Antimicrobial Activity of Some Medicinal Herbs to the Treatment of Cutaneous and Mucocutaneous Infections: Preliminary Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oils, Decoctions, Standards and Reagents
2.2. Microorganisms and Culture Media
2.3. Antimicrobial Susceptibility Testing by Broth Microdilution
2.3.1. Antibacterial Susceptibility Testing
2.3.2. Antifungal Susceptibility Testing
2.4. Statistical Analysis
3. Results
3.1. Antifungal Effects
3.2. Antibacterial Effects
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.-C.; Yan, S.-H.; Yen, M.-Y.; Wu, P.-F.; Liao, W.-T.; Huang, T.-S.; Wen, Z.-H.; Wang, H.-M.D. Investigations of kanuka and manuka essential oils for in vitro treatment of disease and cellular inflammation caused by infectious microorganisms. J. Microbiol. Immunol. Infect. 2016, 49, 104–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Rossi, N.M.; Bitencourt, T.A.; Peres, N.T.A.; Lang, E.A.S.; Gomes, E.V.; Quaresemin, N.R.; Martins, M.P.; Lopes, L.; Rossi, A. Dermatophyte Resistance to Antifungal Drugs: Mechanisms and Prospectus. Front. Microbiol. 2018, 9, 1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otašević, S.; Momčilović, S.; Golubović, M.; Ignjatović, A.; Rančić, N.; Đorđević, M.; Ranđelović, M.; Hay, R.; Arsić-Arsenijević, V. Species distribution and epidemio-logical characteristics of superficial fungal infections in Southeastern Serbia. Mycoses 2019, 62, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Zhan, P.; Liang, G.; Liu, W. Dermatophytes and Dermatophytic Infections Worldwide. In Dermatophytes and Dermatophytoses; Springer: Berlin, Germany, 2021; pp. 15–40. [Google Scholar] [CrossRef]
- Van Burik, J.-A.H.; Colven, R.; Spach, D.H. Cutaneous aspergillosis. J. Clin. Microbiol. 1998, 36, 3115–3121. [Google Scholar] [CrossRef] [Green Version]
- Vargas, P.; Valenzuela, F.; Kaplan, V.; Yumha, J.; Arceu, M.; Morales, C. Anogenital Ulcers: An Unusual Manifestation of Inva-sive Aspergillosis. Case Rep. Dermatol. Med. 2018, 2018, 7474135. [Google Scholar] [PubMed]
- Gupta, A.K.; Venkataraman, M.; Quinlan, E.M. New Antifungal Agents and New Formulations Against Dermatophytes. In Dermatophytes and Dermatophytoses; Springer: Berlin, Germany, 2021; pp. 433–471. [Google Scholar] [CrossRef]
- Orchard, A.; Van Vuuren, S.F.; Viljoen, A.M.; Kamatou, G. The in vitro antimicrobial evaluation of commercial essential oils and their combinations against acne. Int. J. Cosmet. Sci. 2018, 40, 226–243. [Google Scholar] [CrossRef] [PubMed]
- Miazga-Karska, M.; Michalak, K.; Ginalska, G. Anti-Acne Action of Peptides Isolated from Burdock Root—Preliminary Studies and Pilot Testing. Molecules 2020, 25, 2027. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and al-ternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Ghannoum, M.A.; Rice, L.B. Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mecha-nisms with bacterial resistance. Clin. Microbiol. Rev. 1999, 12, 501–517. [Google Scholar] [CrossRef] [Green Version]
- Da, X.; Nishiyama, Y.; Tie, D.; Hein, K.Z.; Yamamoto, O.; Morita, E. Antifungal activity and mechanism of action of Ou-gon (Scutellaria root extract) components against pathogenic fungi. Sci. Rep. 2019, 9, 1683. [Google Scholar] [CrossRef]
- Ríos, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Cos, P.; Vlietinck, A.J.; Vanden Berghe, D.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Negri, M.; Salci, T.P.; Mesquita, C.S.; Capoci, I.R.G.; Svidzinski, T.I.E.; Kioshima, E.S. Early State Research on Antifungal Natural Products. Molecules 2014, 19, 2925–2956. [Google Scholar] [CrossRef]
