Biological Activities and Biochemical Composition of Endemic Achillea fraasii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Endemic Plant Samples
2.2. Microorganisms and Inoculum Preparation
2.3. Extraction Method
2.4. Antibacterial and Antifungal Activity Test
2.5. Antioxidant Activity Test
2.6. Antibiofilm Activity Test
2.7. Gas Chromatography–Mass Spectroscopy Method (GC-MS)
2.8. Statistics
3. Results
3.1. Antibacterial and Antifungal Activities of AFEt
3.2. Antioxidant Activity of AFEt
3.3. Antibiofilm Activity of AFAq
3.4. Analysis of the Biochemical Composition of AFEt
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abebe, G.M. The role of bacterial biofilm in antibiotic resistance and food contamination. Int. J. Microbiol. 2020, 2020, 1705814. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; WHO Press: Geneva, Switzerland, 2014; Available online: http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf (accessed on 15 August 2019).
- Batoni, G.; Maisetta, G.; Esin, S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochim. Biophys. Acta Biomembr. 2016, 1858, 1044–1060. [Google Scholar] [CrossRef]
- Tewari, A.; Jain, B.; Dhamannapatil, P.S.; Saxena, M.K. Biofilm resistance to antimicrobial agents and novel approaches to combat biofilm mediated resistance in bacteria. EC Microbiol. 2018, 14, 71–77. [Google Scholar]
- Koo, H.; Allan, R.N.; Howlin, R.P.; Stoodley, P.; Hall-Stoodley, L. Targeting microbial biofilms: Current and prospective therapeutic strategies. Nat. Rev. Microbiol. 2017, 15, 740–755. [Google Scholar] [CrossRef] [PubMed]
- Brackman, G.; Coenye, T. Quorum sensing inhibitors as anti-biofilm agents. Curr. Pharm. Des. 2015, 21, 5–11. [Google Scholar] [CrossRef]
- Tan, Z.; Deng, J.; Ye, Q.; Zhang, Z. The antibacterial activity of natural-derived flavonoids. Curr. Top. Med. Chem. 2022, 22, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Ünal Turhan, E.; Erginkaya, Z.; Korukluoğlu, M.; Konuray, G. Beneficial Biofilm Applications in Food and Agricultural Industry. In Health and Safety Aspects of Food Processing Technologies; Springer: Cham, Switzerland, 2019; pp. 445–469. [Google Scholar]
- Maurya, A.; Raj, A. Recent Advances in the Application of Biofilm in Bioremediation of Industrial Wastewater and Organic Pollutants. In Microorganisms for Sustainable Environment and Health; Elsevier: Amsterdam, The Netherlands, 2020; pp. 81–118. [Google Scholar]
- Martelli, G.; Giacomini, D. Antibacterial and antioxidant activities for natural and synthetic dual-active compounds. Eur. J. Med. Chem. 2018, 158, 91–105. [Google Scholar] [CrossRef]
- Elliot, J.G. Application of antioxidant vitamins in foods and beverages. Food Technol. 1999, 53, 46–48. [Google Scholar]
- El-Shiekh, R.A.; Al-Mahdy, D.A.; Hifnawy, M.S.; Abdel-Sattar, E.A. In-vitro screening of selected traditional medicinal plants for their anti-obesity and antioxidant activities. S. Afr. J. Bot. 2019, 123, 43–50. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, S. Perspective on plant products as antimicrobial agents: A review. Pharmacologia 2013, 4, 469–480. [Google Scholar] [CrossRef] [Green Version]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef]
