Nonlinear Effects Induced by Interactions among Functional Groups of Bacteria and Fungi Regulate the Priming Effect in Malagasy Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Linear Analyses
2.2.1. Modeling SOM Decomposition by the Relative Abundance of Microbial Families
2.2.2. Evaluation of the Model Quality
2.2.3. Model Reduction by Variable Selection
2.3. Clustering Analysis
2.3.1. Modeling SOM Decomposition by the Co-Occurring of Relative Abundance Classes of Microbial Families
2.3.2. Model Reduction by Variable Selection
2.3.3. Hierarchy of Functional Groups
2.3.4. Evaluation of the Model Quality
2.3.5. Linear Effects Associated with Each Functional Group
2.4. Statistical Computations
3. Results
3.1. Linear Analyses of the Relationship between SOM Decomposition Activity and Environmental Conditions of Sampling Sites
3.2. Multi-Linear and Clustering Analyses of the Relationship between Initial Composition of Bacterial and Fungal Communities and SOM Decomposition Activity
3.3. Identifying Bacterial and Fungal Families That Regulate SOM Decomposition Activity
3.4. Identity of Potentially Key Bacterial and Fungal Controlling the Priming Effect
4. Discussion
4.1. A Few Microbial Families Were Associated with Significant Variations in SOM Decomposition Functions
4.2. Multi-Linear and Clustering Analyses Enable the Identification of Microorganisms That Stimulate SOM Decomposition Activities after Seven and 42 Days of Incubation
4.3. Linear and Clustering Analyses Enlighten the Priming Effect
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kuzyakov, Y.; Friedel, J.; Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Fontaine, S.; Mariotti, A.; Abbadie, L. The priming effect of organic matter: A question of microbial competition? Soil Biol. Biochem. 2003, 35, 837–843. [Google Scholar] [CrossRef]
- Chen, R.; Senbayram, M.; Blagodatsky, S.; Myachina, O.; Dittert, K.; Lin, X.; Blagodatskaya, E.; Kuzyakov, Y. Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories. Glob. Chang. Biol. 2014, 20, 2356–2367. [Google Scholar] [CrossRef] [PubMed]
- Keiluweit, M.; Bougoure, J.J.; Nico, P.S.; Pett-Ridge, J.; Weber, P.K.; Kleber, M. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Chang. 2015, 5, 588–595. [Google Scholar] [CrossRef]
- Bernard, L.; Basile-Doelsch, I.; Derrien, D.; Fanin, N.; Fontaine, S.; Guenet, B.; Karimi, B.; Marsden, C.; Maron, P.-A. Advancing the mechanistic understanding of the priming effect on soil organic matter mineralisation. Funct. Ecol. 2022, 36, 1355–1377. [Google Scholar] [CrossRef]
- Bernard, L.; Maron, P.-A.; Mougel, C.; Nowak, V.; Lévêque, J.; Marol, C.; Balesdent, J.; Gibiat, F.; Ranjard, L. Contamination of Soil by Copper Affects the Dynamics, Diversity, and Activity of Soil Bacterial Communities Involved in Wheat Decomposition and Carbon Storage. Appl. Environ. Microbiol. 2009, 75, 7565–7569. [Google Scholar] [CrossRef]
- Friedrich, M.W. Stable-isotope probing of DNA: Insights into the function of uncultivated microorganisms from isotopically labeled metagenomes. Curr. Opin. Biotechnol. 2006, 17, 59–66. [Google Scholar] [CrossRef]
- Wilson, J.B. Shoot competition and root competition. J. Appl. Ecol. 1988, 25, 279–296. [Google Scholar] [CrossRef]
- Loreau, M.; Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 2001, 412, 72–76. [Google Scholar] [CrossRef]
- Loreau, M.; Hector, A. Not even wrong: Comment by Loreau and Hector. Ecology 2019, 100, e02794. [Google Scholar] [CrossRef]
- Jaillard, B.; Deleporte, P.; Loreau, M.; Violle, C. A combinatorial analysis using observational data identifies species that govern ecosystem functioning. PLoS ONE 2018, 13, e0201135. [Google Scholar] [CrossRef] [PubMed]
