Irradiation as a Promising Technology to Improve Bacteriological and Physicochemical Quality of Fish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Bacteriological Examination
2.2.1. Staphylococcal Enterotoxins Serotyping
2.2.2. Serological Identification of E. coli
2.2.3. Serological Identification of Salmonella sp.
2.3. Study Design
2.4. Gamma Irradiation Treatment
2.5. Organoleptic, Proximate Composition, and Other Physicochemical Evaluation for Treated and Untreated Samples
2.6. Bacteriological Analysis of the Treated Samples
2.7. Determination of Reductions
2.8. Statistical Analysis
3. Results
3.1. Bacteriological Examination of Untreated and Treated Fish Samples
3.2. Organoleptic Evaluation for Untreated and Treated Fish Samples
3.3. Physicochemical Properties of Untreated and Treated Fish Samples
3.4. The Proximate Composition for Treated and Untreated Fish Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Switaj, T.L.; Winter, K.J.; Christensen, S.R. Diagnosis and Management of Foodborne Illness. Am. Fam. Physician 2015, 92, 358–365. [Google Scholar] [PubMed]
- Bendary, M.M.; Abd El-Hamid, M.I.; El-Tarabili, R.M.; Hefny, A.A.; Algendy, R.M.; Elzohairy, N.A.; Ghoneim, M.M.; Al-Sanea, M.M.; Nahari, M.H.; Moustafa, W.H. Clostridium perfringens Associated with Foodborne Infections of Animal Origins: Insights into Prevalence, Antimicrobial Resistance, Toxin Genes Profiles, and Toxinotypes. Biology 2022, 11, 551. [Google Scholar] [CrossRef] [PubMed]
- Velusamy, V.; Arshak, K.; Korostynska, O.; Oliwa, K.; Adley, C. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 2010, 28, 232–254. [Google Scholar] [CrossRef]
- Ghaly, M.F.; Nasr, Z.M.; Abousaty, A.I.; Seadawy, H.G.; Shaheen, M.A.A.; Albogami, S.; Al-Sanea, M.M.; Bendary, M.M. Alternative and Complementary Therapies against Foodborne Salmonella Infections. Antibiotics 2021, 10, 1453. [Google Scholar] [CrossRef] [PubMed]
- Barrett, K.A.; Nakao, J.H.; Taylor, E.V.; Eggers, C.; Gould, L.H. Fish-Associated Foodborne Disease Outbreaks: United States, 1998–2015. Foodborne Pathog. Dis. 2017, 14, 537–543. [Google Scholar] [CrossRef]
- Ziarati, M.; Zorriehzahra, M.J.; Hassantabar, F.; Mehrabi, Z.; Dhawan, M.; Sharun, K.; Bin Emran, T.; Dhama, K.; Chaicumpa, W.; Shamsi, S. Zoonotic diseases of fish and their prevention and control. Veter. Q. 2022, 42, 95–118. [Google Scholar] [CrossRef]
- Elfaky, M.A.; Abdel-Hamid, M.I.; Khalifa, E.; Alshareef, W.A.; Mosbah, R.A.; Elazab, S.T.; Ghoneim, M.M.; Al-Sanea, M.M.; Bendary, M.M. Innovative next-generation therapies in combating multi-drug-resistant and multi-virulent Escherichia coli isolates: Insights from in vitro, in vivo, and molecular docking studies. Appl. Microbiol. Biotechnol. 2022, 106, 1691–1703. [Google Scholar] [CrossRef]
- Bendary, M.; Solyman, S.; Azab, M.M.; Mahmoud, N.F.; Hanora, A.M. Characterization of Methicillin Resistant Staphylococcus aureus isolated from human and animal samples in Egypt. Cell. Mol. Biol. 2016, 62, 94–100. [Google Scholar] [PubMed]
- Morshdy, A.M.; El-tahlawy, A.S.; Qari, S.H.; Qumsani, A.T.; Bay, D.H.; Sami, R.; Althubaiti, E.H.; Mansour, A.M.; Aljahani, A.H.; Hafez, A.E.; et al. Anti-biofilms activity of garlic, thyme essential oil against salmonella typhimurium. Molecules 2022, 27, 2182. [Google Scholar] [CrossRef]
- Abdallah, F.A.; Abd El-Salam, E.M.; Hanan, G.F.; Faragallah, E.; El awady, M.; Abdallah, E.K. Quality Assessment and Impact of Gamma Irradiation on Histamine Content in Some Fish Consumed in Sharkia Province, Egypt. J. Adv. Vet. Res. 2022, 12, 760–767. [Google Scholar]
