Oral Administration of Human-Gut-Derived Prevotella histicola Improves Sleep Architecture in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Culture and Preparation of the Probiotic Suspension of the Prevotella Species
2.2. Preparation of the P. histicola EV Suspension
2.3. Animals and Experimental Conditions
2.4. Surgery and Monitoring Method for Sleep Architecture
2.5. Statistical Analysis
3. Results
3.1. Effects of Live Prevotella Bacteria Administration on Sleep Architecture
3.2. Dose–Response Effects of Live P. histicola Administration on Sleep Architecture
3.3. Effects of P. histicola EV Administration on Sleep Architecture
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.; Sandhu, K.V.; Bastiaanssen, T.F.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The microbiota-gut-brain axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [PubMed]
- Matenchuk, B.A.; Mandhane, P.J.; Kozyrskyj, A.L. Sleep, circadian rhythm, and gut microbiota. Sleep Med. Rev. 2020, 53, 101340. [Google Scholar] [CrossRef]
- Poroyko, V.A.; Carreras, A.; Khalyfa, A.; Khalyfa, A.A.; Leone, V.; Peris, E.; Almendros, I.; Gileles-Hillel, A.; Qiao, Z.; Hubert, N.; et al. Chronic Sleep Disruption Alters Gut Microbiota, Induces Systemic and Adipose Tissue Inflammation and Insulin Resistance in Mice. Sci. Rep. 2016, 6, 35405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.L.; Bai, L.; Goel, N.; Bailey, A.; Jang, C.J.; Bushman, F.D.; Meerlo, P.; Dinges, D.F.; Sehgal, A. Human and rat gut microbiome composition is maintained following sleep restriction. Proc. Natl. Acad. Sci. USA 2017, 114, E1564–E1571. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Song, J.; Wang, H.; Shi, F.; Zhou, N.; Jiang, J.; Xu, Y.; Zhang, L.; Yang, L.; Zhou, M. Chronic paradoxical sleep deprivation-induced depression-like behavior, energy metabolism and microbial changes in rats. Life Sci. 2019, 225, 88–97. [Google Scholar] [CrossRef]
- Bowers, S.J.; Vargas, F.; González, A.; He, S.; Jiang, P.; Dorrestein, P.C.; Knight, R.; Jr, K.P.W.; Lowry, C.A.; Fleshner, M.; et al. Repeated sleep disruption in mice leads to persistent shifts in the fecal microbiome and metabolome. PLoS ONE 2020, 15, e0229001. [Google Scholar] [CrossRef]
- Benedict, C.; Vogel, H.; Jonas, W.; Woting, A.; Blaut, M.; Schürmann, A.; Cedernaes, J. Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals. Mol. Metab. 2016, 5, 1175–1186. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, B.; Zhou, Y.; Wang, D.; Liu, X.; Li, L.; Wang, T.; Zhang, Y.; Jiang, M.; Tang, H.; et al. Gut Microbiota Changes and Their Relationship with Inflammation in Patients with Acute and Chronic Insomnia. Nat. Sci. Sleep 2020, 12, 895–905. [Google Scholar] [CrossRef]
- Grosicki, G.J.; Riemann, B.L.; Flatt, A.A.; Valentino, T.; Lustgarten, M.S. Self-reported sleep quality is associated with gut micro-biome composition in young, healthy individuals: A pilot study. Sleep Med. 2020, 73, 76–81. [Google Scholar]