- Jaillard, B.; Deleporte, P.; Isbell, F.; Loreau, M.; Violle, C. Consistent functional clusters explain the effects of biodiversity on ecosystem productivity in a long-term experiment. Ecology 2021, 102, e03441. [Google Scholar] [CrossRef] [PubMed]
- Razanamalala, K.; Razafimbelo, T.; Maron, P.-A.; Ranjard, L.; Chemidlin, N.; Lelièvre, M.; Dequiedt, S.; Ramaroson, V.H.; Marsden, C.; Becquer, T.; et al. Soil microbial diversity drives the priming effect along climate gradients: A case study in Madagascar. ISME J. 2018, 12, 451–462. [Google Scholar] [CrossRef]
- Maron, P.-A.; Mougel, C.; Ranjard, L. Soil microbial diversity: Methodological strategy, spatial over-view and functional interest. Comptes Rendus Biol. 2011, 334, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Terrat, S.; Christen, R.; Dequiedt, S.; Lelièvre, M.; Nowak, V.; Regnier, T.; Bachar, D.; Plassart, P.; Wincker, P.; Jolivet, C.; et al. Molecular biomass and MetaTaxogenomic assessment of soil microbial communities as influenced by soil DNA extraction procedure. Microb. Biotechnol. 2012, 5, 135–141. [Google Scholar] [CrossRef]
- Tardy, V.; Spor, A.; Mathieu, O.; Lévèque, J.; Terrat, S.; Plassart, P.; Regnier, T.; Bardgett, R.D.; van Der Putten, W.H.; Roggero, P.P.; et al. Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biol. Biochem. 2015, 90, 204–213. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, 590–596. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Multimodel Inference—Understanding AIC and BIC in Model Selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2009; ISBN 3-900051-07-0. Available online: https://www.R-project.org (accessed on 20 March 2023).
- Isbell, F.; Gonzalez, A.; Loreau, M.; Cowles, J.; Díaz, S.; Hector, A.; Mace, G.M.; Wardle, D.A.; O’Connor, M.I.; Duffy, J.E.; et al. Linking the influence and dependence of people on biodiversity across scales. Nature 2017, 546, 65–72. [Google Scholar] [CrossRef]
- Yu, X.; Polz, M.F.; Alm, E.J. Interactions in self-assembled microbial communities saturate with diversity. ISME J. 2019, 13, 1602–1617. [Google Scholar] [CrossRef]
- Clements, C.S.; Hay, M.E. Biodiversity has a positive but saturating effect on imperiled coral reefs. Sci. Adv. 2021, 7, eabi8592. [Google Scholar] [CrossRef]
- Maire, E.; Villéger, S.; Graham, N.A.; Hoey, A.S.; Cinner, J.; Ferse, S.C.; Aliaume, C.; Booth, D.J.; Feary, D.A.; Kulbicki, M.; et al. Community-wide scan identifies fish species associated with coral reef services across the Indo-Pacific. Proc. R. Soc. B Biol. Sci. 2018, 285, 20181167. [Google Scholar] [CrossRef] [PubMed]
- Delalandre, L.; Gaüzère, P.; Thuiller, W.; Cadotte, M.; Mouquet, N.; Mouillot, D.; Munoz, F.; Denelle, P.; Loiseau, N.; Morin, X.; et al. Functionally distinct tree species support long-term productivity in extreme environments. Proc. R. Soc. B 2022, 289, 20211694. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, T.R.; Dick, R.P. Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands. Appl. Soil Ecol. 2013, 65, 8–22. [Google Scholar] [CrossRef]
- Petters, S.; Groß, V.; Söllinger, A.; Pichler, M.; Reinhard, A.; Bengtsson, M.M.; Urich, T. The soil microbial food web re-visited: Predatory myxobacteria as keystone taxa? ISME J. 2021, 15, 2665–2675. [Google Scholar] [CrossRef] [PubMed]
- Gaston, K.J.; Lawton, J.H. The population ecology of rare species. J. Fish Biol. 1990, 37, 97–104. [Google Scholar] [CrossRef]
- Marchant, R. How important are rare species in aquatic community ecology and bioassessment? A comment on the conclusions of Cao et al. Limnol. Oceanogr. 1999, 44, 1840–1841. Available online: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1209822 (accessed on 20 March 2023).