- Bendary, M.M.; Ibrahim, D.; Mosbah, R.A.; Mosallam, F.; Hegazy, W.A.H.; Awad, N.F.S.; Alshareef, W.A.; Alomar, S.Y.; Zaitone, S.A.; Abd El-Hamid, M.I. Thymol Nanoemulsion: A New Therapeutic Option for Extensively Drug Resistant Foodborne Pathogens. Antibiotics 2021, 10, 25. [Google Scholar] [CrossRef]
- Elsayed, M.E.; Abd El-Hamid, M.I.; El-Gedawy, A.; Bendary, M.M.; ELTarabili, R.M.; Alhomrani, M.; Alamri, A.S.; Alghamdi, S.A.; Arnout, M.; Binjawhar, D.N.; et al. New Insights into Listeria monocytogenes Antimicrobial Resistance, Virulence Attributes and Their Prospective Correlation. Antibiotics 2022, 11, 1447. [Google Scholar] [CrossRef]
- Bonnin-Jusserand, M.; Copin, S.; Le Bris, C.; Brauge, T.; Gay, M.; Brisabois, A.; Grard, T.; Midelet-Bourdin, G. Vibrio species involved in seafood-borne outbreaks (Vibrio cholerae, V. parahaemolyticus and V. vulnificus): Review of microbiological versus recent molecular detection methods in seafood products. Crit. Rev. Food Sci. Nutr. 2019, 59, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.M.; El-Hamid, M.I.A.; El-Malt, R.M.S.; Azab, D.S.; Albogami, S.; Al-Sanea, M.M.; Soliman, W.E.; Ghoneim, M.M.; Bendary, M.M. Molecular Detection of Fluoroquinolone Resistance among Multidrug-, Extensively Drug-, and Pan-Drug-Resistant Campylobacter Species in Egypt. Antibiotics 2021, 10, 1342. [Google Scholar] [CrossRef]
- Zang, J.; Xu, Y.; Xia, W.; Regenstein, J.M. Quality, functionality, and microbiology of fermented fish: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1228–1242. [Google Scholar] [CrossRef]
- Haenen, O.; Evans, J.; Berthe, F. Bacterial infections from aquatic species: Potential for and prevention of contact zoonoses. Rev. Sci. Tech. l′OIE 2013, 32, 497–507. [Google Scholar] [CrossRef]
- Ghaly, M.F.; Shaheen, A.A.; Bouhy, A.M.; Bendary, M.M. Alternative therapy to manage otitis media caused by multidrug-resistant fungi. Arch. Microbiol. 2020, 202, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Mosallam, F.M.; Helmy, E.A.; Bendary, M.M.; El-Batal, A.I. Potency of a novel synthesized Ag-eugenol nanoemulsion for treating some bacterial and fungal pathogens. J. Mater. Res. 2021, 36, 1524–1537. [Google Scholar] [CrossRef]
- Tavares, J.; Martins, A.; Fidalgo, L.G.; Lima, V.; Amaral, R.A.; Pinto, C.A.; Silva, A.M.; Saraiva, J.A. Fresh Fish Degradation and Advances in Preservation Using Physical Emerging Technologies. Foods 2021, 10, 780. [Google Scholar] [CrossRef]
- Farkas, J. Irradiation as a method for decontaminating food: A review. Int. J. Food Microbiol. 1998, 44, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Abu-Tarboush, H.M.; Al-Kahtani, H.A.; Atia, M.; Abou-Arab, A.A.; Bajaber, A.S.; El-Mojaddidi, M.A. Irradiation and postirradiation storage at 2±2 C of Tilapia (Tilapia nilotica × T. aurea) and Spanish Mackerel (Scomberomorus commerson): Sensory and microbial assessment. J. Food Prot. 1996, 59, 1041–1048. [Google Scholar] [CrossRef]
- International Consultative Group on Food Irradiation “ICGFI”. Food Irradiation: A Global Food SafetyTool; WHO: Geneva, Switzerland, 2002. [Google Scholar]
- ISO 4833-1; Microbiology of Food Chain-Horizontal Method for the Enumeration of Microorganisms. Part I. Colony Count at 30 °C by the Pour Plate Technique. International Standard Organization: Geneva, Switzerland, 2013.