- Haimov, I.; Magzal, F.; Tamir, S.; Lalzar, M.; Asraf, K.; Milman, U.; Agmon, M.; Shochat, T. Variation in Gut Microbiota Composition is Associated with Sleep Quality and Cognitive Performance in Older Adults with Insomnia. Nat. Sci. Sleep 2022, 14, 1753–1767. [Google Scholar] [CrossRef]
- Smith, R.P.; Easson, C.; Lyle, S.M.; Kapoor, R.; Donnelly, C.P.; Davidson, E.J.; Parikh, E.; Lopez, J.V.; Tartar, J.L. Gut microbiome diversity is associated with sleep physiology in humans. PLoS ONE 2019, 14, e0222394. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.; Shih, C.T.; Huang, C.L.; Wu, C.C.; Lin, C.T.; Tsai, Y.C. Hypnotic effects of Lactobacillus fermentum PS150TM on pento-barbital-induced sleep in mice. Nutrients 2019, 11, 2409. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.; Shih, C.-T.; Chu, H.-F.; Chen, C.-W.; Cheng, Y.-T.; Wu, C.-C.; Yang, C.C.H.; Tsai, Y.-C. Lactobacillus fermentum PS150 promotes non-rapid eye movement sleep in the first night effect of mice. Sci. Rep. 2021, 11, 16313. [Google Scholar] [CrossRef] [PubMed]
- Nishida, K.; Sawada, D.; Kuwano, Y.; Tanaka, H.; Rokutan, K. Health Benefits of Lactobacillus gasseri CP2305 Tablets in Young Adults Exposed to Chronic Stress: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2019, 11, 1859. [Google Scholar] [CrossRef] [PubMed]
- Moloney, G.M.; Long-Smith, C.M.; Murphy, A.; Dorland, D.; Hojabri, S.F.; Ramirez, L.O.; Marin, D.C.; Bastiaanssen, T.F.; Cusack, A.-M.; Berding, K.; et al. Improvements in sleep indices during exam stress due to consumption of a Bifidobacterium longum. Brain Behav. Immun.-Health 2020, 10, 100174. [Google Scholar] [CrossRef]
- Hitch, T.C.; Bisdorf, K.; Afrizal, A.; Riedel, T.; Overmann, J.; Strowig, T.; Clavel, T. A taxonomic note on the genus Prevotella: Description of four novel genera and emended description of the genera Hallella and Xylanibacter. Syst. Appl. Microbiol. 2022, 45, 126354. [Google Scholar] [CrossRef]
- Larsen, J.M. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology 2017, 151, 363–374. [Google Scholar] [CrossRef]
- Marietta, E.V.; Murray, J.A.; Luckey, D.H.; Jeraldo, P.R.; Lamba, A.; Patel, R.; Luthra, H.S.; Mangalam, A.; Taneja, V. Human gut-derived Prevotella histicola suppresses inflammatory arthritis in humanized mice. Arthritis Rheumatol. 2016, 68, 2878–2888. [Google Scholar] [CrossRef]
- Mangalam, A.; Shahi, S.K.; Luckey, D.; Karau, M.; Marietta, E.; Luo, N.; Ju, J.; Sompallae, R.; Gibson-Corley, K.; Patel, R.; et al. Human gut-derived commensal bacteria suppress CNS inflammatory and de-myelinating disease. Cell Rep. 2017, 20, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Marietta, E.; Horwath, I.; Meyer, S.; Khaleghi-Rostamkolaei, S.; Norman, E.; Luckey, D.; Balakrishnan, B.; Mangalam, A.; Choung, R.S.; Taneja, V.; et al. Administration of Human Derived Upper gut Commensal Prevotella histicola delays the onset of type 1 diabetes in NOD mice. BMC Microbiol. 2022, 22, 8. [Google Scholar] [CrossRef]