- Cao, Y.; Larsen, D.P. Rare species in multivariate analysis for bioassessment: Some considerations. J. N. Am. Benthol. Soc. 2001, 20, 144–153. [Google Scholar] [CrossRef]
- Cao, Y.; Williams, D.D.; Williams, N.E. How important are rare species in aquatic community ecology and bioassessment? Limnol. Oceanogr. 1998, 43, 1403–1409. [Google Scholar] [CrossRef]
- Violle, C.; Thuiller, W.; Mouquet, N.; Munoz, F.; Kraft, N.J.; Cadotte, M.W.; Livingstone, S.W.; Mouillot, D. Functional Rarity: The Ecology of Outliers. Trends Ecol. Evol. 2017, 32, 356–367. [Google Scholar] [CrossRef]
- Derrien, D.; Plain, C.; Courty, P.E.; Gelhaye, L.; Moerdijk-Poortvliet, T.C.; Thomas, F.; Versini, A.; Zeller, B.; Koutika, L.S.; Boschker, H.T.; et al. Does the addition of labile substrate destabilise old soil organic matter? Soil Biol. Biochem. 2014, 76, 149–160. Available online: https://www.sciencedirect.com/science/article/pii/S0038071714001606 (accessed on 20 March 2023). [CrossRef]
- Blagodatskaya, E.; Khomyakov, N.; Myachina, O.; Bogomolova, I.; Blagodatsky, S.; Kuzyakov, Y. Microbial interactions affect sources of priming induced by cellulose. Soil Biol. Biochem. 2014, 74, 39–49. [Google Scholar] [CrossRef]
- Wilhelm, R.C.; Singh, R.; Eltis, L.D.; Mohn, W.W. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 2019, 13, 413–429. [Google Scholar] [CrossRef]
- Mandic-Mulec, I.; Stefanic, P.; van Elsas, J. Ecology of Bacillaceae. Microbiol. Spectr. 2015, 3, TBS–0017–2013. [Google Scholar] [CrossRef]
- Fontaine, S.; Hénault, C.; Aamor, A.; Bdioui, N.; Bloor, J.M.G.; Maire, V.; Mary, B.; Revaillot, S.; Maron, P.A. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol. Biochem. 2011, 43, 86–96. [Google Scholar] [CrossRef]
- Xing, X.; Xu, H.; Zhang, W.; Hou, H.; Qin, H.; Liu, Y.; Zhang, L.; Fang, Y.; Wei, W.; Sheng, R. The characteristics of the community structure of typical nitrous oxide-reducing denitrifiers in agricultural soils derived from different parent materials. Appl. Soil Ecol. 2019, 142, 8–17. [Google Scholar] [CrossRef]
- Diamond, S.; Andeer, P.F.; Li, Z.; Crits-Christoph, A.; Burstein, D.; Anantharaman, K.; Lane, K.R.; Thomas, B.C.; Pan, C.; Northen, T.R.; et al. Mediterranean grassland soil C–N compound turnover is dependent on rainfall and depth, and is mediated by genomically divergent microorganisms. Nat. Microbiol. 2019, 4, 1356–1367. [Google Scholar] [CrossRef]
- Karunarathna, A.; Papizadeh, M.; Senanayake, I.C.; Jeewon, R.; Phookamsak, R.; Goonasekara, I.D. Novel fungal species of Phaeosphaeriaceae with an asexual/sexual morph connection. Mycosphere 2017, 8, 1818–1834. [Google Scholar] [CrossRef]
- Marin-Felix, Y.; Stchigel, A.M.; Cano-Lira, J.F.; Sanchis, M.; Mayayo, E.; Guarro, J. Emmonsiellopsis, a new genus related to the thermally dimorphic fungi of the family Ajellomycetaceae. Mycoses 2015, 58, 451–460. [Google Scholar] [CrossRef]
- Cavaletti, L.; Monciardini, P.; Schumann, P.; Rohde, M.; Bamonte, R.; Busti, E.; Sosio, M.; Donadio, S. Actinospica robiniae gen. nov., sp. nov. and Actinospica acidiphila sp. nov.: Proposal for Actinospicaceae fam. nov. and Catenulisporinae subord. nov. in the order Actinomycetales. Int. J. Syst. Evol. Microbiol. 2006, 56, 1747–1753. [Google Scholar] [CrossRef]