- Jorgensen, J.H.; Pfaller, M.A.; Carroll, K.C.; Funke, G.; Landry, M.L.; Richter, S.S.; Warnock, D.W. Staphylococcus, Micrococcus, and other catalase-positive cocci. In Anonymous Manual of Clinical Microbiology, 11th ed.; American Society of Microbiology: Washington, DC, USA, 2015; pp. 354–382. [Google Scholar]
- Barrow, G.I.; Feltham, R.K.A. Cowan and Steel’s Manual for Identification of Medical Bacteria, 3rd ed.; Cambridge University Press: Great Britain, UK, 1993; Volume 126, pp. 50–60. [Google Scholar]
- MacFaddin, J.F. Biochemical Tests for Identification Medical Bacteria; Warery Press Inc.: Baltimore, MD, USA, 2000. [Google Scholar]
- ISO 6888-1:2021; For Microbiology of the Food Chain—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and other species)—Part 1: Method Using Baird-Parker Agar Medium. International Standard Organization: Geneva, Switzerland, 2021.
- Mason, W.J.; Blevins, J.S.; Beenken, K.; Wibowo, N.; Ojha, N.; Smeltzer, M.S. Multiplex PCR protocol for the diagnosis of staphylo- coccal infection. J. Clin. Microbiol. 2001, 39, 3332–3338. [Google Scholar] [CrossRef]
- Muyzer, G.; Brinkhoff, T.; NuÈ bel, U.; Santegoeds, C.; SchaÈfer, H.; Wawer, C. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. Mol. Microb. Ecol. Man. 1997, 1, 27. [Google Scholar]
- Sabat, G.; Rose, P.; Hickey, W.J.; Harkin, J.M. Selective and Sensitive Method for PCR Amplification of Escherichia coli 16S rRNA Genes in Soil. Appl. Environ. Microbiol. 2000, 66, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Hall, H.E.; Angelotti, R.; Lewis, K.H. Quantitative Detection of Staphylococcal Enterotoxin B in Food by Gel-Diffusion Methods. Public Health Rep. 1963, 78, 1089. [Google Scholar] [CrossRef] [PubMed]
- Kok, T.; Worswich, D.; Gowans, E. Some Serological Techniques for Microbial and Viral Infections. In Practical Medical Microbiology, 14th ed.; Collee, J., Fraser, A., Marmion, B., Simmons, A., Eds.; Churchill Livingstone: Edinburgh, UK, 1996. [Google Scholar]
- Kilinc, B.; Cakli, S. Chemical, microbiological and sensory changes in thawed frozen fillets of Sardine (Sardina pilchardus) during marination. Food Chem. 2004, 88, 275–280. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 14th ed.; Horwitz, W.W., Ed.; Academic Press: Washington, DC, USA, 2005. [Google Scholar]
- Pearson, D. Chemical Analysis of Foods, 11th ed.; Publishing Co., Churchill Livingstone: Edinburgh, London, UK, 2006. [Google Scholar]
- ES:63-9/2006; Methods of Analysis and Testing for Meat. Part 9: Determination of Total Volatile Nitrogen (TVN). Egyptian Organization for Standards & Quality: Cairo Governorate, Egypt, 2006.
- Food and Agriculture Organization (FAO). Manual of Food Quality Control; FAO, United Nation: Rome, Italy, 1980. [Google Scholar]
- ES: 63-10/2006; Methods of Analysis and Testing for Meat. Part 10: Determination of Thiobarbituric Acid (TBA). Egyptian Organization for Standards & Quality: Cairo Governorate, Egypt, 2006.
- Leszczynska, J.; Wiedlocha, M.; Pytasz, U. The histamine content in some samples of food products. J. Food Sci. 2004, 22, 81–86. [Google Scholar]
- Abdallah, H.M.; Al Naiemi, N.; Elsohaby, I.; Mahmoud, A.F.A.; Salem, G.A.; Vandenbroucke-Grauls, C.M.J.E. Prevalence of extended-spectrum β-lactamase-producing Enterobacterales in retail sheep meat from Zagazig city, Egypt. BMC Veter-Res. 2022, 18, 1–7. [Google Scholar] [CrossRef]
- 1725-1; Salted Fish, Part: 1 Fesiekh. Egyptian Organization for Standards & Quality: Cairo Governorate, Egypt, 2006.