- Arabacı, T. The Revision of Achillea L. (Asteraceae) Genus Grown in Turkey. Ph.D. Thesis, Inönü University, Malatya, Turkey, 2006. [Google Scholar]
- Oladosu, I.A.; Usman, L.A.; Olawore, N.O.; Atata, R.F. Antibacterial activity of rhizomes essential oils of two types of Cyperus articulatus growing in Nigeria. Adv. Biol. Res. 2011, 5, 179–183. [Google Scholar]
- Magiatis, P.; Skaltsounis, A.L.; Chinou, I.; Haroutounian, S.A. Chemical composition and in-vitro antimicrobial activity of the essential oils of three Greek Achillea species. Z. Naturforsch. C Bio. Sci. 2002, 57, 287–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafar, M.M.I.; Hassan, F.; Naqvi, S.B.S.; Muhammad, S.; Hasan, F.; Jabeen, S.; Israr, F. Evaluation of antibacterial activity of camphor, benzoin, cubebs, fenugreek, apricot and cinnamon leaf against standard cultures and clinical isolates of an array of organisms. J. Pharmacol. 2019, 36, 69–75. [Google Scholar]
- Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; Santos, T.C.D.; Coube, C.S.; Leitão, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 2001, 15, 127–130. [Google Scholar] [CrossRef]
- Karaca, B.; Cihan, A.Ç.; Akata, I.; Altuner, E.M. Anti-biofilm and antimicrobial activities of five edible and medicinal macrofungi samples on some biofilm producing multi drug resistant Enterococcus strains. Turk. J. Agri. Food Sci. Technol. 2020, 8, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Bharat, C.R.; Krishna, G.D. GC-MS analysis of young leaves of Allophylus cobbe (L.) raeusch. and Allophylus serratus (Roxb.) Kurz. Indian J. Pharm. Educ. Res. 2017, 51, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Rather, M.A.; Shah, W.A.; Bhat, B.A. Chemical composition, antimicrobial, cytotoxic and antioxidant activities of the essential oil of Artemisia indica Willd. Food Chem. 2013, 138, 693–700. [Google Scholar] [CrossRef]
- Setzer, W.N.; Vogler, B.; Schmidt, J.M.; Leahy, J.G.; Rives, R. Antimicrobial activity of Artemisia douglasiana leaf essential oil. Fitoterapia 2004, 75, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Mulyaningsih, S.; Sporer, F.; Zimmermann, S.; Reichling, J.; Wink, M. Synergistic properties of the terpenoids aromadendrene and 1, 8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine 2010, 17, 1061–1066. [Google Scholar] [CrossRef]
- Türkez, H.; Çelik, K.; Toğar, B. Effects of copaene, a tricyclic sesquiterpene, on human lymphocytes cells in vitro. Cytotechnology 2014, 66, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Landoulsi, A.; Hennebelle, T.; Bero, J.; Rivière, C.; Sahpaz, S.; Quetin-Leclercq, J.; Neut, J.; Benhamida, J.; Roumy, V. Antimicrobial and Light-Enhanced Antimicrobial Activities, Cytotoxicity and Chemical Variability of All Tunisian Eryngium Species. Chem. Biodivers. 2020, 17, e1900543. [Google Scholar] [CrossRef] [PubMed]
