Nutritional Value and Antioxidant, Antimicrobial and Cytotoxic Activity of Wild Macrofungi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Macrofungi Material
2.2. Extract Preparation
2.3. Nutritional Value and Mineral Element Composition
2.4. Antimicrobial Activity
2.4.1. Antibacterial Activity
2.4.2. Antifungal Activity
2.5. Antioxidant Activity (AOX)
2.5.1. ABTS Radical Cation Decolorization Assay
2.5.2. DPPH Radical Cation Decolorization Assay
2.6. Cell Viability Measurement Using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide, a Tetrazole) Assay
2.7. Statistical Analysis
3. Results
3.1. Qualitative Identification of Secondary Metabolites
3.2. Nutritional Profile
3.3. Antimicrobial Activity
3.3.1. Antibacterial Activity
3.3.2. Antifungal Activity
3.4. Antioxidant Activity (AOX)
3.5. Cell Viability Evaluation
4. Discussion
4.1. Extracts and Chemical Test
4.2. Nutritional Profile
4.3. Antimicrobial Activity
4.4. Antioxidant Activity (AOX)
4.5. Cell Viability Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hossain, S.; Alam, N.; Amin, S.; Basunia, M.A.; Rahman, M. Essential fatty acid contents of Pleurotus ostreatus, Ganoderma lucidum and Agaricus bisporus. Bangladesh J. Mushroom 2007, 2, 1–7. [Google Scholar]
- Kalač, P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J. Sci. Food Agric. 2013, 93, 209–218. [Google Scholar] [CrossRef]
- Gao, Z.; Li, J.; Song, X.; Zhang, J.; Wang, X.; Jing, H.; Ren, Z.; Li, S.; Zhang, C.; Jia, L. Antioxidative, anti-inflammation and lung-protective effects of mycelia selenium polysaccharides from Oudemansiella radicata. Int. J. Biol. Macromol. 2017, 104, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Chaiyasut, C.; Sivamaruthi, B.S. Anti-hyperglycemic property of Hericium erinaceus—A mini review. Asian Pac. J. Trop. Biomed. 2017, 7, 1036–1040. [Google Scholar] [CrossRef]
- Ganesan, K.; Xu, B. Anti-Obesity Effects of Medicinal and Edible Mushrooms. Molecules 2018, 23, 2880. [Google Scholar] [CrossRef] [PubMed]
- Gargano, M.L.; Van Griensven, L.J.L.D.; Isikhuemhen, O.S.; Lindequist, U.; Venturella, G.; Wasser, S.P.; Zervakis, G. Medicinal mushrooms: Valuable biological resources of high exploitation potential. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2017, 151, 548–565. [Google Scholar] [CrossRef]
- Mishra, J.; Rajput, R.; Singh, K.; Puri, S.; Goyal, M.; Bansal, A.; Misra, K. Antibacterial Natural Peptide Fractions from Indian Ganoderma lucidum. Int. J. Pept. Res. Ther. 2018, 24, 543–554. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, Y.; Shao, J.; Shu, X.; Jia, J.; Ren, X.; Guan, Y. Macrophage immunomodulatory activity of the polysaccharide isolated from Collybia radicata mushroom. Int. J. Biol. Macromol. 2018, 108, 300–306. [Google Scholar] [CrossRef]
- Meng, X.; Liang, H.; Luo, L. Antitumor polysaccharides from mushrooms: A review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr. Res. 2016, 424, 30–41. [Google Scholar] [CrossRef]
- Oli, A.N.; Edeh, P.A.; Al-Mosawi, R.M.; Mbachu, N.A.; Al-Dahmoshi, H.O.; Al-Khafaji, N.S.; Ekuma, U.O.; Okezie, U.M.; Saki, M. Evaluation of the phytoconstituents of Auricularia auricula-judae mushroom and antimicrobial activity of its protein extract. Eur. J. Integr. Med. 2020, 38, 101176. [Google Scholar] [CrossRef]