- Sugumar, G.; Chrisolite, B.; Velayutham, P.; Selvan, A.; Ramesh, U. Occurrence and seasonal variation of bacterial indicators of faecal pollution along Thoothukudi Coast, Tamil Nadu. J. Environ. Biol. 2008, 29, 387–391. [Google Scholar] [PubMed]
- Amin, A.H.; Bughdadi, F.A.; Abo-Zaid, M.A.; Ismail, A.H.; El-Agamy, S.A.; Alqahtani, A.; El-Sayyad, H.I.H.; Rezk, B.M.; Ramadan, M.F. Immunomodulatory effect of papaya (Carica papaya) pulp and seed extracts as a potential natural treatment for bacterial stress. J. Food Biochem. 2019, 43, e13050. [Google Scholar] [CrossRef]
- Khider, M.; Nasr, N.M.; Atallah, K.M.; Metry, W.A. Functional UF-low and full-fat Labneh supplemented with Oats (Avena sativa L.) powder and probiotic bacteria. J. Umm Al-Qura Univ. Appl. Sci. 2022, 8, 21–32. [Google Scholar] [CrossRef]
- Sommers, C.H.; Rajkowski, K.T. Radiation Inactivation of Foodborne Pathogens on Frozen Seafood Products. J. Food Prot. 2011, 74, 641–644. [Google Scholar] [CrossRef] [PubMed]
- Kontominas, M.G.; Badeka, A.V.; Kosma, I.S.; Nathanailides, C.I. Innovative Seafood Preservation Technologies: Recent Developments. Animals 2021, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Abdallah-Ruiz, A.; Wood, L.S.; Kim, T.; Schilling, W.; White, S.B.; Chen, B.-Y.; Durango-Villadiego, A.; Silva, J.L. Microbial Indicators and Possible Focal Points of Contamination during Production and Processing of Catfish. Foods 2022, 11, 2778. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, G.; Yasmin, T.; Nilla, S.S.; Khan, M.R.; Khan, A.R. Effect of freezing period on the microbial and nutrient quality of pool barb, Puntius sophore from Dhaka city retail market, Bangladesh. Bangladesh J. Zool. 2015, 41, 1–11. [Google Scholar] [CrossRef]
- EL-Habib, R. Bacteriological quality and biogenic amines determination by HPLE in Bassa fish imported to Saudi Arabia. Int. J. Pharm. Pharm. Sci. 2011, 3, 343–347. [Google Scholar]
- Popovic, N.T.; Skukan, A.B.; Dzidara, P.; Coz-Rakovac, R.; Strunjak-Perovic, I.; Kozacinski, L.; Jadan, M.; Brlek-Gorski, D. Microbiological quality of marketed fresh and frozen seafood caught off the Adriatic coast of Croatia. Vet. Med. 2010, 55, 233–241. [Google Scholar] [CrossRef]
- Prabakaran, P.; Kannan, K.S.; Anand, M.; Pradeepa, V. Microbiological quality assessment in a fish processing plant at mandapam, ramanathapuram district. Arch. Appl. Sci. Res. 2011, 3, 135–138. [Google Scholar]
- Ezzeldeen, N.A.; Mansour, H.A.; Ahmed, A.A. Phenotypic and molecular identification of Staphylococcus aureus isolated from some Egyptian salted fish. World App. Sci. J. 2011, 15, 1703–1712. [Google Scholar]
- El-Hamid, M.I.A.; Sewid, A.H.; Samir, M.; Hegazy, W.A.H.; Bahnass, M.M.; Mosbah, R.A.; Ghaith, D.M.; Khalifa, E.; Ramadan, H.; Alshareef, W.A.; et al. Clonal Diversity and Epidemiological Characteristics of ST239-MRSA Strains. Front. Cell. Infect. Microbiol. 2022, 12, 782045. [Google Scholar] [CrossRef]
- Saad, M.S.; Hassan, M.; Hassnien, F.; Abdel-Aal, M.; Zakar, A.; Elshfey, S. Prevalence of Escherichia Coli in Fish Obtained from Retail Fish Markets in Gharbia Governorate, Egypt. Benha Veter-Med. J. 2018, 34, 254–260. [Google Scholar] [CrossRef]