- Fratini, F.; Mancini, S.; Turchi, B.; Friscia, E.; Pistelli, L.; Giusti, G.; Cerri, D. A novel interpretation of the Fractional Inhibitory Concen-tration Index: The case Origanum vulgare L. and Leptospermum scoparium JR et G. Forst essential oils against Staphylococcus au-reus strains. Microbiol. Res. 2017, 195, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kong, J.; Zhang, J.-H.; Wang, L.; Zhang, W.; Liu, B.; Jiang, Y.-Y. Chemical Constituents and Pharmacological Activities of Family Flacourtiaceae: A Class of Important Phytomedicine. Am. J. Chin. Med. 2020, 48, 287–328. [Google Scholar] [CrossRef] [PubMed]
- Capodice, J.L.; Chubak, B.M. Traditional Chinese herbal medicine-potential therapeutic application for the treatment of COVID-19. Chin. Med. 2021, 16, 24. [Google Scholar] [CrossRef]
- Zhao, Z.; He, X.; Zhang, Q.; Wei, X.; Huang, L.; Fang, J.C.; Wang, X.X.; Zhao, M.M.; Bai, Y.J.; Zheng, X.H. Traditional Uses, Chemical Constituents and Biological Activities of Plants from the Genus Sanguisorba, L. Am. J. Chin. Med. 2017, 45, 199–224. [Google Scholar] [CrossRef]
- Qa’Dan, F.; Thewaini, A.-J.; Ali, D.A.; Afifi, R.; Elkhawad, A.; Matalka, K.Z. The Antimicrobial Activities of Psidium guajava and Juglans regia Leaf Extracts to Acne-Developing Organisms. Am. J. Chin. Med. 2005, 33, 197–204. [Google Scholar] [CrossRef]
- Hua, S.; Zhang, Y.; Liu, J.; Dong, L.; Huang, J.; Lin, D.; Fu, X. Ethnomedicine, Phytochemistry and Pharmacology of Smilax glabra: An Important Traditional Chinese Medicine. Am. J. Chin. Med. 2018, 46, 261–297. [Google Scholar] [CrossRef]
- Luan, F.; Han, K.; Li, M.; Zhang, T.; Liu, D.; Yu, L.; Lv, H. Ethnomedicinal Uses, Phytochemistry, Pharmacology, and Toxicology of Species from the Genus Ajuga, L.: A Systematic Review. Am. J. Chin. Med. 2019, 47, 959–1003. [Google Scholar] [CrossRef]
- Lai, E.Y.C.; Chyau, C.-C.; Mau, J.-L.; Chen, C.-C.; Lai, Y.-J.; Shih, C.-F.; Lin, L.-L. Antimicrobial Activity and Cytotoxicity of the Essential Oil of Curcuma zedoaria. Am. J. Chin. Med. 2004, 32, 281–290. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Luan, F.; Zhao, Z.; Ning, N.; Li, M.; Jin, L.; Chang, Y.; Zhang, Q.; Wu, N.; Huang, L. The Genus Patrinia: A Review of Traditional Uses, Phytochemical and Pharmacological Studies. Am. J. Chin. Med. 2017, 45, 637–666. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, L.; Lou, G.; Zeng, H.-R.; Hu, J.; Huang, Q.; Peng, W.; Yang, X.-B. Coptidis Rhizoma: A comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Pharm. Biol. 2019, 57, 193–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subapriya, R.; Nagini, S. Medicinal Properties of Neem Leaves: A Review. Curr. Med. Chem. Agents 2005, 5, 149–156. [Google Scholar] [CrossRef]
- Kharwar, R.N.; Sharma, V.K.; Mishra, A.; Kumar, J.; Singh, D.K.; Verma, S.K.; Gond, S.K.; Kumar, A.; Kaushik, N.; Revuru, B.; et al. Harnessing the Phytotherapeutic Treasure Troves of the Ancient Medicinal Plant Azadirachta indica (Neem) and Associated Endophytic Microorganisms. Planta Med. 2020, 86, 906–940. [Google Scholar] [CrossRef] [Green Version]
- Van Vuuren, S.F.; Docrat, Y.; Kamatou, G.P.P.; Viljoen, A.M. Essential oil composition and antimicrobial interactions of understud-ied tea tree species. S. Afr. J. Bot. 2014, 92, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Noites, A.; Araújo, B.; Machado, J.; Pinto, E. Antifungal Potential of Some Herb Decoctions and Essential Oils on Candida Species. Healthcare 2022, 10, 1820. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute—CLSI. Reference Method for Broth Dilution Anti-Fungal Susceptibility Testing of Filamentous Fungi, 2nd ed.; Approved Standard; Document M38-A2; Clinical and Laboratory Standards Institute—CLSI: Pittsburgh, PA, USA, 2008. [Google Scholar]