- Al-Rajhi, A.M.H.; Qanash, H.; Almuhayawi, M.S.; Al Jaouni, S.K.; Bakri, M.M.; Ganash, M.; Salama, H.M.; Selim, S.; Abdelghany, T.M. Molecular interaction studies and phytochemical characterization of Mentha pulegium L. constituents with multiple biological utilities as antioxidant, antimicrobial, anticancer and anti-hemolytic agents. Molecules 2022, 27, 4824. [Google Scholar] [CrossRef]
- Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des. 2012, 80, 434–439. [Google Scholar] [CrossRef]
- Abubakar, M.N.; Majinda, R.R.T. GC-MS Analysis and preliminary antimicrobial activity of Albizia adianthifolia (Schumach) and Pterocarpus angolensis (DC). Medicines 2016, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Bruno, F.; Castelli, G.; Migliazzo, A.; Piazza, M.; Galante, A.; Verde, V.L.; Calderone, S.; Nucatolo, G.; Vitale, F. Cytotoxic screening and in vitro evaluation of pentadecane against Leishmania infantum promastigotes and amastigotes. J. Parasitol. 2015, 101, 701–705. [Google Scholar] [CrossRef] [Green Version]
- Vanitha, V.; Vijayakumar, S.; Nilavukkarasi, M.; Punitha, V.N.; Vidhya, E.; Praseetha, P.K. Heneicosane-A novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Ind. Crops. Prod. 2020, 154, 112748. [Google Scholar] [CrossRef]
- Algammal, A.M.; Hetta, H.F.; Elkelish, A.; Alkhalifah, D.H.H.; Hozzein, W.N.; Batiha, G.E.S.; El Nahas, N.; Mabrok, M.A. Methicillin-Resistant Staphylococcus aureus (MRSA): One health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infect. Drug Resist. 2020, 13, 3255–3265. [Google Scholar] [CrossRef] [PubMed]
- Tigabu, A.; Getaneh, A. Staphylococcus aureus, ESKAPE bacteria challenging current health care and community settings: A literature review. Clin. Lab. 2021, 67, 1539–1549. [Google Scholar] [CrossRef]
- Nami, S.; Mohammadi, R.; Vakili, M.; Khezripour, K.; Mirzaei, H.; Morovati, H. Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomed. Pharmacother. 2019, 109, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Pristov, K.E.; Ghannoum, M.A. Resistance of Candida to azoles and echinocandins worldwide. Clin. Microbiol. Infect. 2019, 25, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Barış, D.; Kızıl, M.; Aytekin, Ç.; Kızıl, G.; Yavuz, M.; Çeken, B.; Ertekin, A.S. In vitro antimicrobial and antioxidant activity of ethanol extract of three Hypericum and three Achillea species from Turkey. Int. J. Food Prop. 2011, 14, 339–355. [Google Scholar] [CrossRef]
- Çolak, S.; Dağlı, F.; Çömlekcioğlu, N.; Kocabaş, Y.Z.; Aygan, A. Antimicrobial Activity and Some Phytochemical Properties of Extracts Obtained from Different Organs of Achillea aleppica subsp. aleppica. Gıda 2020, 45, 929–941. [Google Scholar]
- World Health Organization. Report on the Burden of Endemic Health Care-Associated Infection Worldwide; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- O’Toole, R.F.; Leong, K.W.; Cumming, V.; van Hal, S.J. Vancomycin-Resistant Enterococcus faecium and the Emergence of New Sequence Types Associated with Hospital Infection. Res. Microbiol. 2023, 174, 104046. [Google Scholar] [CrossRef]