- Gebreyohannes, G.; Nyerere, A.; Bii, C.; Sbhatu, D.B. Investigation of antioxidant and antimicrobial activities of different extracts of Auricularia and Termitomyces species of mushrooms. Sci. World J. 2019, 2019, 7357048. [Google Scholar] [CrossRef] [PubMed]
- Savin, S.; Craciunescu, O.; Oancea, A.; Ilie, D.; Ciucan, T.; Antohi, L.S.; Toma, A.; Nicolescu, A.; Deleanu, C.; Oancea, F. Antioxidant, cytotoxic and antimicrobial activity of chitosan preparations extracted from Ganoderma lucidum mushroom. Chem. Biodivers. 2020, 17, e2000175. [Google Scholar] [CrossRef]
- Bishop, K.S.; Kao, C.H.; Xu, Y.; Glucina, M.P.; Paterson, R.R.; Ferguson, L.R. From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry 2015, 114, 56–65. [Google Scholar] [CrossRef] [PubMed]
- SWasser, P.; Sokolov, D.; Reshetnikov, S.V.; Timor-Tismenetsky, M. Dietary supplements from medicinal mushrooms: Diversity of types and variety of regulations. Int. J. Med. Mushrooms 2000, 2, 19. [Google Scholar] [CrossRef]
- Bernaś, E.; Jaworska, G.; Lisiewska, Z. Edible mushrooms as a source of valuable nutritive constituents. Acta Sci. Pol. Technol. Aliment. 2006, 5, 5–20. [Google Scholar]
- Harborne, J. Methods of plant analysis. In Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis; Springer: Berlin/Heidelberg, Germany, 1973; pp. 1–32. [Google Scholar]
- Castro Díaz, R. Bioquímica y Biología Celular de las Complicaciones de la Hiperglucemia (Diabetes Tipo II); Universidad de La Laguna: San Cristóbal de La Laguna, Spain, 2020. [Google Scholar]
- Henao, L.; Ruiz, A. Investigación y Gestión local de robledales alrededor del uso tradicional de macromicetos en la cordillera Oriental colombiana. In Memorias del I Simposio de Robles y Ecosistemas Asociados. Bogotá. Fundación Natura y Pontifiia Universidad Javeriana; Fundacion Natura Colombia: Bogota, Colombia, 2006. [Google Scholar]
- Murillo, W.; Suárez, H. Evaluation of nutritional values of wild mushrooms and spent substrate of Lentinus crinitus (L.) Fr. Heliyon 2020, 6, e03502. [Google Scholar]
- Dávila-Giraldo, L.R.; Zambrano-Forero, C.; Torres-Arango, O.; Pérez, J.F.B.; Murillo-Arango, W. Integral use of rice husks for bioconversion with white-rot fungi. Biomass Convers. Biorefinery 2022, 12, 2981–2991. [Google Scholar] [CrossRef]
- Charria-Girón, E.; Espinosa, M.C.; Zapata-Montoya, A.; Méndez, M.J.; Caicedo, J.P.; Dávalos, A.F.; Ferro, B.E.; Vasco-Palacios, A.M.; Caicedo, N.H. Evaluation of the antibacterial activity of crude extracts obtained from cultivation of native endophytic fungi belonging to a tropical montane rainforest in Colombia. Front. Microbiol. 2021, 12, 2515. [Google Scholar] [CrossRef]
- Muñoz-Castiblanco, T.; de la Parra, L.S.M.; Peña-Cañón, R.; Mejía-Giraldo, J.C.; León, I.E.; Puertas-Mejía, M.Á. Anticancer and Antioxidant Activity of Water-Soluble Polysaccharides from Ganoderma aff. australe against Human Osteosarcoma Cells. Int. J. Mol. Sci. 2022, 23, 14807. [Google Scholar] [CrossRef]
- Ma, K.; Ren, J.; Han, J.; Bao, L.; Li, L.; Yao, Y.; Sun, C.; Zhou, B.; Liu, H. Ganoboninketals A–C, Antiplasmodial 3,4-seco-27-Norlanostane Triterpenes from Ganoderma boninense Pat. J. Nat. Prod. 2014, 77, 1847–1852. [Google Scholar] [CrossRef]