- Guo, X.; Liu, N.; Li, X.; Ding, Y.; Shang, F.; Gao, Y.; Ruan, J.; Huang, Y. Red Soils Harbor Diverse Culturable Actinomycetes That Are Promising Sources of Novel Secondary Metabolites. Appl. Environ. Microbiol. 2015, 81, 3086–3103. [Google Scholar] [CrossRef] [PubMed]
- Uroz, S.; Christophe, C.; Turpault, M.-P.; Frey-Klett, P. Mineral weathering by bacteria: Ecology, actors and mechanisms. Trends Microbiol. 2009, 17, 378–387. [Google Scholar] [CrossRef]
- Emmett, B.D.; Lévesque-Tremblay, V.; Harrison, M.J. Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J. 2021, 15, 2276–2288. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Walker, R.; Schicklberger, M.; Nico, P.S.; Fox, P.M.; Karaoz, U.; Chakraborty, R.; Brodie, E.L. Microbial Phosphorus mobilization strategies across a natural nutrient limitation gradient and evidence for linkage with Iron solubilization traits. Front. Microbiol. 2021, 12, 572212. [Google Scholar] [CrossRef] [PubMed]
Mineralization | Duration ofIncubation | Statistical Model | Initial Number of Families | Number of Key Families | Degrees of Freedom | R2 | F-Ratio | AICc | |
---|---|---|---|---|---|---|---|---|---|
bacteria | soil | 7 days | lm | 55 | 32 | 22 | 0.993 | 112.1 | −319.1 |
fclust | 60 | 17 | 43 | 0.966 | 39.3 | −328.2 | |||
42 days | lm | 55 | 28 | 26 | 0.981 | 50.8 | −304.9 | ||
fclust | 60 | 12 | 48 | 0.966 | 84.6 | −354.8 | |||
straw | 7 days | lm | 55 | 38 | 16 | 0.985 | 30.4 | −91.3 | |
fclust | 60 | 13 | 47 | 0.963 | 59.2 | −246.9 | |||
42 days | lm | 55 | 19 | 35 | 0.883 | 14.6 | −314.0 | ||
fclust | 60 | 15 | 45 | 0.927 | 24.9 | −357.5 | |||
priming effect | 7 days | lm | 55 | 22 | 32 | 0.879 | 11.2 | −351.6 | |
fclust | 60 | 20 | 40 | 0.985 | 99.0 | −480.5 | |||
42 days | lm | 55 | 24 | 30 | 0.936 | 19.6 | −347.8 | ||
fclust | 60 | 13 | 47 | 0.939 | 32.5 | −401.0 | |||
fungi | soil | 7 days | lm | 55 | 11 | 43 | 0.598 | 6.1 | −209.3 |
fclust | 60 | 26 | 34 | 0.977 | 30.7 | −302.4 | |||
42 days | lm | 55 | 23 | 31 | 0.666 | 4.3 | −193.4 | ||
fclust | 60 | 14 | 46 | 0.929 | 18.2 | −307.1 | |||
straw | 7 days | lm | 55 | 13 | 41 | 0.585 | 4.7 | −109.6 | |
fclust | 60 | 24 | 36 | 0.982 | 40.4 | −236.9 | |||
42 days | lm | 55 | 7 | 47 | 0.557 | 8.8 | −280.6 | ||
fclust | 60 | 10 | 50 | 0.540 | 4.2 | −269.9 | |||
priming effect | 7 days | lm | 55 | 24 | 30 | 0.724 | 3.5 | −293.1 | |
fclust | 60 | 17 | 43 | 0.937 | 23.3 | −412.7 | |||
42 days | lm | 55 | 23 | 31 | 0.848 | 8.0 | −304.2 | ||
fclust | 60 | 8 | 52 | 0.838 | 20.5 | −361.0 | |||
bacteria and fungi | soil | 7 days | fclust | 120 | 13 | 107 | 0.949 | 181.4 | −320.0 |
42 days | fclust | 120 | 14 | 106 | 0.971 | 59.3 | −358.2 | ||
straw | 7 days | fclust | 120 | 14 | 106 | 0.938 | 37.1 | −214.7 | |
42 days | fclust | 120 | 20 | 100 | 0.979 | 29.2 | −407.4 | ||
Priming effect | 7 days | fclust | 120 | 19 | 101 | 0.959 | 49.3 | −428.1 | |
42 days | fclust | 120 | 13 | 107 | 0.933 | 145.1 | −395.7 |
Mineralisation | Incubation Time | Model | Bacteria | Unknown | Planctomycetaceae | Acidobacteria_Gp1 | Acidobacteria_Gp2 | Thermomonosporaceae | Ktedonobacteraceae | Undefined | Bradyrhizobiaceae | Acidobacteria_Gp4 | Hyphomicrobiaceae | Acetobacteraceae | Chitinophagaceae | Conexibacteraceae | Cystobacteraceae | Mycobacteriaceae | Pseudonocardiaceae | Burkholderiaceae | Oxalobacteraceae | Polyangiaceae | Gemmatimonadaceae | Chloroplast | Acidobacteria_Gp6 | Chthonomonadaceae | Acidobacteria_Gp7 | Streptomycetaceae | Rhodospirillaceae | Micromonosporaceae | Fervidicoccaceae | Acidimicrobineae_incertae_sedis | Paenibacillaceae | Xanthomonadaceae | Beijerinckiaceae | Bacillaceae | Comamonadaceae | Catenulisporaceae | Nocardioidaceae | Caulobacteraceae | Actinospicaceae | Acidobacteria_Gp13 | Bdellovibrionaceae | Solirubrobacteraceae | Acidobacteria_Gp5 | Rubrobacteraceae | Haliangiaceae | Planococcaceae | Sinobacteraceae | Coxiellaceae | Cyanobacteria.Chloroplast_F1 | Methylocystaceae | Geodermatophilaceae | Rhizobiales_incertae_sedis | Armatimonadaceae | Acidobacteria_Gp3 | Xanthobacteraceae | Flavobacteriaceae | Pasteuriaceae | Phyllobacteriaceae | Methylobacteriaceae | Nitrospiraceae | Microbacteriaceae |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
soil | 7 d | lm | *** | *** | . | *** | *** | *** | . | *** | *** | . | *** | *** | . | . | . | . | . | . | . | . | . | . | *** | *** | . | *** | . | . | *** | . | *** | . | |||||||||||||||||||||||||||||
− | − | − | − | + | − | − | − | + | − | − | − | + | + | ||||||||||||||||||||||||||||||||||||||||||||||||||
fclust | *** | *** | *** | *** | *** | *** | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
D | E | C− | A+ | C− | E | E | E | E | D | B+ | E | D | E | A+ | C− | D | |||||||||||||||||||||||||||||||||||||||||||||||
42 d | lm | *** | *** | *** | *** | . | *** | . | . | *** | *** | *** | *** | . | *** | . | . | . | *** | *** | . | . | . | . | . | *** | . | . | *** | ||||||||||||||||||||||||||||||||||
− | − | − | − | − | + | − | + | + | − | − | − | + | − | ||||||||||||||||||||||||||||||||||||||||||||||||||
fclust | *** | *** | *** | *** | *** | *** | *** | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
B+ | A+ | E | C | B+ | C | E | D+ | D+ | A+ | D+ | C | ||||||||||||||||||||||||||||||||||||||||||||||||||||
straw | 7 d | lm | . | . | *** | *** | *** | *** | . | *** | *** | . | *** | *** | . | . | *** | . | *** | *** | . | . | . | . | . | . | *** | . | . | . | *** | . | *** | *** | . | . | . | *** | *** | *** | |||||||||||||||||||||||
− | + | − | − | − | + | + | + | + | − | + | + | − | − | + | − | + | + | ||||||||||||||||||||||||||||||||||||||||||||||
fclust | *** | *** | *** | *** | *** | *** | *** | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
E | B− | B− | E | C | B− | A+ | D | B− | D | B− | A+ | C | |||||||||||||||||||||||||||||||||||||||||||||||||||
42 d | lm | *** | . | *** | *** | *** | . | *** | . | . | . | . | . | . | . | . | *** | . | . | . | |||||||||||||||||||||||||||||||||||||||||||
− | − | + | + | − | + | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
fclust | *** | *** | *** | *** | *** | *** | *** | *** | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
A+ | A+ | B+ | A+ | B+ | E | C | C | A+ | E | D | A+ | A+ | D | D | |||||||||||||||||||||||||||||||||||||||||||||||||
priming effect | 7 d | lm | *** | . | . | . | . | . | . | . | . | . | . | . | . | . | . | *** | . | *** | *** | *** | . | . | |||||||||||||||||||||||||||||||||||||||
+ | + | + | + | + | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
fclust | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | ||||||||||||||||||||||||||||||||||||||||||||||||||
B− | A+ | D | B− | F | C− | A+ | E | E | B− | A+ | A+ | C− | D | F | A+ | A+ | B− | E | C− | ||||||||||||||||||||||||||||||||||||||||||||