- Anraku, M.; Gebicki, J.M.; Iohara, D.; Tomida, H.; Uekama, K.; Maruyama, T.; Hirayama, F.; Otagiri, M. Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies. Carbohydr. Polym. 2018, 199, 141–149. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Samoilova, Z.; Muzyka, N.; Lepekhina, E.; Oktyabrsky, O.; Smirnova, G. Medicinal plant extracts can variously modify biofilm formation in Escherichia coli. Antonie Van Leeuwenhoek 2014, 105, 709–722. [Google Scholar] [CrossRef]
No | Microorganisms | 50 µL 1 | 100 µL 1 | 200 µL 1 | Gen | Amp | Tob |
---|---|---|---|---|---|---|---|
1 | Bacillus subtilis DSMZ 1971 | 10.00 ± 0.00 | 12.00 ± 0.00 | 12.00 ± 0.50 | 30 | 41 | 26 |
2 | Candida albicans DSMZ 1386 | 0.00 ± 0.00 | 10.00 ± 0.00 | 10.00 ± 0.50 | 12 | 0 | 13 |
3 | Enterobacter aerogenes ATCC 13048 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 24 | 0 | 18 |
4 | Enterococcus faecalis ATCC 29212 | 8.00 ± 0.00 | 9.00 ± 0.00 | 10.00 ± 0.00 | 12 | 14 | 8 |
5 | Escherichia coli ATCC 25922 | 8.00 ± 0.00 | 8.00 ± 0.00 | 0.00 ± 0.00 | 22 | 6 | 20 |
6 | Listeria monocytogenes ATCC 7644 | 11.00 ± 0.00 | 13.00 ± 0.00 | 15.00 ± 0.00 | 28 | 23 | 24 |
7 | Pseudomonas aeruginosa DSMZ 50071 | 8.00 ± 0.00 | 10.00 ± 0.50 | 12.00 ± 0.00 | 15 | 0 | 22 |
8 | Pseudomonas fluorescens P1 | 8.00 ± 0.00 | 8.00 ± 0.50 | 12.00 ± 0.00 | 13 | 14 | 12 |
9 | Salmonella enteritidis ATCC 13076 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 21 | 16 | 15 |
10 | Salmonella typhimurium SL 1344 | 10.00 ± 0.00 | 11.00 ± 0.00 | 12.00 ± 0.00 | 24 | 13 | 15 |
11 | Staphylococcus aureus ATCC 25923 | 10.00 ± 0.00 | 11.00 ± 0.00 | 13.00 ± 0.00 | 21 | 25 | 14 |
12 | Staphylococcus epidermidis DSMZ 20044 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 22 | 24 | 20 |
13 | Staphylococcus hominis ATCC 27844 | 9.00 ± 0.00 | 11.00 ± 0.00 | 13.00 ± 0.00 | 18 | 0 | 16 |
14 | Staphylococcus warneri ATCC 27836 | 9.00 ± 0.50 | 11.00 ± 0.00 | 13.00 ± 0.00 | 23 | 0 | 18 |
15 | Bacillus cereus RSKK 863 | 8.00 ± 0.50 | 12.00 ± 0.00 | 14.00 ± 0.00 | 24 | 0 | 18 |
16 | Shigella flexneri RSKK 184 | 10.00 ± 0.00 | 11.00 ± 0.00 | 11.00 ± 0.50 | 18 | 0 | 17 |
17 | Acinetobacter baumannii CECT 9111 | 8.00 ± 0.50 | 10.00 ± 0.00 | 11.00 ± 0.00 | 13 | 0 | 22 |
18 | Enterococcus durans (FI) | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 11 | 28 | 13 |
19 | Enterococcus faecium (FI) | 20.00 ± 0.00 | 26.00 ± 0.00 | 28.00 ± 0.00 | 28 | 32 | 15 |
20 | Klebsiella pneumoniae (FI) | 7.00 ± 0.00 | 7.00 ± 0.00 | 8.00 ± 0.00 | 19 | 6 | 23 |
21 | Listeria innocua (FI) | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 13 | 13 | 15 |
22 | Salmonella infantis (FI) | 0.00 ± 0.00 | 8.00 ± 0.00 | 8.00 ± 0.00 | 17 | 14 | 14 |
23 | Salmonella kentucky (FI) | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 12 | 15 | 16 |
24 | Escherichia coli (FI) | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 20 | 0 | 0 |