- Atwa, I.E. Bacteriological study of fish samples collected from different markets in Some Egyptian Governorates and antimicrobial sensitivity of isolates. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 2765–2776. [Google Scholar] [CrossRef]
- De Heinitz, M.L.; Ruble, R.D.; Wagner, D.E.; Tatini, S.R. Incidence of Salmonella in fish and seafood. J. Food Prot. 2000, 63, 579–592. [Google Scholar] [CrossRef]
- Ampofo, J.A.; Clerk, C.G. Diversity of Bacteria Contaminants in Tissues of Fish Cultured in Organic Waste-Fertilized Ponds: Health Implications. Open Fish Sci. J. 2010, 3, 142–146. [Google Scholar] [CrossRef]
- Haque, M.M.; Sorrowar, M.G.; Rashid, H. Effect of frozen storage, radiation and their combined treatments on micro-organisms of freshwater Mola fish Amblypharyngodon Mola. J. Bangladesh Acad. Sci. 2013, 37, 21–31. [Google Scholar] [CrossRef]
- Edris, A.; Amin, A.; Reham, A.; Marionette, Z.; Naseif, E.; Abdel Fatah, M. Evaluation of Retiled Salted Fish according to Egyptian Standard. Benha Vet. Med. J. 2014, 27, 168–176. [Google Scholar]
- Gassem, M.A. Microbiological and chemical quality of a traditional salted-fermented fish (Hout-Kasef) product of Jazan Region, Saudi Arabia. Saudi. J. Biol. Sci. 2019, 26, 137–140. [Google Scholar] [CrossRef]
- Edris, M.A.; Hassanien, F.S.; Shaltout, F.A.E.; Elbaba, A.H.; Adel, N.M. Microbiological evaluation of some heat treated fish products in Egyptian markets. Benha Veter-Med. J. 2017, 33, 305–316. [Google Scholar] [CrossRef]
- Abraha, B.; Admassu, H.; Mahmud, A.; Tsighe, N.; Shui, X.W.; Fang, Y. Effect of processing methods on nutritional and physico-chemical composition of fish: A review. MOJ Food Process. Technol. 2018, 6, 376–382. [Google Scholar] [CrossRef]
- Friedman, M. Nutritional Value of Proteins from Different Food Sources. A Review. J. Agric. Food Chem. 1996, 44, 6–29. [Google Scholar] [CrossRef]
- Brackett, R.E. Microbiological safety of chilled foods: Current issues. Trends Food Sci. Technol. 1992, 3, 81–85. [Google Scholar] [CrossRef]
- Prakash, S.; Kailasam, S.; Patterson, J. Effect of radiation on the nutritional and microbial qualities of salted and sun-dried Sharpfin barracuda (Sphyraena acutipinnis). Int. J. Radiat. Biol. 2015, 91, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Hasan, M.; Alam, J.; Ahsan, N.; Islam, M.; Akter, M.S. The effect of Gamma Radiation in Combination with Low Temperature Refrigeration on the Chemical, Microbiological and Organoleptic Changes in Pampus chinensis. World J. Zool. 2009, 4, 9–13. [Google Scholar]
- Mbarki, R.; Sadok, S.; Barkallah, I. Quality changes of the Mediterranean horse mackerel (Trachurus mediterraneus) during chilled storage: The effect of low-dose gamma irradiation. Radiat. Phys. Chem. 2009, 78, 288–292. [Google Scholar] [CrossRef]
- Alipour, H.J.; Shabanpoor, B.; Shabani, A.; Mahoonak, A.S. Effects of cooking methods on physicochemical and nutritional properties of Persian sturgeon Acipenser persicus fillet. Int. Aquat. Res. 2010, 2, 15–23. [Google Scholar]
- Idah, P.A.; Nwankwo, I. Effects of smoke-drying temperatures and time on physical and nutritional quality parameters of Tilapia (Oreochromis niloticus). Afr. J. Agric. Econ. Rural. Dev. 2013, 5, 29–34. [Google Scholar]
