al. Predicting taxonomic and functional structure of microbial communities in acid mine drainage. ISME J. 2016, 10, 1527–1539. [Google Scholar] [CrossRef]
- Mesa, V.; Gallego, J.L.R.; Gonzalez-Gil, R.; Lauga, B.; Sanchez, J.; Mendez-Garcia, C.; Pelaez, A.I. Bacterial, Archaeal, and Eukaryotic Diversity across Distinct Microhabitats in an Acid Mine Drainage. Front. Microbiol. 2017, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Quatrini, R.; Johnson, D.B. Microbiomes in extremely acidic environments: Functionalities and interactions that allow survival and growth of prokaryotes at low pH. Curr. Opin. Microbiol. 2018, 43, 139–147. [Google Scholar] [CrossRef]
- Ayala-Munoz, D.; Macalady, J.L.; Sanchez-Espana, J.; Falagan, C.; Couradeau, E.; Burgos, W.D. Microbial carbon, sulfur, iron, and nitrogen cycling linked to the potential remediation of a meromictic acidic pit lake. ISME J. 2022, 16, 2666–2679. [Google Scholar] [CrossRef]
- Mendez-Garcia, C.; Pelaez, A.I.; Mesa, V.; Sanchez, J.; Golyshina, O.V.; Ferrer, M. Microbial diversity and metabolic networks in acid mine drainage habitats. Front. Microbiol. 2015, 6, 17. [Google Scholar]
- Chen, L.X.; Huang, L.N.; Mendez-Garcia, C.; Kuang, J.L.; Hua, Z.S.; Liu, J.; Shu, W.S. Microbial communities, processes and functions in acid mine drainage ecosystems. Curr. Opin. Biotechnol. 2016, 38, 150–158. [Google Scholar] [CrossRef]
- She, Z.X.; Pan, X.; Wang, J.; Shao, R.; Wang, G.C.; Wang, S.P.; Yue, Z.B. Vertical environmental gradient drives prokaryotic microbial community assembly and species coexistence in a stratified acid mine drainage lake. Water Res. 2021, 206, 9. [Google Scholar] [CrossRef]
- Bonilla, J.O.; Kurth, D.G.; Cid, F.D.; Ulacco, J.H.; Gil, R.A.; Villegas, L.B. Prokaryotic and eukaryotic community structure affected by the presence of an acid mine drainage from an abandoned gold mine. Extremophiles 2018, 22, 699–711. [Google Scholar] [CrossRef]
- Amaral Zettler, L.A.; Gomez, F.; Zettler, E.; Keenan, B.G.; Amils, R.; Sogin, M.L. Microbiology: Eukaryotic diversity in Spain’s River of Fire. Nature 2002, 417, 137. [Google Scholar] [CrossRef] [PubMed]
- Amaral-Zettler, L.A. Eukaryotic diversity at pH extremes. Front. Microbiol. 2012, 3, 441. [Google Scholar] [CrossRef] [PubMed]
- Volant, A.; Hery, M.; Desoeuvre, A.; Casiot, C.; Morin, G.; Bertin, P.N.; Bruneel, O. Spatial Distribution of Eukaryotic Communities Using High-Throughput Sequencing Along a Pollution Gradient in the Arsenic-Rich Creek Sediments of CarnoulSs Mine, France. Microb. Ecol. 2016, 72, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Amaral-Zettler, L.A.; Zettler, E.R.; Theroux, S.M.; Palacios, C.; Aguilera, A.; Amils, R. Microbial community structure across the tree of life in the extreme Rio Tinto. ISME J. 2011, 5, 42–50. [Google Scholar] [CrossRef]
- Mosier, A.C.; Miller, C.S.; Frischkorn, K.R.; Ohm, R.A.; Li, Z.; Labutti, K.; Lapidus, A.; Lipzen, A.; Chen, C.; Johnson, J.; et al. Fungi Contribute Critical but Spatially Varying Roles in Nitrogen and Carbon Cycling in Acid Mine Drainage. Front. Microbiol. 2016, 7, 18. [Google Scholar] [CrossRef]
- Oggerin, M.; Rodriguez, N.; Del Moral, C.; Amils, R. Fungal jarosite biomineralization in Rio Tinto. Res. Microbiol. 2014, 165, 719–725. [Google Scholar] [CrossRef]