- Zhou, X.; Lin, J.; Yin, Y.; Zhao, J.; Sun, X.; Tang, K. Ganodermataceae: Natural products and their related pharmacological functions. Am. J. Chin. Med. 2007, 35, 559–574. [Google Scholar] [CrossRef] [PubMed]
- Petrovska, B.B.; Kulevanova, S.; Jordanoski, B.; Stefov, V. Investigation of dietary fibre in some edible mushrooms from Macedonia. Nutr. Food Sci. 2001, 31, 242–246. [Google Scholar] [CrossRef]
- Cheung, P.C. Mini-review on edible mushrooms as source of dietary fiber: Preparation and health benefits. Food Sci. Hum. Wellness 2013, 2, 162–166. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Bian, Z.-X.; Xu, B. Beta-glucans from edible and medicinal mushrooms: Characteristics, physicochemical and biological activities. J. Food Compos. Anal. 2015, 41, 165–173. [Google Scholar] [CrossRef]
- Mata, M.; Ryvarden, L. Studies in neotropical polypores 27: More new and interesting species from Costa Rica. Synop Fungorum 2010, 27, 59–72. [Google Scholar]
- Ryvarden, L.; Johansen, I. A Preliminary Polypore Flora of East Africa; Fungiflora: Oslo, Norway, 1980. [Google Scholar]
- Galappaththi, M.C.A.; Patabendige, N.M.; Premarathne, B.M.; Hapuarachchi, K.K.; Tibpromma, S.; Dai, D.-Q.; Suwannarach, N.; Rapior, S.; Karunarathna, S.C. A Review of Ganoderma Triterpenoids and Their Bioactivities. Biomolecules 2022, 13, 24. [Google Scholar] [CrossRef]
- Kolundžić, M.; Grozdanić, N.; Dodevska, M.; Milenković, M.; Sisto, F.; Miani, A.; Farronato, G.; Kundaković, T. Antibacterial and cytotoxic activities of wild mushroom Fomes fomentarius (L.) Fr., Polyporaceae. Ind. Crops Prod. 2016, 79, 110–115. [Google Scholar] [CrossRef]
- Van den Berg, R.; Haenen, G.R.; van den Berg, H.; Bast, A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 1999, 66, 511–517. [Google Scholar] [CrossRef]
- Conde, C.G.; Rueda, X.Y.; Patiño, G.G.S. Evaluación de la actividad antioxidante del aceite esencial foliar de Calycolpus moritzianus y Minthostachys mollis de Norte de Santander. Bistua Rev. Fac. Cienc. Básicas 2012, 10, 12–23. [Google Scholar]
- Braca, A.; Sortino, C.; Politi, M.; Morelli, I.; Mendez, J. Antioxidant activity of flavonoids from Licania licaniaeflora. J. Ethnopharmacol. 2002, 79, 379–381. [Google Scholar] [CrossRef]
- Fernández, A.; Falcón, J.; Del Toro, G.; Pozo, A. Caracterización de los buffer fosfatos utilizados en la preparación de solución de hemoglobina (Hb) a pH controlado. Rev. Cubana Quím. 2001, 13, 87–96. [Google Scholar]
- Gomez, L.A.; Alekseev, A.E.; Aleksandrova, L.A.; Brady, P.A.; Terzic, A. Use of the MTT assay in adult ventricular cardiomyocytes to assess viability: Effects of adenosine and potassium on cellular survival. J. Mol. Cell. Cardiol. 1997, 29, 1255–1266. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Wang, P.; Lam, K.-L.; Hu, J.; Cheung, P.C. Research on a specialty mushroom (Pleurotus tuber-regium) as a functional food: Chemical composition and biological activities. J. Agric. Food Chem. 2020, 68, 9277–9286. [Google Scholar] [CrossRef]
- Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; Alves, M.J.; Barros, L.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C. The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food Chem. Toxicol. 2017, 108, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, R.C.G.; de Souza, A.H.P.; Calhelha, R.C.; Barros, L.; Glamoclija, J.; Sokovic, M.; Peralta, R.M.; Bracht, A.; Ferreira, I.C.F.R. Bioactive formulations prepared from fruiting bodies and submerged culture mycelia of the Brazilian edible mushroom Pleurotus ostreatoroseus Singer. Food Funct. 2015, 6, 2155–2164. [Google Scholar] [CrossRef]
- Pandya, U.; Dhuldhaj, U.; Sahay, N.S. Bioactive mushroom polysaccharides as antitumor: An overview. Nat. Prod. Res. 2019, 33, 2668–2680. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Zhou, W.; Zhang, Y. Fungal polysaccharides. Adv. Pharmacol. 2020, 87, 277–299. (In English) [Google Scholar] [CrossRef]
- Kolniak-Ostek, J.; Oszmiański, J.; Szyjka, A.; Moreira, H.; Barg, E. Anticancer and antioxidant activities in Ganoderma lucidum wild mushrooms in Poland, as well as their phenolic and triterpenoid compounds. Int. J. Mol. Sci. 2022, 23, 9359. [Google Scholar] [CrossRef]
- Kim, H.W.; Kim, B.K. Biomedicinal triterpenoids of Ganoderma lucidum (Curt.: Fr.) P. Karst. (Aphyllophoromycetideae). Int. J. Med. Mushrooms 1999, 1, 121–138. [Google Scholar] [CrossRef]
- Vasco-Palacios, A.M.; Suaza, S.C.; Castanõ-Betancur, M.; Franco-Molano, A.E. Conocimiento etnoecólogico de los hongos entre los indígenas Uitoto, Muinane y Andoke de la Amazonía Colombiana. Acta Amaz. 2008, 38, 17–30. [Google Scholar] [CrossRef]
- Bolaños, A.C.; Medina, E.S. Macrohongos comestibles y medicinales comunes en la vegetación de la Universidad del Valle, Colombia. Rev. Cienc. 2011, 15, 31–38. [Google Scholar] [CrossRef]
- Cohen, R.; Persky, L.; Hadar, Y. Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl. Microbiol. Biotechnol. 2002, 58, 582–594. [Google Scholar] [CrossRef] [PubMed]
- Kozioł, M.J. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). J. Food Compos. Anal. 1992, 5, 35–68. [Google Scholar] [CrossRef]
- Martínez, B.A.; Zárate, C.M. Los hongos comestibles silvestres de Santa Catarina del Monte, Estado de México. Rev. Chapingo Ser. Cienc. For. Ambiente 2006, 12, 125–131. [Google Scholar]
- Demissew, S. The Edible Fungi of Africa South of the Sahara: A Literature Survey: J. Rammeloo and R. Walleyn; Ministry of Agriculture, Administration of Agricultural Research, National Botanic Gardens of Belgium. 1993; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Equihua, V.Z.; Peralta, M.G.; Marrufo, G.V.; del Pilar Angón Torres, M. Conocimiento etnomicológico de hongos silvestres comestibles registrados para la zona de Tancítaro, Michoacán. Biológicas Rev. DES Cienc. Biológico Agropecu. Univ. Michoacana San Nicolás Hidalgo 2007, 9, 41–46. [Google Scholar]
- Boa, E. Los Hongos Silvestres Comestibles: Perspectiva Global de Su USO E Importancia Para la Poblacion (Productos Forestales No Madereros) (No. 17); Food and Agriculture Organization: Rome, Italy, 2005. [Google Scholar]
- Cheung, P. The nutritional and health benefits of mushrooms. Nutr. Bull. 2010, 35, 292–299. [Google Scholar] [CrossRef]