- Mostafavi, H.A.; Mirmajlessi, S.M.; Fathollahi, H. The Potential of Food Irradiation: Benefits and Limitations. Trends Vital Food Control. Eng. 2012, 5, 43–68. [Google Scholar]
- Gautam, S.; Tripathi, J. Food Processing by Irradiation—An effective technology for food safety and security. Experiment 2016, 54, 700–707. [Google Scholar]
- Brewer, M. Irradiation effects on meat flavor: A review. Meat Sci. 2009, 8, 779–784. [Google Scholar] [CrossRef]
- Zden, Ö.; Inugur, M.; Erkan, N. Effect of different dose gamma radiation and refrigeration on the chemical and sensory properties and microbiological status of aqua cultured sea bass (Dicentrarchuslabrax). Radiat. Phys. Chem. 2007, 76, 1169–1178. [Google Scholar]
- Ruiz-Capillas, C.; Moral, A. Sensory and biochemical aspects of quality of whole bigeye tuna (Thunnusobesus) during bulk storage in controlled atmospheres. Food Chem. 2005, 89, 347–354. [Google Scholar] [CrossRef]
- Hassoun, A.; Karoui, R. Quality Evaluation of Fish and Other Seafood by Traditional and Nondestructive Instrumental Methods: Advantages and Limitations. Crit. Rev. Food Sci. Nutr. 2017, 57, 1976–1998. [Google Scholar] [CrossRef]
- Jo, C.; Ahn, D.U. Volatiles and oxidative changes in irradiated pork sausage with different fatty acids composition and tocopherol content. J. Food Sci. 2000, 65, 270–275. [Google Scholar] [CrossRef]
- Al-Bachir, M.; Mehio, A. Irradiated luncheon meat: Microbiological, chemical and sensory characteristics during storage. Food Chem. 2001, 75, 169–175. [Google Scholar] [CrossRef]
- Poole, E.S.; Mitchell, E.G.; Mayze, L.J. Low Dose Irradiation Affects Microbiological and Sensory Quality of Sub-Tropical Seafood. J. Food Sci. 2006, 59, 85–87. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Stratakos, A.C.; Tsarouhas, P. Irradiation Applications in Vegetables and Fruits: A Review. Crit. Rev. Food Sci. Nutr. 2009, 49, 427–462. [Google Scholar] [CrossRef]
- Andrews, L.S.; Ahmedna, M.; Grodner, R.M.; Liuzzo, J.A.; Murano, P.S.; Murano, E.A.; Rao, R.M.; Shane, S.; Wilson, P.W. Food Preservation Using Ionizing Radiation. Rev. Environ. Contam. Toxicol. 1998, 154, 1–53. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.; Moreira, R.G.; Castell-Perez, E. Radiosensitization of Salmonella spp. and Listeria spp. in Ready-to-Eat Baby Spinach Leaves. J. Food Sci. 2011, 76, E141–E148. [Google Scholar] [CrossRef]
Type of Fish Fillet (NO.) | S. aureus | E. coli | Salmonella sp. |
---|---|---|---|
Tilapia (25) | 15 ± 0 | 18 ± 0 | 8 ± 0 |
Mullet (25) | 15 ± 0 | 18 ± 0 | 13 ± 0 |
Mackerel (25) | 10 ± 0 | 17 ± 0 | 7 ± 0 |
Sardine (25) | 10 ± 0 | 10 ± 0 | 5 ± 0 |
Total | 50 ± 0 | 63 ± 0 | 33 ± 0 |
Irradiation Dose | Mean ± SE | Reduction Count | Reduction% |
---|---|---|---|
APC | |||
Control | 5.21 ± 0.31 a (1 × 108) | ||
1 KGy | 4.75 ± 0.26 a (1 × 106) | 51.62 × 107 | 99.08% |
3 KGy | 2.88 ± 0.00 b (1 × 104) | 52.09 × 107 | 99.99% |
5 Kgy | ND | 5.21 × 108 | 100% |
S. aureus count | |||
Control | 6.00 ± 0.24 a (1 × 106) | ||
1 KGy | 5.67 ± 0.26 b (1 × 105) | 5.43 × 106 | 90.55% |