42 d | lm | *** | . | *** | . | . | . | . | *** | *** | *** | . | *** | . | . | *** | *** | *** | . | . | . | . | . | . | . | ||||||||||||||||||||||||||||||||||||||
− | + | − | − | − | − | + | − | + | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
fclust | *** | *** | *** | *** | *** | *** | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A+ | D+ | E | A+ | E | C+ | E | E | D+ | D+ | B | E | B | |||||||||||||||||||||||||||||||||||||||||||||||||||
Fungi | Unclassified | Unknown | Tricholomataceae | Environmental | Glomeraceae | Herpotrichiellaceae | Mortierellaceae | Tubeufiaceae | Phaeosphaeriaceae | Myxotrichaceae | Trichocomaceae | Chaetomiaceae | Coniophoraceae | Teratosphaeriaceae | Davidiellaceae | Nectriaceae | Strophariaceae | Endogonaceae | Lyophyllaceae | Hypocreaceae | Pleurotaceae | Bulgariaceae | Mycosphaerellaceae | Entolomataceae | Pyronemataceae | Pluteaceae | Boletaceae | Helotiaceae | Tremellaceae | Coniochaetaceae | Cordycipitaceae | Hyaloscyphaceae | Clavicipitaceae | Pleosporaceae | Lycoperdaceae | Gomphaceae | Marasmiaceae | Corticiaceae | Monoblepharidaceae | Stereaceae | Plectosphaerellaceae | Magnaporthaceae | Ajellomycetaceae | Didymellaceae | Agaricaceae | Massariaceae | Agyriaceae | Orbiliaceae | Pezizaceae | Ophiocordycipitaceae | Montagnulaceae | Rhizophydiaceae | Trechisporaceae | Ophiostomataceae | Kickxellaceae | Bionectriaceae | Sarcosomataceae | Ambisporaceae | Ustilaginaceae | Auriculariaceae | |||
soil | 7 d | lm | . | . | . | . | . | . | . | . | *** | . | . | ||||||||||||||||||||||||||||||||||||||||||||||||||
+ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
fclust | . | . | . | . | . | . | . | . | *** | *** | . | . | . | . | . | . | *** | *** | *** | . | *** | . | . | *** | . | . | |||||||||||||||||||||||||||||||||||||
F | F | F | F | F | F | F | F | A+ | A+ | D | F | F | F | E | D | C | B+ | A+ | F | B+ | F | E | B+ | E | D | ||||||||||||||||||||||||||||||||||||||
42 d | lm | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | *** | *** | *** | |||||||||||||||||||||||||||||||||||||||
+ | + | + | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
fclust | . | *** | *** | . | . | *** | . | . | . | *** | . | *** | *** | . | |||||||||||||||||||||||||||||||||||||||||||||||||
E | D− | B+ | E | E | A+ | C | E | C | A+ | E | B+ | D− | C | ||||||||||||||||||||||||||||||||||||||||||||||||||
straw | 7 d | lm | . | . | . | . | . | *** | . | . | . | . | . | . | . | ||||||||||||||||||||||||||||||||||||||||||||||||
− | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
fclust | *** | *** | . | *** | *** | *** | . | . | *** | . | *** | . | . | . | *** | . | . | . | . | . | . | *** | *** | . | |||||||||||||||||||||||||||||||||||||||
B− | C+ | F | B− | C+ | B− | F | D | A+ | D | C+ | F | F | E | B− | D | F | F | E | F | F | A+ | A+ | F | ||||||||||||||||||||||||||||||||||||||||
42 d | lm | *** | . | . | . | *** | . | . | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
− | − | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
fclust | *** | . | *** | *** | *** | *** | . | *** | . | . | |||||||||||||||||||||||||||||||||||||||||||||||||||||
A− | B | A− | A− | A− | A− | B | A− | B | B | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
priming effect | 7d | lm | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | *** | . | . | *** | |||||||||||||||||||||||||||||||||||||
+ | + | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