- Oggerin, M.; Tornos, F.; Rodriguez, N.; Del Moral, C.; Sanchez-Roman, M.; Amils, R. Specific jarosite biomineralization by Purpureocillium lilacinum, an acidophilic fungi isolated from Rio Tinto. Environ. Microbiol. 2013, 15, 2228–2237. [Google Scholar] [CrossRef] [PubMed]
- Hirooka, S.; Hirose, Y.; Kanesaki, Y.; Higuchi, S.; Fujiwara, T.; Onuma, R.; Era, A.; Ohbayashi, R.; Uzuka, A.; Nozaki, H.; et al. Acidophilic green algal genome provides insights into adaptation to an acidic environment. Proc. Natl. Acad. Sci. USA 2017, 114, E8304–E8313. [Google Scholar] [CrossRef]
- Makhanya, B.N.; Nyandeni, N.; Ndulini, S.F.; Mthembu, M.S. Application of green microalgae biofilms for heavy metals removal from mine effluent. Phys. Chem. Earth 2021, 124, 8. [Google Scholar] [CrossRef]
- Seymour, J.R.; Amin, S.A.; Raina, J.B.; Stocker, R. Zooming in on the phycosphere: The ecological interface for phytoplankton-bacteria relationships. Nat. Microbiol. 2017, 2, 12. [Google Scholar] [CrossRef]
- Abinandan, S.; Subashchandrabose, S.R.; Venkateswarlu, K.; Megharaj, M. Microalgae-bacteria biofilms: A sustainable synergistic approach in remediation of acid mine drainage. Appl. Microbiol. Biotechnol. 2018, 102, 1131–1144. [Google Scholar] [CrossRef]
- She, Z.X.; Pan, X.; Yue, Z.B.; Shi, X.F.; Gao, Y.J.; Wang, S.P.; Chuai, X.; Wang, J. Contrasting prokaryotic and eukaryotic community assembly and species coexistence in acid mine drainage-polluted waters. Sci. Total Environ. 2023, 856, 9. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Z.; Liu, Z.H.; Zhang, M.; Meng, D.L.; Liu, X.D.; Wang, P.; Li, X.T.; Jiang, Z.; Zhong, S.P.; Jiang, C.Y.; et al. Insights into the Metabolism and Evolution of the Genus Acidiphilium, a Typical Acidophile in Acid Mine Drainage. Msystems 2020, 5, 19. [Google Scholar] [CrossRef]
- Du, Z.Y.; Zienkiewicz, K.; Vande Pol, N.; Ostrom, N.E.; Benning, C.; Bonito, G.M. Algal-fungal symbiosis leads to photosynthetic mycelium. eLife 2019, 8, 22. [Google Scholar] [CrossRef]
- Szotkowski, M.; Holub, J.; Simansky, S.; Hubacova, K.; Sikorova, P.; Marinicova, V.; Nemcova, A.; Marova, I. Bioreactor Co-Cultivation of High Lipid and Carotenoid Producing Yeast Rhodotorula kratochvilovae and Several Microalgae under Stress. Microorganisms 2021, 9, 1160. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.Q.; Li, H.M.; Zhou, Y.P.; Zhang, J.B. The interactions of an algae-fungi symbiotic system influence nutrient removal from synthetic wastewater. J. Chem. Technol. Biotechnol. 2019, 94, 3993–3999. [Google Scholar] [CrossRef]
- Orandi, S.; Lewis, D.M. Synthesising acid mine drainage to maintain and exploit indigenous mining micro-algae and microbial assemblies for biotreatment investigations. Environ. Sci. Pollut. Res. 2013, 20, 950–956. [Google Scholar] [CrossRef]
- Chen, Y.M.; Vaidyanathan, S. Simultaneous assay of pigments, carbohydrates, proteins and lipids in microalgae. Anal. Chim. Acta 2013, 776, 31–40. [Google Scholar] [CrossRef]