3 KGy | 4.97 ± 0.44 c (1 × 104) | 5.95 × 106 | 99.17% |
5 KGy | ND | 6.00 × 106 | 100% |
Sal. Typhimurium | |||
Control | 6.00 ± 0.28 a (1 × 105) | ||
1 KGy | 5.57 ± 0.27 b (1 × 104) | 5.44 × 105 | 90.71% |
3 KGy | 4.69 ± 0.53 c (1 × 102) | 5.99 × 105 | 99.92% |
5 Kgy | ND | 6.00 × 105 | 100% |
E. coli | |||
Control | 6.00 ± 0.26 a (1 × 106) | ||
1 KGy | 5.52 ± 0.28 b (1 × 105) | 5.44 × 106 | 90.80% |
3 KGy | 3.98 ± 0.45 c (1 × 103) | 5.99 × 106 | 99.93% |
5 KGy | ND | 6.00 × 106 | 100% |
Examined Fish | Color (5) | Odor (5) | Texture(5) | Flavor (5) | Overall (20) | Grade |
---|---|---|---|---|---|---|
Tilapia | 4.8 ± 0.01 | 4.2 ± 0.05 | 4.4 ± 0.01 | 4.6 ± 0.04 | 18 ± 0.03 | Good |
Mullet | 5.0 ± 0.00 | 4.6 ± 0.01 | 5.0 ± 0.00 | 4.8 ± 0.00 | 19.4 ± 0.01 | Very good |
Mackerel | 4.8 ± 0.05 | 4.6 ± 0.04 | 4.6 ± 0.03 | 4.8 ± 0.03 | 18.8 ± 0.04 | Very good |
Dose | Fish Fillets | Color (5) | Odor (5) | Texture (5) | Flavor (5) | Overall (20) | Grade |
---|---|---|---|---|---|---|---|
1KGy | Tilapia | 4.6 ± 0.02 | 4.2 ± 0.01 | 4.4 ± 0.03 | 4.6 ± 0.04 | 17.8 ± 0.03 | Good |
Mullet | 4.8 ± 0.00 | 4.4 ± 0.00 | 4.8 ± 0.01 | 4.6 ± 0.00 | 18.6 ± 0.01 | Very good | |
Mackerel | 4.8 ± 0.01 | 4.4 ± 0.02 | 4.4 ± 0.05 | 4.6 ± 0.01 | 18.2 ± 0.02 | Very good | |
Sardine | 4.4 ± 0.05 | 3.8 ± 0.02 | 4.2 ± 0.01 | 4.0 ± 0.03 | 16.4 ± 0.03 | Good | |
3 KGy | Tilapia | 4.4 ± 0.01 | 3.8 ± 0.01 | 4.0 ± 0.04 | 4.2 ± 0.05 | 16.4 ± 0.03 | Good |
Mullet | 4.6 ± 0.01 | 4.4 ± 0.03 | 4.6 ± 0.02 | 4.6 ± 0.00 | 18.2 ± 0.02 | Very good | |
Mackerel | 4.6 ± 0.02 | 4.4 ± 0.02 | 4.2 ± 0.00 | 4.4 ± 0.00 | 17.6 ± 0.02 | Good | |
Sardine | 4.0 ± 0.03 | 3.8 ± 0.05 | 3.8 ± 0.03 | 3.6 ± 0.04 | 15.2 ± 0.04 | Good | |
5 KGy | Tilapia | 4.0 ± 0.03 | 3.4 ± 0.01 | 3.6 ± 0.03 | 4.0 ± 0.03 | 15.0 ± 0.02 | Middle |
Mullet | 4.4 ± 0.00 | 4.2 ± 0.04 | 4.6 ± 0.00 | 4.4 ± 0.02 | 17.8 ± 0.03 | Good | |
Mackerel | 4.2 ± 0.03 | 4.0 ± 0.06 | 4.0 ± 0.04 | 4.4 ± 0.05 | 16.6 ± 0.05 | Good | |
Sardine | 3.8 ± 0.02 | 3.4 ± 0.03 | 3.4 ± 0.00 | 3.2 ± 0.01 | 13.8 ± 0.02 | Middle |
Minimum | Maximum | Mean ± SE | |
---|---|---|---|
pH | |||
Tilapia | 6.08 | 6.36 | 6.21 ± 0.08 a |
Mullet | 5.97 | 6.22 | 6.11 ± 0.07 a |
Mackerel | 6.03 | 6.25 | 6.14 ± 0.06 a |
Sardine | 6.14 | 6.49 | 6.31 ± 0.1 a |
TVN (mg%) | |||
Tilapia | 10.3 | 17.6 | 13.5 ± 2.15 ab |
Mullet | 6.3 | 9.2 | 8 ± 0.87 b |
Mackerel | 9.8 | 14.7 | 12.6 ± 1.46 ab |
Sardine | 17.1 | 21.5 | 19 ± 1.31 a |
TMA (mg%) | |||
Tilapia | 6.1 | 7.00 | 6.57 ± 0.26 a |
Mullet | 3.2 | 4.00 | 3.53 ± 0.24 c |
Mackerel | 4.5 | 5.7 | 5.03 ± 0.35 b |
Sardine | 6.8 | 8.2 | 7.63 ± 0.43 a |
TBA (mg%) | |||
Tilapia | 1.9 | 2.5 | 2.17 ± 0.18 ab |
Mullet | 1.3 | 1.6 | 1.43 ± 0.09 c |
Mackerel | 1.7 | 2.2 | 1.9 ± 0.15 bc |
Sardine | 2.4 | 3.1 | 2.7 ± 0.21 a |
Level of Histamine (Mg/100 g) | |||
Tilapia | 1.89 | 5.86 | 4.24 ± 5.18 a |
Mullet | 0.25 | 0.75 | 0.35 ± 1.00 c |
Mackerel | 0.25 | 2.87 | 1.31 ± 4.31 b |
Sardine | 0.25 | 8.18 | 1.84 ± 0.00 b |
Tilapia | Mullet | Mackerel | Sardine | ||
---|---|---|---|---|---|
pH | Control | 6.21 ± 0.08 aA | 6.11 ± 0.07 aA | 6.14 ± 0.06 aA | 6.31 ± 0.10 aA |
Dose 1 (1 KGy) | 6.15 ± 0.09 aA | 6.05 ± 0.08 aA | 6.06 ± 0.06 aA | 6.23 ± 0.10 aA | |