- De Silva, D.D.; Rapior, S.; Hyde, K.D.; Bahkali, A.H. Medicinal mushrooms in prevention and control of diabetes mellitus. Fungal Divers. 2012, 56, 1–29. [Google Scholar]
- FDA. GRAS Notice (Mushroom Beta Glucan) 000413; FDA: Silver Spring, MD, USA, 2011. [Google Scholar]
- Mattila, P.; Könkö, K.; Eurola, M.; Pihlava, J.-M.; Astola, J.; Vahteristo, L.; Hietaniemi, V.; Kumpulainen, J.; Valtonen, M.; Piironen, V. Contents of Vitamins, Mineral Elements, and Some Phenolic Compounds in Cultivated Mushrooms. J. Agric. Food Chem. 2001, 49, 2343–2348. [Google Scholar] [CrossRef]
- Falandysz, J.; Borovička, J. Macro and trace mineral constituents and radionuclides in mushrooms: Health benefits and risks. Appl. Microbiol. Biotechnol. 2013, 97, 477–501. [Google Scholar]
- Sánchez-Yañez, J.; Marquez-Benavides, L.; Lozano, L.; Fernandez-Pavia, S. Los hongos fundamentales en la productividad del suelo. In Monografía; Universidad Microbiana de San Nicolás de Hidalgo: Morelia, Mexico, 2007. [Google Scholar]
- Cruza, P.E.H. Bacterias patógenas emergentes transmisibles por los alimentos. In Aspectos Higiénicos de los Alimentos Microbiológicamente Seguros; Real Academia Nacional de Farmacia: Madrid, Spain, 2010; pp. 147–179. [Google Scholar]
- Kozarski, M.; Klaus, A.; Nikšić, M.; Vrvić, M.M.; Todorović, N.; Jakovljević, D.; Van Griensven, L.J. Antioxidative activities and chemical characterization of polysaccharide extracts from the widely used mushrooms Ganoderma applanatum, Ganoderma lucidum, Lentinus edodes and Trametes versicolor. J. Food Compos. Anal. 2012, 26, 144–153. [Google Scholar] [CrossRef]
- Fu, H.Y.; Shieh, D.E.; Ho, C.T. Antioxidant and free radical scavenging activities of edible mushrooms. J. Food Lipids 2002, 9, 35–43. [Google Scholar] [CrossRef]
- Elmastas, M.; Isildak, O.; Turkekul, I.; Temur, N. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J. Food Compos. Anal. 2007, 20, 337–345. [Google Scholar] [CrossRef]
- Puttaraju, N.G.; Venkateshaiah, S.U.; Dharmesh, S.M.; Urs, S.M.N.; Somasundaram, R. Antioxidant activity of indigenous edible mushrooms. J. Agric. Food Chem. 2006, 54, 9764–9772. [Google Scholar] [CrossRef] [PubMed]
- Cheung, L.; Cheung, P.C.; Ooi, V.E. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem. 2003, 81, 249–255. [Google Scholar] [CrossRef]
- Habtemariam, S. Trametes versicolor (Synn. Coriolus versicolor) polysaccharides in cancer therapy: Targets and efficacy. Biomedicines 2020, 8, 135. [Google Scholar] [CrossRef]
- Agus, H.H. Terpene toxicity and oxidative stress. In Toxicology: Oxidative Stress and Dietary Antioxidants; Elsevier: Amsterdam, The Netherlands, 2021; pp. 33–42. [Google Scholar]
- Rasser, F.; Anke, T.; Sterner, O. Terpenoids from Bovista sp. 96042. Tetrahedron 2002, 58, 7785–7789. [Google Scholar] [CrossRef]
- Bisen, P.; Baghel, R.K.; Sanodiya, B.S.; Thakur, G.S.; Prasad, G. Lentinus edodes: A macrofungus with pharmacological activities. Curr. Med. Chem. 2010, 17, 2419–2430. [Google Scholar] [CrossRef]
Metabolite | Test | P. floridanus | Bovista sp. | T. coccinea | G. australe | Lentinus sp. | T. elegans | I. rosettiformis | P. gilvus | A. fuscoccinea |
---|---|---|---|---|---|---|---|---|---|---|