fclust | *** | . | *** | *** | . | *** | . | . | *** | . | . | *** | *** | *** | . | *** | *** | ||||||||||||||||||||||||||||||||||||||||||||||
A+ | E | A+ | A+ | E | A+ | C | C | A+ | C | E | D− | B | D− | C | B− | B− | |||||||||||||||||||||||||||||||||||||||||||||||
42 d | lm | . | . | . | . | . | . | . | . | *** | . | . | . | . | . | . | . | *** | . | . | . | . | . | *** | |||||||||||||||||||||||||||||||||||||||
+ | − | − | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
fclust | *** | . | . | . | . | . | . | *** | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
B+ | A | C | D | A | D | A | B+ |
Mineralisation | Incubation Time | Model | Bacteria | Unknown | B.Planctomycetaceae | B.Acidobacteria-Gp1 | B.Acidobacteria-Gp2 | B.Thermomonosporaceae | B.Ktedonobacteraceae | B.Undefined | B.Bradyrhizobiaceae | B.Acidobacteria-Gp4 | B.Hyphomicrobiaceae | B.Acetobacteraceae | B.Chitinophagaceae | B.Conexibacteraceae | B.Cystobacteraceae | B.Mycobacteriaceae | B.Pseudonocardiaceae | B.Burkholderiaceae | B.Oxalobacteraceae | B.Polyangiaceae | B.Gemmatimonadaceae | B.Chloroplast | B.Acidobacteria-Gp6 | B.Chthonomonadaceae | B.Acidobacteria-Gp7 | B.Streptomycetaceae | B.Rhodospirillaceae | B.Micromonosporaceae | B.Fervidicoccaceae | B.Acidimicrobineae-incertae-sedis | B.Paenibacillaceae | B.Xanthomonadaceae | B.Beijerinckiaceae | B.Bacillaceae | B.Comamonadaceae | B.Catenulisporaceae | B.Nocardioidaceae | B.Caulobacteraceae | B.Actinospicaceae | B.Acidobacteria-Gp13 | B.Bdellovibrionaceae | B.Solirubrobacteraceae | B.Acidobacteria-Gp5 | B.Rubrobacteraceae | B.Haliangiaceae | B.Planococcaceae | B.Sinobacteraceae | B.Coxiellaceae | B.Cyanobacteria.Chloroplast-F1 | B.Methylocystaceae | B.Geodermatophilaceae | B.Rhizobiales-incertae-sedis | B.Armatimonadaceae | B.Acidobacteria-Gp3 | B.Xanthobacteraceae | B.Flavobacteriaceae | B.Pasteuriaceae | B.Phyllobacteriaceae | B.Methylobacteriaceae | B.Nitrospiraceae | B.Microbacteriaceae |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
soil | 7 d | fclust | *** | ∙ | ∙ | *** | *** | . | ∙ | ∙ | *** | ||||||||||||||||||||||||||||||||||||||||||||||||||||
A+ | E | D | B+ | B+ | C+ | D | E | A+ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
42 d | fclust | *** | ∙ | ∙ | *** | ∙ | *** | *** | *** | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
A+ | D | D | B+ | E | C− | A+ | B+ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
straw | 7 d | fclust | *** | *** | ∙ | ∙ | ∙ | *** | *** | *** | ∙ | ||||||||||||||||||||||||||||||||||||||||||||||||||||
B− | B− | D | E | C | A+ | B− | A+ | C | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
42 d | fclust | *** | *** | *** | *** | ∙ | *** | *** | ∙ | *** | ∙ | *** | *** | ∙ | *** | ||||||||||||||||||||||||||||||||||||||||||||||||
A+ | A+ | A+ | D− | E | D− | C+ | F | B+ | E | C+ | A+ | E | D− | ||||||||||||||||||||||||||||||||||||||||||||||||||
priming effect | 7 d | fclust | *** | ∙ | *** | *** | *** | *** | *** | *** | *** | *** | *** | ||||||||||||||||||||||||||||||||||||||||||||||||||
D− | E | A+ | A+ | D− | B+ | C− | A+ | C− | C− | B+ | |||||||||||||||||||||||||||||||||||||||||||||||||||||
42 d | fclust | *** | *** | *** | *** | *** | *** | *** | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