- Dean, A.P.; Hartley, A.; Mcintosh, O.A.; Smith, A.; Feord, H.K.; Holmberg, N.H.; King, T.; Yardley, E.; White, K.N.; Pittman, J.K. Metabolic adaptation of a Chlamydomonas acidophila strain isolated from acid mine drainage ponds with low eukaryotic diversity. Sci. Total Environ. 2019, 647, 75–87. [Google Scholar] [CrossRef]
- Kalin, M.; Wheeler, W.N.; Olaveson, M.M. Response of phytoplankton to ecological engineering remediation of a Canadian Shield Lake affected by acid mine drainage. Ecol. Eng. 2006, 28, 296–310. [Google Scholar] [CrossRef]
- Nancucheo, I.; Johnson, D.B. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles. Front. Microbiol. 2012, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, A.; Souza-Egipsy, V.; Martin-Uriz, P.S.; Amils, R. Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption. Aquat. Toxicol. 2008, 88, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, A.; González-Toril, E. Eukaryotic Life in Extreme Environments: Acidophilic Fungi of the chapter. In Fungi in Extreme Environments: Ecological Role and Biotechnological Significance; Tiquia-Arashiro, S.M., Grube, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 21–38. [Google Scholar]
- She, Z.X.; Wang, J.; He, C.; Pan, X.; Li, Y.Y.; Zhang, S.Y.; Shi, Q.; Yue, Z.B. The Stratified Distribution of Dissolved Organic Matter in an AMD Lake Revealed by Multi-sample Evaluation Procedure. Environ. Sci. Technol. 2021, 55, 8401–8409. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, S.; He, C.; She, Z.; Pan, X.; Li, Y.; Shao, R.; Shi, Q.; Yue, Z. Source identification and component characterization of dissolved organic matter in an acid mine drainage reservoir. Sci. Total Environ. 2020, 739, 139732. [Google Scholar] [CrossRef]
- Purchase, D.; Scholes, L.N.L.; Revitt, D.M.; Shutes, R.B.E. Effects of temperature on metal tolerance and the accumulation of Zn and Pb by metal-tolerant fungi isolated from urban runoff treatment wetlands. J. Appl. Microbiol. 2009, 106, 1163–1174. [Google Scholar] [CrossRef]
- Das, B.K.; Roy, A.; Koschorreck, M.; Mandal, S.M.; Wendt-Potthoff, K.; Bhattacharya, J. Occurrence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate immobilization. Water Res. 2009, 43, 883–894. [Google Scholar] [CrossRef]
- Brown, S.P.; Olson, B.; Jumpponen, A. Fungi and algae co-occur in snow: An issue of shared habitat or algal facilitation of heterotrophs? Arct. Antarct. Alp. Res. 2015, 47, 729–749. [Google Scholar] [CrossRef]
- Krug, L.; Erlacher, A.; Markut, K.; Berg, G.; Cernava, T. The microbiome of alpine snow algae shows a specific inter-kingdom connectivity and algae-bacteria interactions with supportive capacities. ISME J. 2020, 14, 2197–2210. [Google Scholar] [CrossRef]
- Rajpert, L.; Sklodowska, A.; Matlakowska, R. Biotransformation of copper from Kupferschiefer black shale (Fore-Sudetic Monocline, Poland) by yeast Rhodotorula mucilaginosa LM9. Chemosphere 2013, 91, 1257–1265. [Google Scholar] [CrossRef]
- Weithoff, G.; Bell, E.M. Complex Trophic Interactions in an Acidophilic Microbial Community. Microorganisms 2022, 10, 1340. [Google Scholar] [CrossRef]
- Ashraf, N.; Ahmad, F.; Lu, Y.D. Synergy between microalgae and microbiome in polluted waters. Trends Microbiol. 2023, 31, 9–21. [Google Scholar] [CrossRef]