25 | Staphylococcus aureus (CI) | 12.00 ± 0.00 | 13.00 ± 0.00 | 15.00 ± 0.00 | 22 | 0 | 18 |
26 | Staphylococcus mutans (CI) | 9.00 ± 0.00 | 10.00 ± 0.00 | 10.00 ± 0.50 | 22 | 0 | 24 |
27 | Staphylococcus hominis (CI) | 8.00 ± 0.00 | 9.00 ± 0.00 | 10.00 ± 0.00 | 9 | 26 | 11 |
28 | Staphylococcus haemolyticus (CI) | 7.00 ± 0.00 | 8.00 ± 0.00 | 8.00 ± 0.00 | 10 | 0 | 10 |
29 | Staphylococcus lugdunensis (CI) | 8.00 ± 0.00 | 8.00 ± 0.00 | 8.00 ± 0.00 | 17 | 8 | 18 |
30 | Shigella boydii (CI) | 8.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 20 | 0 | 18 |
31 | Acinetobacter baumannii (CI) | 8.00 ± 0.00 | 8.00 ± 0.00 | 8.00 ± 0.00 | 18 | 0 | 16 |
32 | Shigella flexneri (CI) | 7.00 ± 0.00 | 8.00 ± 0.00 | 8.00 ± 0.00 | 16 | 23 | 14 |
33 | Staphylococcus aureus (CI) | 7.00 ± 0.00 | 7.00 ± 0.00 | 7.00 ± 0.00 | 22 | 17 | 16 |
34 | Enterococcus faecalis (CI) | 9.00 ± 0.00 | 9.00 ± 0.00 | 10.00 ± 0.00 | 12 | 8 | 10 |
35 | Klebsiella pneumoniae (CI) | 8.00 ± 0.00 | 8.00 ± 0.00 | 8.00 ± 0.00 | 18 | 8 | 18 |
36 | Candida tropicalis (CI) | 0.00 ± 0.00 | 7.00 ± 0.00 | 8.00 ± 0.00 | 0 | 0 | 0 |
37 | Candida glabrata (CI) | 10.00 ± 0.00 | 10.00 ± 0.00 | 0.00 ± 0.00 | 7 | 0 | 8 |
38 | Escherichia coli (MDR) | 8.00 ± 0.00 | 8.00 ± 0.00 | 0.00 ± 0.00 | 8 | 0 | 9 |
39 | Klebsiella pneumoniae (MDR) | 8.00 ± 0.00 | 8.00 ± 0.00 | 0.00 ± 0.00 | 15 | 8 | 20 |
40 | Acinetobacter baumannii (MDR) | 10.00 ± 0.00 | 10.00 ± 0.00 | 10.00 ± 0.00 | 0 | 0 | 0 |
41 | Enterobacter aerogenes (MDR) | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 16 | 0 | 18 |
42 | Serratia odorifera (MDR) | 7.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 7 | 0 | 9 |
43 | Proteus vulgaris (MDR) | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 11 | 9 | 11 |
44 | Streptococcus pneumoniae (MDR) | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 10 | 9 | 8 |
45 | Staphylococcus aureus (MRSA) | 12.00 ± 0.00 | 12.00 ± 0.00 | 13.00 ± 0.00 | 0 | 12 | 7 |
46 | Staphylococcus aureus (MRSA + MDR) | 10.00 ± 0.00 | 11.00 ± 0.00 | 13.00 ± 0.00 | 22 | 22 | 21 |
47 | Providencia rustigianii (MDR) | 7.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 16 | 0 | 19 |
48 | Achromobacter sp. (MDR) | 9.00 ± 0.00 | 11.00 ± 0.00 | 13.00 ± 0.00 | 9 | 0 | 0 |
Concentrations (µg/mL) | AFEt (%) | Ascorbic Acid (%) |
---|---|---|
200.000 | 85.37 | 94.67 |
100.000 | 73.32 | 93.39 |
50.000 | 45.54 | 92.08 |
25.000 | 27.28 | 90.09 |
12.500 | 14.59 | 69.94 |
6.250 | 7.99 | 35.79 |
3.125 | 4.96 | 17.70 |
1.075 | 2.82 | 8.74 |
Microorganisms | Fold Increase |
---|---|
E. coli (CI) | 1.58 |
E. coli ATCC 25922 | 2.63 |
L. innocua (FI) | 1.24 |
L. monocytogenes ATCC 7644 | 1.76 |
B. subtilis DSMZ 1971 | 1.67 |
No | Retention Time | Chemical Structure 1 | Compound Name 1,2 | Formula 1,2 | Molecular Weight (g/mol) 1,2 | Area (%) | Known Activity |
---|---|---|---|---|---|---|---|
1 | 11.849 | 1,3,6-Heptatriene, 2,5,5-trimethyl | C10H16 | 136.23 | 2.96 | - | |