- Park, S.B.; Jang, H.B.; Nho, S.W.; Cha, I.S.; Hikima, J.I.; Ohtani, M.; Aoki, T.; Jung, T.S. Outer membrane vesicles as a candidate vaccine against edwardsiellosis. PLoS ONE 2011, 6, el7629. [Google Scholar] [CrossRef] [PubMed]
- Marotta, A.; Sarno, E.; Del Casale, A.; Pane, M.; Mogna, L.; Amoruso, A.; Felis, G.E.; Fiorio, M. Effects of Probiotics on Cognitive Reactivity, Mood, and Sleep Quality. Front. Psychiatry 2019, 10, 164. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Hong, J.K.; Kim, J.-K.; Kim, D.-H.; Jang, S.W.; Han, S.-W.; Yoon, I.-Y. Effects of Probiotic NVP-1704 on Mental Health and Sleep in Healthy Adults: An 8-Week Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021, 13, 2660. [Google Scholar] [CrossRef] [PubMed]
- Downes, J.; Hooper, S.J.; Wilson, M.J.; Wade, W.G. Prevotella histicola sp. nov., isolated from the human oral cavity. Int. J. Syst. Evol. Microbiol. 2008, 58, 1788–1791. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.; Park, J.; Gho, Y.S. Gram-negative and Gram-positive bacterial extracellular vesicles. Semin. Cell Dev. Biol. 2015, 40, 97–104. [Google Scholar] [CrossRef]
- Diez-Gutiérrez, L.; Vicente, L.S.; Barrón, L.J.R.; del Carmen Villarán, M.; Chavarri, M. Gamma-aminobutyric acid and probiotics: Multiple health benefits and their future in the global functional food and nutraceuticals market. J. Funct. Foods 2020, 64, 103669. [Google Scholar] [CrossRef]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef]
- Roth, W.; Zadeh, K.; Vekariya, R.; Ge, Y.; Mohamadzadeh, M. Tryptophan Metabolism and Gut-Brain Homeostasis. Int. J. Mol. Sci. 2021, 22, 2973. [Google Scholar] [CrossRef]
- Lovelace, M.D.; Varney, B.; Sundaram, G.; Franco, N.F.; Ng, M.L.; Pai, S.; Lim, C.K.; Guillemin, G.J.; Brew, B.J. Current evidence for a role of the kynurenine pathway of tryptophan me-tabolism in multiple sclerosis. Front Immunol. 2016, 7, 246. [Google Scholar] [CrossRef]
- García-García, C.; Baik, I. Effects of poly-gamma-glutamic acid and vitamin B6 supplements on sleep status: A randomized intervention study. Nutr. Res. Pr. 2021, 15, 309–318. [Google Scholar] [CrossRef]
Sleep-Wake Profiles | No Administration Group | P. stercorea Group | P. histicola Group | p Value (1) |
---|---|---|---|---|
(Number of rats) | (n = 4) | (n = 5) | (n = 16) | |
Vehicle administration baseline (2) | ||||
Total sleep time, min | 708.8 ± 23.3 | 729.4 ± 42.6 | 678.1 ± 38.8 | 0.067 |
REM sleep time, min | 133.9 ± 6.3 | 127.8 ± 26.5 | 117.5 ± 14.4 | 0.079 |
NREM sleep time, min | 574.8 ± 19.1 ab | 601.6 ± 20.6 a | 560.6 ± 34.9 b | 0.044 |
Wake time, min | 671.6 ± 23.4 | 721.2 ± 123.7 | 702.1 ± 38.8 | 0.353 |
Bacteria administration, Day 1 | ||||