A+ | C− | A+ | C− | A+ | C− | C− | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fungi | F.Unclassified | F.Unknown | F.Tricholomataceae | F.Environmental | F.Glomeraceae | F.Herpotrichiellaceae | F.Mortierellaceae | F.Tubeufiaceae | F.Phaeosphaeriaceae | F.Myxotrichaceae | F.Trichocomaceae | F.Chaetomiaceae | F.Coniophoraceae | F.Teratosphaeriaceae | F.Davidiellaceae | F.Nectriaceae | F.Strophariaceae | F.Endogonaceae | F.Lyophyllaceae | F.Hypocreaceae | F.Pleurotaceae | F.Bulgariaceae | F.Mycosphaerellaceae | F.Entolomataceae | F.Pyronemataceae | F.Pluteaceae | F.Boletaceae | F.Helotiaceae | F.Tremellaceae | F.Coniochaetaceae | F.Cordycipitaceae | F.Hyaloscyphaceae | F.Clavicipitaceae | F.Pleosporaceae | F.Lycoperdaceae | F.Gomphaceae | F.Marasmiaceae | F.Corticiaceae | F.Monoblepharidaceae | F.Stereaceae | F.Plectosphaerellaceae | F.Magnaporthaceae | F.Ajellomycetaceae | F.Didymellaceae | F.Agaricaceae | F.Massariaceae | F.Agyriaceae | F.Orbiliaceae | F.Pezizaceae | F.Ophiocordycipitaceae | F.Montagnulaceae | F.Rhizophydiaceae | F.Trechisporaceae | F.Ophiostomataceae | F.Kickxellaceae | F.Bionectriaceae | F.Sarcosomataceae | F.Ambisporaceae | F.Ustilaginaceae | F.Auriculariaceae | |||
soil | 7 d | fclust | *** | . | . | . | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
B+ | D | D | C | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
42 d | fclust | . | *** | *** | *** | . | *** | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
E | C− | B+ | C− | E | C− | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
straw | 7 d | fclust | . | *** | . | *** | *** | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
E | B− | D | A+ | B− | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
42 d | fclust | . | *** | *** | *** | *** | *** | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
F | B+ | C+ | A+ | B+ | B+ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
priming effect | 7 d | fclust | *** | *** | *** | *** | *** | . | *** | *** | |||||||||||||||||||||||||||||||||||||||||||||||||||||
C− | A+ | A+ | C− | D− | E | A+ | B+ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
42 d | fclust | *** | *** | . | *** | . | *** | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A+ | B+ | E | A+ | E | A+ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaillard, B.; Razanamalala, K.; Violle, C.; Bernard, L. Nonlinear Effects Induced by Interactions among Functional Groups of Bacteria and Fungi Regulate the Priming Effect in Malagasy Soils. Microorganisms 2023, 11, 1106. https://doi.org/10.3390/microorganisms11051106
Jaillard B, Razanamalala K, Violle C, Bernard L. Nonlinear Effects Induced by Interactions among Functional Groups of Bacteria and Fungi Regulate the Priming Effect in Malagasy Soils. Microorganisms. 2023; 11(5):1106. https://doi.org/10.3390/microorganisms11051106
Chicago/Turabian StyleJaillard, Benoît, Kanto Razanamalala, Cyrille Violle, and Laetitia Bernard. 2023. "Nonlinear Effects Induced by Interactions among Functional Groups of Bacteria and Fungi Regulate the Priming Effect in Malagasy Soils" Microorganisms 11, no. 5: 1106. https://doi.org/10.3390/microorganisms11051106
APA StyleJaillard, B., Razanamalala, K., Violle, C., & Bernard, L. (2023). Nonlinear Effects Induced by Interactions among Functional Groups of Bacteria and Fungi Regulate the Priming Effect in Malagasy Soils. Microorganisms, 11(5), 1106. https://doi.org/10.3390/microorganisms11051106