2 | 12.303 | Decamethylcyclopentasiloxane | C10H30O5Si5 | 370.77 | 4.54 | - | |
3 | 12.933 | Eucalyptol | C10H18O | 154.25 | 0.78 | - | |
4 | 14.208 | Artemisia ketone | C10H16O | 152.23 | 19.41 | Antimicrobial activity [22], antifungal activity [23] | |
5 | 19.301 | 3,7-Octadiene-2,6-diol, 2,6-dimethyl | C10H18O2 | 170.25 | 1.94 | - | |
6 | 22.060 | 2,5-Diethylphenol | C10H14O | 150.22 | 1.59 | - | |
7 | 23.676 | 1,3-Cyclopentadiene, 5,5-dimethyl | C7H10 | 94.15 | 4.48 | - | |
8 | 25.635 | Lavandulyl propionate | C13H22O2 | 210.31 | 1.82 | - | |
9 | 29.715 | (R)-lavandulyl (R)-2-methylbutanoate | C15H26O2 | 238.37 | 4.86 | - | |
10 | 31.789 | Di-epi-.alpha.-cedrene-(I) | C15H24 | 204.35 | 2.50 | - | |
11 | 32.161 | Aromadendrene | C15H24 | 204.35 | 5.11 | Antimicrobial activity [24] | |
12 | 33.210 | Exo-8-(2-Propenyl)-endo-8-methyl-3-oxabicyclo [4.2.0]oct-5-ene | C11H16O | 164.24 | 2.98 | - | |
13 | 33.330 | Copaene | C15H24 | 204.35 | 2.98 | Antioxidant, antigenotoxic, and antiproliferative activities [25] | |
14 | 33.816 | 2-Naphthalenemethanol, decahydro-alpha,alpha,4a-trimethyl-8-methylene-, [2R-(2alpha,4aalpha,8abeta)]- | C15H26O | 222.37 | 2.84 | - | |
15 | 34.049 | (1R,4S,5S)-1,8-Dimethyl-4-(prop-1-en-2-yl)spiro [4.5]dec-7-ene | C15H24 | 204.35 | 2.23 | - | |
16 | 37.153 | Ledol | C15H26O | 222.37 | 1.31 | Antimicrobial activity [26] | |
17 | 38.678 | Neophytadiene | C20H38 | 278.50 | 0.65 | Anti-inflammatory, analgesic, antipyretic, antioxidant, and antimicrobial activities [27] | |
18 | 41.944 | n-Hexadecanoic acid | C16H32O2 | 256.42 | 2.00 | Anti-inflammatory [28], antioxidant, hypocholesterolemic, and antibacterial activities [29] | |
19 | 42.198 | Cyclododecasiloxane, tetracosamethyl | C24H72O12Si12 | 889.84 | 1.08 | - | |
20 | 54.739 | Eicosane | C20H42 | 282.54 | 1.98 | - | |
21 | 59.453 | Pentadecane | C15H32 | 212.41 | 1.96 | Antimicrobial activity [30] | |
22 | 64.305 | Heneicosane | C21H44 | 296.60 | 1.67 | Antimicrobial activity [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tunca-Pinarli, Y.; Benek, A.; Turu, D.; Bozyel, M.E.; Canli, K.; Altuner, E.M. Biological Activities and Biochemical Composition of Endemic Achillea fraasii. Microorganisms 2023, 11, 978. https://doi.org/10.3390/microorganisms11040978
Tunca-Pinarli Y, Benek A, Turu D, Bozyel ME, Canli K, Altuner EM. Biological Activities and Biochemical Composition of Endemic Achillea fraasii. Microorganisms. 2023; 11(4):978. https://doi.org/10.3390/microorganisms11040978
Chicago/Turabian StyleTunca-Pinarli, Yagmur, Atakan Benek, Dilay Turu, Mustafa Eray Bozyel, Kerem Canli, and Ergin Murat Altuner. 2023. "Biological Activities and Biochemical Composition of Endemic Achillea fraasii" Microorganisms 11, no. 4: 978. https://doi.org/10.3390/microorganisms11040978
APA StyleTunca-Pinarli, Y., Benek, A., Turu, D., Bozyel, M. E., Canli, K., & Altuner, E. M. (2023). Biological Activities and Biochemical Composition of Endemic Achillea fraasii. Microorganisms, 11(4), 978. https://doi.org/10.3390/microorganisms11040978