Total sleep time, min | 712.5 ± 20.1 | 683.8 ± 33.3 | 690.4 ± 50.1 | 0.580 |
REM sleep time, min | 141.7 ± 10.7 a | 109.8 ± 12.0 b | 124.8 ± 16.6 ab | 0.028 |
NREM sleep time, min | 570.8 ± 21.6 | 574.1 ± 36.0 | 565.6 ± 40.0 | 0.774 |
Wake time, min | 667.8 ± 20.2 | 696.3 ± 33.2 | 689.8 ± 50.0 | 0.580 |
Bacteria administration, Day 4 | ||||
Total sleep time, min | 724.1 ± 36.9 | 723.3 ± 41.1 | 714.4 ± 54.6 * | 0.846 |
REM sleep time, min | 134.1 ± 10.2 | 119.0 ± 20.3 | 129.7 ± 21.4 * | 0.453 |
NREM sleep time, min | 590.0 ± 28.3 | 604.3 ± 53.4 | 584.7 ± 37.7 | 0.758 |
Wake time, min | 656.3 ± 36.8 | 657.0 ± 41.1 | 665.9 ± 54.6 * | 0.846 |
Bacteria administration, Day 7 | ||||
Total sleep time, min | 713.7 ± 25.1 | 694.6 ± 28.6 | 729.6 ± 39.2 ‡ | 0.167 |
REM sleep time, min | 126.1 ± 3.2 | 112.3 ± 23.7 | 130.2 ± 20.7 * | 0.435 |
NREM sleep time, min | 587.7 ± 23.3 | 582.3 ± 20.3 | 599.5 ± 27.4 † | 0.231 |
Wake time, min | 666.6 ± 25.1 | 685.6 ± 28.6 | 650.6 ± 39.2 ‡ | 0.167 |
Bacteria withdrawal, Day 1 | ||||
Total sleep time, min | 723.7 ± 27.5 | 713.9 ± 22.4 | 729.6 ± 39.2 † | 0.746 |
REM sleep time, min | 135.8 ± 4.6 | 126.3 ± 27.5 | 125.6 ± 22.6 | 0.704 |
NREM sleep time, min | 588.0 ± 27.3 | 587.6 ± 13.9 | 604.1 ± 41.6 † | 0.329 |
Wake time, min | 656.5 ± 27.4 | 666.3 ± 22.4 | 650.6 ± 49.5 † | 0.746 |
Bacteria withdrawal, Day 2 | ||||
Total sleep time, min | 704.2 ± 33.6 ab | 686.2 ± 19.2 b | 741.3 ± 38.8 ‡a | 0.007 |
REM sleep time, min | 124.6 ± 8.1 | 116.1 ± 18.9 | 132.4 ± 30.2 † | 0.358 |
NREM sleep time, min | 579.6 ± 30.3 ab | 570.1 ± 16.0 b | 608.9 ± 24.8 ‡a | 0.010 |
Wake time, min | 676.1 ± 33.5 | 685.4 ± 12.3 | 644.3 ± 33.7 ‡ | 0.017 |
Bacteria withdrawal, Day 3 | ||||
Total sleep time, min | 700.3 ± 42.7 | 704.0 ± 48.2 | 728.0 ± 50.8 † | 0.458 |
REM sleep time, min | 129.0 ± 10.3 | 107.1 ± 28.2 | 123.5 ± 18.8 | 0.328 |
NREM sleep time, min | 571.2 ± 38.1 | 596.9 ± 30.8 | 604.5 ± 39.3 ‡ | 0.210 |
Wake time, min | 680.1 ± 42.7 | 676.2 ± 48.0 | 652.3 ± 50.9 † | 0.458 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, D.W.; Baik, I. Oral Administration of Human-Gut-Derived Prevotella histicola Improves Sleep Architecture in Rats. Microorganisms 2023, 11, 1151. https://doi.org/10.3390/microorganisms11051151
Yoon DW, Baik I. Oral Administration of Human-Gut-Derived Prevotella histicola Improves Sleep Architecture in Rats. Microorganisms. 2023; 11(5):1151. https://doi.org/10.3390/microorganisms11051151
Chicago/Turabian StyleYoon, Dae Wui, and Inkyung Baik. 2023. "Oral Administration of Human-Gut-Derived Prevotella histicola Improves Sleep Architecture in Rats" Microorganisms 11, no. 5: 1151. https://doi.org/10.3390/microorganisms11051151
APA StyleYoon, D. W., & Baik, I. (2023). Oral Administration of Human-Gut-Derived Prevotella histicola Improves Sleep Architecture in Rats. Microorganisms, 11(5), 1151. https://doi.org/10.3390/microorganisms11051151