- Clinical and Laboratory Standards Institute—CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Document M27-S3; Third Informational Supplement; Clin. Lab. Stand. Inst.: Pittsburgh, PA, USA, 2008; Volume 28. [Google Scholar]
- Clinical and Laboratory Standards Institute—CLSI. Reference Method for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Document M100-A25; Clinical and Laboratory Standards Institute—CLSI: Pittsburgh, PA, USA, 2015. [Google Scholar]
- Agarwal, V.; Lal, P.; Pruthi, V. Effect of Plant Oils on Candida albicans. J. Microbiol. Immunol. Infect. 2010, 43, 447–451. [Google Scholar] [CrossRef]
- Lopes, G.; Pinto, E.; Salgueiro, L. Natural products: An alternative to conventional therapy for dermatophytosis? Mycopathologia 2017, 182, 143–167. [Google Scholar] [CrossRef]
- Lam, P.; Kok, S.H.L.; Lee, K.K.H.; Lam, K.H.; Hau, D.K.P.; Wong, W.Y.; Bian, Z.; Gambari, R.; Chui, C.H. Sensitization of Candida albicans to terbinafine by berberine and berberrubine. Biomed. Rep. 2016, 4, 449–452. [Google Scholar] [CrossRef] [Green Version]
- Cock, I.; Van Vuuren, S. A review of the traditional use of southern African medicinal plants for the treatment of fungal skin infections. J. Ethnopharmacol. 2020, 251, 112539. [Google Scholar] [CrossRef]
- Serra, E.; Hidalgo-Bastida, L.A.; Verran, J.; Williams, D.; Malic, S. Antifungal Activity of Commercial Essential Oils and Biocides against Candida Albicans. Pathogens 2018, 7, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuzarte, M.; Vale-Silva, L.; Gonçalves, M.J.; Cavaleiro, C.; Vaz, S.; Canhoto, J.; Pinto, E.; Salgueiro, L. Antifungal activity of phenolic-rich Lavandula multifida L. essential oil. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.; Vale-Silva, L.; Cavaleiro, C.; Salgueiro, L. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 2009, 58, 1454–1462. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.; Gonçalves, M.-J.; Cavaleiro, C.; Salgueiro, L. Antifungal Activity of Thapsia villosa Essential Oil against Candida, Cryptococcus, Malassezia, Aspergillus and Dermatophyte Species. Molecules 2017, 22, 1595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, P.; Li, X.; Wei, Y.; Liu, J.; Chen, M.; Xu, Y.; Dong, B.; Zhu, L.; Chai, L. The herbal decoction modified Danggui Buxue Tang attenuates immune-mediated bone marrow failure by regulating the differentiation of T lymphocytes in an immune-induced aplastic anemia mouse model. PLoS ONE 2017, 12, e0180417. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-H.; Chang, K.-S.; Su, M.-S.; Huang, Y.-S.; Jang, H.-D. Effects of some Chinese medicinal plant extracts on five different fungi. Food Control 2007, 18, 1547–1554. [Google Scholar] [CrossRef]
- Khodavandi, A.; Tahzir, N.A.B.; Cheng, P.W.; Chen, P.Y.V.; Alizadeh, F.; Hrmal, N.S.; Pei, C.P. Antifungal activity of Rhizome cop-tidis and Alpinia galangal against Candida species. J. Pure Appl. Microbiol. 2013, 7, 1725–1730. [Google Scholar]
- Mahmoud, D.A.; Hassanein, N.M.; Youssef, K.A.; Abou Zeid, M.A. Antifungal activity of different neem leaf extracts and the ni-monol against some important human pathogens. Braz. J. Microbiol. 2011, 42, 1007–1016. [Google Scholar] [CrossRef]
- Porter, N.G.; Wilkins, A.L. Chemical, physical and antimicrobial properties of essential oils of Leptospermum scoparium and Kunzea ericoides. Phytochemistry 1999, 50, 407–415. [Google Scholar] [CrossRef]
- Schwiertz, A.; Duttke, C.; Hild, J.; Müller, H.J. In vitro activity of essential oils on microorganisms isolated from vaginal in-fections. Int. J. Aromather. 2006, 16, 169–174. [Google Scholar] [CrossRef]
- Christoph, F.; Kaulfers, P.-M.; Stahl-Biskup, E. A Comparative Study of the in vitro Antimicrobial Activity of Tea Tree Oils s.l. with Special Reference to the Activity of β-Triketones. Planta Med. 2000, 66, 556–560. [Google Scholar] [CrossRef]