- Chen, D.; Feng, Q.Y.; Liang, H.Q. Effects of long-term discharge of acid mine drainage from abandoned coal mines on soil microorganisms: Microbial community structure, interaction patterns, and metabolic functions. Environ. Sci. Pollut. Res. 2021, 28, 53936–53952. [Google Scholar] [CrossRef]
- Souza-Egipsy, V.; Vega, J.F.; Gonzalez-Toril, E.; Aguilera, A. Biofilm mechanics in an extremely acidic environment: Microbiological significance. Soft Matter 2021, 17, 3672–3680. [Google Scholar] [CrossRef] [PubMed]
- González-Toril, E.; Aguilera, Á. Chapter 14—Microbial Ecology in Extreme Acidic Environments: Use of Molecular Tools of the chapter. In Microbial Diversity in the Genomic Era; Das, S., Dash, H.R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 227–238. [Google Scholar]
- Luis, A.T.; Teixeira, M.; Duraes, N.; Pinto, R.; Almeida, S.F.P.; Da Silva, E.F.; Figueira, E. Extremely acidic environment: Biogeochemical effects on algal biofilms. Ecotoxicol. Environ. Saf. 2019, 177, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhong, Y.; Lu, Q.; Zhang, X.; Wang, Q.; Liu, H.; Diao, Z.; Yao, C.; Liu, H. Co-cultivation of Rhodotorula glutinis and Chlorella pyrenoidosa to improve nutrient removal and protein content by their synergistic relationship. RSC Adv. 2019, 9, 14331–14342. [Google Scholar] [CrossRef] [PubMed]
- Hardin, G. The competitive exclusion principle. Science 1960, 131, 1292–1297. [Google Scholar] [CrossRef]
- Nixdorf, B.; Fyson, A.; Krumbeck, H. Review: Plant life in extremely acidic waters. Environ. Exp. Bot. 2001, 46, 203–211. [Google Scholar] [CrossRef]
- Kumar, R.N.; Mccullough, C.D.; Lund, M.A.; Larranaga, S.A. Assessment of factors limiting algal growth in acidic pit lakes-a case study from Western Australia, Australia. Environ. Sci. Pollut. Res. 2016, 23, 5915–5924. [Google Scholar] [CrossRef] [PubMed]
- Spijkerman, E.; Stojkovic, S.; Beardall, J. CO2 acquisition in Chlamydomonas acidophila is influenced mainly by CO2, not phosphorus, availability. Photosynth. Res. 2014, 121, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Kuang, J.L.; Huang, L.N.; Chen, L.X.; Hua, Z.S.; Li, S.J.; Hu, M.; Li, J.T.; Shu, W.S. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J. 2013, 7, 1038–1050. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, A.; Souza-Egipsy, V.; Gomez, F.; Amils, R. Development and structure of eukaryotic biofilms in an extreme acidic environment, Rio Tinto (SW, Spain). Microb. Ecol. 2007, 53, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Spijkerman, E.; Behrend, H.; Fach, B.; Gaedke, U. Decreased phosphorus incorporation explains the negative effect of high iron concentrations in the green microalga Chlamydomonas acidophila. Sci. Total Environ. 2018, 626, 1342–1349. [Google Scholar] [CrossRef]
- Aguilera, A.; Manrubia, S.C.; Gomez, F.; Rodriguez, N.; Amils, R. Eukaryotic community distribution and its relationship to water physicochemical parameters in an extreme acidic environment, Rio Tinto (Southwestern Spain). Appl. Environ. Microbiol. 2006, 72, 5325–5330. [Google Scholar] [CrossRef]
- Tripathi, S.; Poluri, K.M. Heavy metal detoxification mechanisms by microalgae: Insights from transcriptomics analysis. Environ. Pollut. 2021, 285, 15. [Google Scholar]