Carbohydrate | Benedict | + | - | - | + | - | - | + | + | - |
Molish | + | + | + | + | + | + | + | + | + | |
Saponins | Foam | - | - | - | - | - | - | - | - | - |
Rosenthaler | - | - | - | - | - | - | - | - | - | |
Polyphenols | Folin-Ciocalteu | + | - | - | + | + | + | + | + | + |
Tannins | Ferric Chloride | - | - | - | - | - | - | - | - | - |
Gelatin-salt | - | - | - | - | - | - | - | - | - | |
Flavonoids | Shinoda (Zn) | + | + | + | + | + | + | + | + | + |
Terpenes | Lieberman | + | + | + | + | + | + | + | + | + |
Salkowski | + | - | + | + | + | + | + | + | + | |
Alkaloids | Tanred | - | - | + | + | + | + | + | + | + |
Dragendorff | + | + | + | + | + | + | + | + | + | |
Valser | - | + | - | - | - | - | + | - | - | |
Mayer | - | - | - | - | - | - | - | - | - |
Macrofungi | % Nitrogen | % Protein | % Total Fiber | % Ether Extract | % Ash | % Humidity | % Ca | %Mg | Na (mg/kg) | % K | Fe (mg/kg) | Cu (mg/kg) | Mn (mg/kg) | Zn (mg/kg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P. floridanus | 3.0 | 18.5 | 7.8 | 7.7 | 4.8 | 65.2 | 0.1 | 1.7 | 186.2 | 4.8 | 78.1 | 28.7 | 106.0 | 45.9 |
Bovista sp. | 2.6 | 16.1 | 14.3 | 9.3 | 49.7 | 29.4 | 0.3 | 0.4 | 435.9 | 0.9 | 568.5 | 90.5 | 58.4 | 93.5 |
T. coccinea | 1.6 | 9.9 | 10.1 | 9.3 | 2.8 | 7.7 | 0.2 | 1.2 | 1170.0 | 2.0 | 72.0 | 16.6 | 100.5 | 12.4 |
G. australe | 2.0 | 12.3 | 53.6 | 8.6 | 1.3 | 53.5 | 0.1 | 0.4 | 494.6 | 1.9 | 75.0 | 15.3 | 1.4 | 23.3 |
Lentinus sp. | 2.9 | 18.4 | 11.9 | 9.5 | 6.0 | 20.2 | 0.1 | 0.5 | 71.9 | 0.6 | 67.2 | 16.5 | 1.4 | 8.2 |
T. elegans | 1.0 | 6.2 | 28.1 | 7.6 | 1.0 | 34.0 | 0.1 | 0.3 | 83.9 | 0.3 | 62.8 | 14.2 | 1.4 | 4.0 |
I. rosettiformis | 2.4 | 14.7 | 10.7 | 14.8 | 3.5 | 44.1 | 0.4 | 0.4 | 439.5 | 0.9 | 18.6 | 14.7 | 8.5 | 15.8 |
P. gilvus | 1.2 | 7.8 | 31.6 | 8.5 | 3.0 | 8.5 | 0.1 | 0.3 | 212.6 | 2.6 | 10.0 | 15.8 | 6.0 | 27.0 |
A. fuscoccinea | 1.6 | 10.0 | 7.17 | 22.2 | 3.0 | 59.5 | 0.1 | 0.8 | 197.8 | 0.7 | 18.5 | 19.2 | 6.4 | 18.3 |
Bacterium | Concentration (mg/mL) | 2500 | 1250 | 625 | 312.5 | 156.125 | 78.125 | 39.05 |
---|---|---|---|---|---|---|---|---|
E. coli | T. coccinea | 438.1 ± 10.9 a | 262.1 ± 31.4 b | 111.3 ± 47.4 c | 76.6 ± 8.1 cd | 61.3 ± 39.2 cd | 66.3 ± 5.0 cd | 58.1 ± 3.6 d |
P. floridanus | ND | ND | ND | 61.5 ± 4.4 a | 55.4 ± 4.2 ab | 47.8 ± 7.6 bc | 45.2 ± 6.9 c | |
P. gilvus | ND | ND | ND | ND | 51.5 ± 9.3 a | 45.5 ± 6.5 a | 11.4 ± 3.6 b | |
T. elegans | 43.8 ± 13.8 a | 13.0 ± 5.9 b | 22.3 ± 8.6 b | 22.4 ± 6.8 b | ND | ND | ND | |
Bovista spp. | ND | ND | ND | ND | ND | ND | ND | |
Lentinus sp. | ND | ND | ND | 61.5 ± 4.4 a | 55.4 ± 4.2 ab | 47.8 ± 7.6 bc | 45.2 ± 6.9 c | |
G. australe | 113.9 ± 36.5 a | 35.9 ± 24.4 b | 50.6 ± 24.0 b | 42.3 ± 9.5 b | 40.1 ± 10.4 b | 36.8 ± 15.7 b | 30.4 ± 5.9 b | |
I. rosettiformis | ND | ND | ND | ND | ND | ND | ND | |
A. fuscosscinea | ND | ND | ND | ND | 42.8 ± 12.7 a | 44.3 ± 16.7 a | 43.6 ± 20.7 a | |
K. pneumoniae | T. coccinea | 164.4 ± 10.3 a | 102.7 ± 3.3 b | 72.9 ± 4.5 c | 52.8 ± 1.6 d | ND | ND | ND |
P. floridanus | 27.1 ± 1.1 b | 33.7 ± 1.6 a | 33.9 ± 1.6 a | 27.0 ± 3.5 b | ND | ND | ND | |
P. gilvus | 49.1 ± 1.3 a | 41.8 ± 1.1 b | 44.3 ± 0.7 b | 38.3 ± 3.3 c | ND | ND | ND | |