- Song, S.; Hyun, J.; Kang, J.-H.; Hwang, C. In vitro antibacterial activity of the manuka essential oil from Leptospermum scoparium combined with Tris-EDTA against Gram-negative bacterial isolates from dogs with otitis externa. Veter. Dermatol. 2020, 31, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Mathew, C.; Tesfaye, W.; Rasmussen, P.; Peterson, G.M.; Bartholomaeus, A.; Sharma, M.; Thomas, J. Mānuka Oil—A Review of Antimicrobial and Other Medicinal Properties. Pharmaceuticals 2020, 13, 343. [Google Scholar] [CrossRef] [PubMed]
C. chinensis Decoction | C. chinensis EO | A. indica Decoction | A. indica EO | L. scoparium EO | Fluconazole | Gentamicin | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC a | MLC b | MIC a | MLC b | MIC a | MLC b | MIC a | MLC b | MIC a | MLC b | MIC c | MLC d | ||||
Fungi | Candida albicans ATCC 10231 * | 5.00 | 10.00 | 5.00 | 10.00 | >20.00 | >20.00 | >20.00 | >20.00 | 20.00 | >20.00 | 2.00 | >128.00 | ND | ND |
Malassezia furfur P26 | 20.00 | >20.00 | 20.00 | 20.00 | >20.00 | >20.00 | >20.00 | >20.00 | 5.00 | 5.00 | ND | ND | ND | ND | |
Aspergillus fumigatus ATCC 204305 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | ≥128.00 | >128.00 | ND | ND | |
Trichophyton rubrum FF5 | 20.00 | ≥20.00 | ≥20.00 | ≥20.00 | >20.00 | >20.00 | 5.00 | 5.00 | 5.00 | 5.00 | 16.00 | 64.00 | ND | ND | |
Microsporum canis FF1 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | 10.00 | ≥20.00 | 10.00 | 10.00 | 8.00 | 32.00 | ND | ND | |
Epidermophyton floccosum FF9 | 20.00 | ≥20.00 | 20.00 | ≥20.00 | >20.00 | >20.00 | 5.00 | 10.00 | 5.00 | 5.00 | 16.00 | 16.00 | ND | ND | |
Bacteria | Propionibacterium acnes ATCC 11827 | 1.25 | 1.25 | 0.63 | 0.63 | >20.00 | >20.00 | 10.00 | 20.00 | 0.63 | 0.63 | ND | ND | ND | ND |
Staphylococcus aureus ATCC 25923 | 20.00 | >20.00 | 20.00 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | 1.25 | >20.00 | ND | ND | 0.50 | ND | |
Staphylococcus aureus MRSA | 20.00 | >20.00 | 20.00 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | 0.63 | >20.00 | ND | ND | ND | ND | |
Escherichia coliATCC 25922 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | ND | ND | 1.00 | ND | |
Pseudomonas aeruginosaATCC 27853 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | >20.00 | ND | ND | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noites, A.; Borges, I.; Araújo, B.; da Silva, J.C.G.E.; de Oliveira, N.M.; Machado, J.; Pinto, E. Antimicrobial Activity of Some Medicinal Herbs to the Treatment of Cutaneous and Mucocutaneous Infections: Preliminary Research. Microorganisms 2023, 11, 272. https://doi.org/10.3390/microorganisms11020272
Noites A, Borges I, Araújo B, da Silva JCGE, de Oliveira NM, Machado J, Pinto E. Antimicrobial Activity of Some Medicinal Herbs to the Treatment of Cutaneous and Mucocutaneous Infections: Preliminary Research. Microorganisms. 2023; 11(2):272. https://doi.org/10.3390/microorganisms11020272
Chicago/Turabian StyleNoites, Alexandra, Iara Borges, Bruno Araújo, Joaquim C. G. Esteves da Silva, Natália M. de Oliveira, Jorge Machado, and Eugénia Pinto. 2023. "Antimicrobial Activity of Some Medicinal Herbs to the Treatment of Cutaneous and Mucocutaneous Infections: Preliminary Research" Microorganisms 11, no. 2: 272. https://doi.org/10.3390/microorganisms11020272
APA StyleNoites, A., Borges, I., Araújo, B., da Silva, J. C. G. E., de Oliveira, N. M., Machado, J., & Pinto, E. (2023). Antimicrobial Activity of Some Medicinal Herbs to the Treatment of Cutaneous and Mucocutaneous Infections: Preliminary Research. Microorganisms, 11(2), 272. https://doi.org/10.3390/microorganisms11020272