- Varshney, P.; Mikulic, P.; Vonshak, A.; Beardall, J.; Wangikar, P.P. Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour. Technol. 2015, 184, 363–372. [Google Scholar] [CrossRef] [PubMed]
Sampling Depth | 0.5 m | 2 m | 5 m | 10 m |
---|---|---|---|---|
T (°C) (±SD) | 12.35 (±0.90) | 12.70 (±0.59) | 14.50 (±0.56) | 15.00 (±0.88) |
pH (±SD) | 3.28 (±0.03) | 3.27 (±0.05) | 3.67 (±0.06) | 3.69 (±0.08) |
DO (mg L−1) (±SD) | 14.52 (±0.43) | 13.60 (±0.82) | 3.84 (±1.23) | 2.03 (±0.69) |
ORP (mV) (±SD) | 513 (±14.00) | 528 (±5.00) | 320 (±10.00) | 305 (±13.00) |
EC (ms cm−1) (±SD) | 13.36 (±0.12) | 13.34 (±0.07) | 21.62 (±1.13) | 22.13 (±0.74) |
DOC (mg L−1) (±SD) | 3.64 (±0.94) | 3.67 (±0.53) | 3.52 (±0.80) | 3.06 (±1.14) |
DIC (mg L−1) (±SD) | 0.00 (±0.00) | 0.00 (±0.00) | 20.42 (±6.08) | 22.76 (±5.19) |
TN (mg L−1) (±SD) | 5.82 (±0.43) | 5.76 (±0.27) | 15.69 (±0.93) | 15.34 (±1.21) |
NO3−-N (mg L−1) (±SD) | 1.55 (±0.04) | 1.67 (±0.17) | 0.80 (±0.29) | 0.80 (±0.19) |
NH4+-N (mg L−1) (±SD) | 5.61 (±1.78) | 6.20 (±1.15) | 14.13 (±2.84) | 14.6 (±2.30) |
PO43− (mg L−1) (±SD) | 1.65 (±0.13) | 1.58 (±0.08) | 21.23 (±3.26) | 24.22 (±3.24) |
Chl a (μg L−1) (±SD) | 74.28 (±18.11) | 59.51 (±16.07) | 12.05 (±2.45) | 8.16 (±2.51) |
SO42− (mg L−1) (±SD) | 16789 (±911) | 15913 (±1933) | 28144 (±2446) | 27490 (±3463) |
Mg (mg L−1) (±SD) | 1974 (±106) | 1989 (±116) | 4291 (±305) | 4446 (±271) |
Al (mg L−1) (±SD) | 692 (±33) | 694 (±37) | 867 (±26) | 898 (±45) |
Mn (mg L−1) (±SD) | 353 (±9) | 358 (±10) | 707 (±54) | 743 (±26) |
TFe (mg L−1) (±SD) | 90.5 (±2.52) | 90.92 (±3.31) | 457 (±53) | 499 (±21) |
Fe(II) (mg L−1) (±SD) | 18.16 (±1.10) | 18.23 (±1.04) | 409 (±45) | 448 (±27) |
Fe(III) (mg L−1) (±SD) | 72.35 (±2.14) | 72.68 (±3.01) | 47.67 (±14.21) | 50.88 (±11.50) |
Cu (mg L−1) (±SD) | 32.38 (±0.87) | 32.48 (±1.02) | 29.61 (±0.67) | 28.86 (±0.96) |
Zn (mg L−1) (±SD) | 18.71 (±0.49) | 18.77 (±0.56) | 31.75 (±1.94) | 32.88 (±1.14) |
Cr (mg L−1) (±SD) | 0.027 (±0.001) | 0.026 (±0.002) | 0.036 (±0.002) | 0.038 (±0.002) |
Cd (mg L−1) (±SD) | 0.148 (±0.002) | 0.149 (±0.002) | 0.233 (±0.016) | 0.239 (±0.005) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, X.; Yue, Z.; She, Z.; He, X.; Wang, S.; Chuai, X.; Wang, J. Eukaryotic Community Structure and Interspecific Interactions in a Stratified Acidic Pit Lake Water in Anhui Province. Microorganisms 2023, 11, 979. https://doi.org/10.3390/microorganisms11040979
Pan X, Yue Z, She Z, He X, Wang S, Chuai X, Wang J. Eukaryotic Community Structure and Interspecific Interactions in a Stratified Acidic Pit Lake Water in Anhui Province. Microorganisms. 2023; 11(4):979. https://doi.org/10.3390/microorganisms11040979
Chicago/Turabian StylePan, Xin, Zhengbo Yue, Zhixiang She, Xiao He, Shaoping Wang, Xin Chuai, and Jin Wang. 2023. "Eukaryotic Community Structure and Interspecific Interactions in a Stratified Acidic Pit Lake Water in Anhui Province" Microorganisms 11, no. 4: 979. https://doi.org/10.3390/microorganisms11040979
APA StylePan, X., Yue, Z., She, Z., He, X., Wang, S., Chuai, X., & Wang, J. (2023). Eukaryotic Community Structure and Interspecific Interactions in a Stratified Acidic Pit Lake Water in Anhui Province. Microorganisms, 11(4), 979. https://doi.org/10.3390/microorganisms11040979