T. elegans | 38.4 ± 5.8 a | 32.6 ± 2.3 ab | 19.8 ± 7.9 bc | 24.4 ± 9.2 c | ND | ND | ND | |
Bovista spp. | 45.8 ± 13.5 a | 32.6 ± 2.7 ab | 44.4 ± 6.3 bc | 27.9 ± 5.4 c | ND | ND | ND | |
Lentinus sp. | 35.7 ± 1.7 a | 36.4 ± 1.4 a | 21.3 ± 3.0 b | 28.7 ± 2.9 b | ND | ND | ND | |
G. australe | 51.4 ± 2.2 a | 34.1 ± 6.5 b | 35.7 ± 1.3 b | 35.2 ± 1.8 b | ND | ND | ND | |
I. rosettiformis | 33.5 ± 1.6 a | 30.0 ± 0.8 b | 27.9 ± 1.4 b | 24.5 ± 2.3 c | ND | ND | ND | |
A. fuscosscinea | 38.7 ± 2.9 a | 37.9 ± 2.0 a | 30.9 ± 1.4 b | 21.1 ± 1.2 c | ND | ND | ND | |
P. aeruginosa | T. coccinea | 128.3 ± 3.5 a | 73.8 ± 4.3 b | 58.7 ± 9.5 c | 43.3 ± 2.1 d | ND | ND | ND |
P. floridanus | 48.2 ± 5.2 a | 39.8 ± 15.3 a | 24.9 ± 3.0 b | 18.0 ± 3.8 b | ND | ND | ND | |
P. gilvus | 35.7 ± 5.3 a | 29.2 ± 6.9 ab | 31.9 ± 2.5 a | 24.5 ± 0.8 b | ND | ND | ND | |
T. elegans | 10.8 ± 8.2 a | 6.9 ± 3.3 a | 4.3 ± 3.7 a | 10.4 ± 4.7 a | ND | ND | ND | |
Bovista spp. | 8.8 ± 5.0 a | 12.1 ± 2.8 a | 16.1 ± 3.3 a | 13.6 ± 6.2 a | ND | ND | ND | |
Lentinus sp. | 14.0 ± 0.9 a | 9.1 ± 1.4 b | 7.1 ± 0.9 c | 2.5 ± 1.3 d | ND | ND | ND | |
G. australe | 17.5 ± 3.1 ab | 20.9 ± 2.1 a | 19.4 ± 1.8 ab | 16.3 ± 1.6 b | ND | ND | ND | |
I. rosettiformis | 16.7 ± 1.7 a | 14.9 ± 1.4 a | 12.1 ± 0.8 b | 10.7 ± 1.2 b | ND | ND | ND | |
A. fuscosscinea | 20.5 ± 6.1 a | 17.0 ± 6.5 ab | 10.7 ± 1.8 bc | 6.1 ± 3.1 c | ND | ND | ND | |
S. aureus | T. coccinea | 407.8 ± 17.0 a | 238 ± 14.9 b | 164.8 ± 11.0 c | 91.7 ± 15.5 d | 39.0 ± 4.2 e | 36.1 ± 11.2 e | ND |
P. floridanus | 48.1 ± 17.7 a | 43.3 ± 18.9 a | 27.4 ± 14.8 ab | 9.8 ± 3.5 b | ND | ND | ND | |
P. gilvus | 55.8 ± 8.2 a | 71.5 ± 21.1 a | 58.3 ± 10.7 a | 16.8 ± 4.1 b | ND | ND | ND | |
T. elegans | 65.4 ± 15.6 a | 43.2 ± 5.0 b | ND | ND | ND | ND | ND | |
Bovista spp. | ND | ND | ND | ND | ND | ND | ND | |
Lentinus sp. | 23.4 ± 15.1 a | 31.3 ± 15.2 a | ND | ND | ND | ND | ND | |
G. australe | 45.7 ± 8.6 a | 53.1 ± 22.1 a | 52.7 ± 5.3 a | 51.0 ± 9.3 a | 48.3 ± 6.7 a | ND | ND | |
I. rosettiformis | ND | ND | ND | ND | ND | ND | ND | |
A. fuscosscinea | 27.5 ± 13.9 a | 18.7 ± 11.3 a | 14.7 ± 8.7 a | ND | ND | ND | ND | |
Oxytetracycline hydrochloride | Concentration (mg/mL) | 400 | 200 | 100 | 50 | |||
E. coli | 99.04 ± 0.48 a | 99.63 ± 0.46 a | 97.17 ± 0.49 b | 94–66 ± 0.33 c | ||||
K. pneumoniae | 79.17 ± 2.44 a | 63.14 ± 3.31 b | 58.44 ± 1.35 c | 52.25 ± 1.94 d | ||||
P. aeruginosa | 99.19 ± 0.25 a | 99.01± 0.18 a | 98.42 ± 0.06 b | 97.37± 0.18 c | ||||
S. aureus | 96.13 ± 0.95 a | 92.04 ± 1.52 b | 90.42 ± 1.52 b | 89.53 ± 3.00 b |
Fungi | Concentration (mg/mL) | 312.5 | 156.25 | 78.125 | 39.063 |
---|---|---|---|---|---|
Aspergillus niger | T. coccinea | 91.2 ± 6.5 a | 86.6 ± 30 ab | 86.3 ± 2.4 ab | 81.9 ± 3.5 b |
P. floridanus | 83.7 ± 6.7 a | 82.4 ± 5.9 a | 77.4 ± 9.9 a | 77.1 ± 5.1 a | |
P. gilvus | 85.8 ± 2.4 a | 80.0 ± 6.4 a | 77.8 ± 7.1 a | 43.4 ± 19.9 b | |
T. elegans | 86.7 ± 1.8 a | 87.4 ± 1.6 a | 85.0 ± 3.7 a | 69.6 ± 13.2 b | |
Bovista spp. | 87.0 ± 2.4 a | 84.6 ± 3.1 a | 78.3 ± 7.2 a | 65.1 ± 10.3 b | |
Lentinus sp. | 88.0 ± 2.1 a | 84.9 ± 8.3 a | 91.1 ± 2.7 a | 88.1 ± 4.6 a | |
G. australe | 83.0 ± 2.8 a | 83.0 ± 2.9 a | 81.5 ± 2.6 a | 80.0 ± 1.4 a | |