Dose 3 (3 KGy) | 6.08 ± 0.09 aA | 5.98 ± 0.09 aA | 5.99 ± 0.04 aA | 6.15 ± 0.11 aA | |
Dose 5 (5 KGy) | 6.01 ± 0.08 aA | 5.91 ± 0.07 aA | 5.95 ± 0.04 aA | 6.07 ± 0.10 aA | |
TVN (mg%) | Control | 13.50 ± 2.15 abA | 8.00 ± 0.87 bA | 12.60 ± 1.46 abA | 19.00 ± 1.31 aA |
Dose 1 (1 KGy) | 13.10 ± 2.12 abA | 7.67 ± 0.96 bA | 11.87 ± 1.38 abA | 17.67 ± 1.20 aA | |
Dose 3 (3 KGy) | 12.80 ± 2.14 abA | 7.37 ± 1.00 bA | 11.33 ± 1.34 abA | 16.90 ± 1.15 aA | |
Dose 5 (5 KGy) | 12.50 ± 2.06 abA | 7.17 ± 1.05 bA | 10.93 ± 1.33 abA | 16.27 ± 1.15 aA | |
TMA (mg%) | Control | 6.57 ± 0.26 aA | 3.53 ± 0.24 cA | 5.03 ± 0.35 bA | 7.63 ± 0.43 aA |
Dose 1 (1 KGy) | 6.27 ± 0.32 aA | 3.33 ± 0.20 cA | 4.83 ± 0.34 bA | 7.20 ± 0.50 aA | |
Dose 3 (3 KGy) | 6.03 ± 0.29 aA | 3.20 ± 0.21 cA | 4.67 ± 0.27 bA | 6.73 ± 0.43 aA | |
Dose 5 (5 KGy) | 5.87 ± 0.26 aA | 3.03 ± 0.19 cA | 4.47 ± 0.22 bA | 6.23 ± 0.48 aA | |
TBA (mg/kg) | Control | 2.17 ± 0.18 abA | 1.43 ± 0.09 cA | 1.90 ± 0.15 bcA | 2.70 ± 0.21 aA |
Dose 1 (1 KGy) | 2.00 ± 0.15 abA | 1.37 ± 0.09 bA | 1.83 ± 0.19 bA | 2.53 ± 0.20 aA | |
Dose 3 (3 KGy) | 1.83 ± 0.13 abA | 1.20 ± 0.10 bA | 1.70 ± 0.15 bA | 2.40 ± 0.21 aA | |
Dose 5 (5 KGy) | 1.77 ± 0.12 abA | 1.10 ± 0.06 cA | 1.60 ± 0.15 bcA | 2.23 ± 0.20 aA | |
Histamine level | Control | 25.00 ± 0.00 a | 22.00 ± 0.00 a | 24.00 ± 0.00 a | 26.00 ± 0.00 a |
Dose 1 (1 KGy) | 11.90 ± 1.46 b | 9.43 ± 1.55 b | 10.70 ± 1.76 b | 12.60 ± 1.46 b | |
Dose 3 (3 KGy) | 8.13 ± 0.50 c | 7.33 ± 0.30 c | 9.16 ± 0.52 c | 10.22 ± 0.40 c | |
Dose 5 (5 KGy) | 5.27 ± 0.78 c | 4.27 ± 0.28 c | 7.29 ± 0.71 c | 8.45 ± 0.58 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, E.F.E.; Hafez, A.E.-S.E.; Seadawy, H.G.; Elrefai, M.F.M.; Abdallah, K.; El Bayomi, R.M.; Mansour, A.T.; Bendary, M.M.; Izmirly, A.M.; Baothman, B.K.; et al. Irradiation as a Promising Technology to Improve Bacteriological and Physicochemical Quality of Fish. Microorganisms 2023, 11, 1105. https://doi.org/10.3390/microorganisms11051105
Mohamed EFE, Hafez AE-SE, Seadawy HG, Elrefai MFM, Abdallah K, El Bayomi RM, Mansour AT, Bendary MM, Izmirly AM, Baothman BK, et al. Irradiation as a Promising Technology to Improve Bacteriological and Physicochemical Quality of Fish. Microorganisms. 2023; 11(5):1105. https://doi.org/10.3390/microorganisms11051105
Chicago/Turabian StyleMohamed, Eman F. E., Abd El-Salam E. Hafez, Hanan G. Seadawy, Mohamed F. M. Elrefai, Karima Abdallah, Rasha M. El Bayomi, Abdallah Tageldein Mansour, Mahmoud M. Bendary, Abdullah M. Izmirly, Bandar K. Baothman, and et al. 2023. "Irradiation as a Promising Technology to Improve Bacteriological and Physicochemical Quality of Fish" Microorganisms 11, no. 5: 1105. https://doi.org/10.3390/microorganisms11051105
APA StyleMohamed, E. F. E., Hafez, A. E. -S. E., Seadawy, H. G., Elrefai, M. F. M., Abdallah, K., El Bayomi, R. M., Mansour, A. T., Bendary, M. M., Izmirly, A. M., Baothman, B. K., Alwutayd, K. M., & Mahmoud, A. F. A. (2023). Irradiation as a Promising Technology to Improve Bacteriological and Physicochemical Quality of Fish. Microorganisms, 11(5), 1105. https://doi.org/10.3390/microorganisms11051105