I. rosettiformis | 92.6 ± 4.2 a | 95.7 ± 3.5 a | 96.0 ± 2.3 a | 51.7 ± 11.4 b | |
A. fuscosscinea | 87.9 ± 3.5 a | 87.3 ± 3.9 a | 77.5 ± 15.2 a | 77.9 ± 1.8 a | |
Penicillium sp. | T. coccinea | 93.7 ± 2.1 a | 84.2 ± 5.4 b | 90.1 ± 4.4 ab | 92.01 ± 3.9 a |
P. floridanus | 92.0 ± 5.3 a | 91.2 ± 11.1 a | 90.0 ± 5.6 a | 94.6 ± 5.9 a | |
P. gilvus | 93.4 ± 3.9 a | 96.6 ± 4.1 a | 91.7 ± 4.5 a | 59.3 ± 12.2 b | |
T. elegans | 90.8 ± 8.8 a | 90.2 ± 4.8 a | 82.3 ± 1.3 a | 85.3 ± 3.8 a | |
Bovista spp. | 91.3 ± 5.1 a | 88.4 ± 2.7 a | 90.9 ± 10.7 a | 78.4 ± 17.6 a | |
Lentinus sp. | 96.5 ± 6.0 a | 86.0 ± 3.6 b | 87.9 ± 2.5 b | 93.1 ± 5.1 ab | |
G. australe | 91.2 ± 1.0 a | 87.5 ± 4.5 a | 86.7 ± 4.3 a | 88.7 ± 3.4 a | |
I. rosettiformis | 90.9 ± 5.7 a | 88.2 ± 3.7 a | 86.7 ± 3.9 a | 67.3 ± 17.2 b | |
A. fuscosscinea | 89.6 ± 4.8 a | 91.3 ± 3.2 a | 95.2 ± 4.7 a | 93.0 ± 6.0 a | |
Rhizophus oryzae | T. coccinea | 86.0 ± 7.8 a | 82.0 ± 9.8 a | 79.9 ± 6.7 a | 74.0 ± 10.1 b |
P. floridanus | 71.8 ± 6.5 a | 50.7 ± 15.8 b | 32.3 ± 4.6 c | 27.2 ± 7.4 c | |
P. gilvus | 27.3 ± 3.1 a | 19.6 ± 1.5 b | 14.7 ± 1.5 b | 14.3 ± 2.4 b | |
T. elegans | 48.4 ± 7.4 a | 48.6 ± 7.5 ab | 34.0 ± 8.7 b | 29.4 ± 10.2 b | |
Bovista spp. | 31.8 ± 6.3 a | 32.1 ± 5.3 b | 27.8 ± 6.0 b | 25.9 ± 5.3 b | |
Lentinus sp. | 87.2 ± 6.9 a | 86.7 ± 11.4 a | 63.3 ± 13.4 b | 54.8 ± 8.5 b | |
G. australe | 46.7 ± 9.6 a | 52.8 ± 7.1 ab | 40.9 ± 11.7 b | 39.3 ± 7.8 b | |
I. rosettiformis | 91.3 ± 3.1 a | 94.9 ± 2.1 a | 92.8 ± 3.9 a | 20.9 ± 6.6 b | |
A. fuscosscinea | 28.05 ± 2.1 a | 30.7 ± 4.5 b | 26.5 ± 6.2 b | 28.8 ± 4.6 b |
ABTS | DPPH | |
---|---|---|
Macrofungi | IC50 (mg/L) | IC50 (mg/L) |
T. coccinea | 77.9 ± 2.4 a | 1522.4 ± 1.4 c |
P. floridanus | 119.5 ± 1.2 a | 450.1 ± 0.7 b |
P. gilvus | 36.8 ± 1.8 a | 293.5 ± 5.6 b |
T. elegans | 175.7 ± 5.3 b | 1402.7 ± 6.6 c |
Bovista spp. | 256.8 ± 4.7 b | 5471.2 ± 7.7 d |
Lentinus sp. | 57.4 ± 1.1 a | 4402.3 ± 5.5 d |
G. australe | 110.3 ± 4.9 a | 88.3 ± 5.6 ab |
I. rosettiformis | 224.7 ± 7.8 b | 4412.5 ± 8.8 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dávila Giraldo, L.R.; Pérez Jaramillo, C.C.; Méndez Arteaga, J.J.; Murillo-Arango, W. Nutritional Value and Antioxidant, Antimicrobial and Cytotoxic Activity of Wild Macrofungi. Microorganisms 2023, 11, 1158. https://doi.org/10.3390/microorganisms11051158
Dávila Giraldo LR, Pérez Jaramillo CC, Méndez Arteaga JJ, Murillo-Arango W. Nutritional Value and Antioxidant, Antimicrobial and Cytotoxic Activity of Wild Macrofungi. Microorganisms. 2023; 11(5):1158. https://doi.org/10.3390/microorganisms11051158
Chicago/Turabian StyleDávila Giraldo, Lina Rocío, Claudia Cristina Pérez Jaramillo, Jonh Jairo Méndez Arteaga, and Walter Murillo-Arango. 2023. "Nutritional Value and Antioxidant, Antimicrobial and Cytotoxic Activity of Wild Macrofungi" Microorganisms 11, no. 5: 1158. https://doi.org/10.3390/microorganisms11051158
APA StyleDávila Giraldo, L. R., Pérez Jaramillo, C. C., Méndez Arteaga, J. J., & Murillo-Arango, W. (2023). Nutritional Value and Antioxidant, Antimicrobial and Cytotoxic Activity of Wild Macrofungi. Microorganisms, 11(5), 1158. https://doi.org/10.3390/microorganisms11051158